1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/CodeGen/InterleavedAccessPass.cpp
Reid Kleckner 68092989f3 Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.

I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
  recompiles    touches affected_files  header
  342380        95      3604    llvm/include/llvm/ADT/STLExtras.h
  314730        234     1345    llvm/include/llvm/InitializePasses.h
  307036        118     2602    llvm/include/llvm/ADT/APInt.h
  213049        59      3611    llvm/include/llvm/Support/MathExtras.h
  170422        47      3626    llvm/include/llvm/Support/Compiler.h
  162225        45      3605    llvm/include/llvm/ADT/Optional.h
  158319        63      2513    llvm/include/llvm/ADT/Triple.h
  140322        39      3598    llvm/include/llvm/ADT/StringRef.h
  137647        59      2333    llvm/include/llvm/Support/Error.h
  131619        73      1803    llvm/include/llvm/Support/FileSystem.h

Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.

Reviewers: bkramer, asbirlea, bollu, jdoerfert

Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 16:34:37 -08:00

474 lines
16 KiB
C++

//===- InterleavedAccessPass.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Interleaved Access pass, which identifies
// interleaved memory accesses and transforms them into target specific
// intrinsics.
//
// An interleaved load reads data from memory into several vectors, with
// DE-interleaving the data on a factor. An interleaved store writes several
// vectors to memory with RE-interleaving the data on a factor.
//
// As interleaved accesses are difficult to identified in CodeGen (mainly
// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
// IR), we identify and transform them to intrinsics in this pass so the
// intrinsics can be easily matched into target specific instructions later in
// CodeGen.
//
// E.g. An interleaved load (Factor = 2):
// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
//
// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
// intrinsic in ARM backend.
//
// In X86, this can be further optimized into a set of target
// specific loads followed by an optimized sequence of shuffles.
//
// E.g. An interleaved store (Factor = 3):
// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
// store <12 x i32> %i.vec, <12 x i32>* %ptr
//
// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
// intrinsic in ARM backend.
//
// Similarly, a set of interleaved stores can be transformed into an optimized
// sequence of shuffles followed by a set of target specific stores for X86.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "interleaved-access"
static cl::opt<bool> LowerInterleavedAccesses(
"lower-interleaved-accesses",
cl::desc("Enable lowering interleaved accesses to intrinsics"),
cl::init(true), cl::Hidden);
namespace {
class InterleavedAccess : public FunctionPass {
public:
static char ID;
InterleavedAccess() : FunctionPass(ID) {
initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "Interleaved Access Pass"; }
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
private:
DominatorTree *DT = nullptr;
const TargetLowering *TLI = nullptr;
/// The maximum supported interleave factor.
unsigned MaxFactor;
/// Transform an interleaved load into target specific intrinsics.
bool lowerInterleavedLoad(LoadInst *LI,
SmallVector<Instruction *, 32> &DeadInsts);
/// Transform an interleaved store into target specific intrinsics.
bool lowerInterleavedStore(StoreInst *SI,
SmallVector<Instruction *, 32> &DeadInsts);
/// Returns true if the uses of an interleaved load by the
/// extractelement instructions in \p Extracts can be replaced by uses of the
/// shufflevector instructions in \p Shuffles instead. If so, the necessary
/// replacements are also performed.
bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
ArrayRef<ShuffleVectorInst *> Shuffles);
};
} // end anonymous namespace.
char InterleavedAccess::ID = 0;
INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
"Lower interleaved memory accesses to target specific intrinsics", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
"Lower interleaved memory accesses to target specific intrinsics", false,
false)
FunctionPass *llvm::createInterleavedAccessPass() {
return new InterleavedAccess();
}
/// Check if the mask is a DE-interleave mask of the given factor
/// \p Factor like:
/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
unsigned &Index) {
// Check all potential start indices from 0 to (Factor - 1).
for (Index = 0; Index < Factor; Index++) {
unsigned i = 0;
// Check that elements are in ascending order by Factor. Ignore undef
// elements.
for (; i < Mask.size(); i++)
if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
break;
if (i == Mask.size())
return true;
}
return false;
}
/// Check if the mask is a DE-interleave mask for an interleaved load.
///
/// E.g. DE-interleave masks (Factor = 2) could be:
/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
unsigned &Index, unsigned MaxFactor,
unsigned NumLoadElements) {
if (Mask.size() < 2)
return false;
// Check potential Factors.
for (Factor = 2; Factor <= MaxFactor; Factor++) {
// Make sure we don't produce a load wider than the input load.
if (Mask.size() * Factor > NumLoadElements)
return false;
if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
return true;
}
return false;
}
/// Check if the mask can be used in an interleaved store.
//
/// It checks for a more general pattern than the RE-interleave mask.
/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
///
/// The particular case of an RE-interleave mask is:
/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
unsigned MaxFactor, unsigned OpNumElts) {
unsigned NumElts = Mask.size();
if (NumElts < 4)
return false;
// Check potential Factors.
for (Factor = 2; Factor <= MaxFactor; Factor++) {
if (NumElts % Factor)
continue;
unsigned LaneLen = NumElts / Factor;
if (!isPowerOf2_32(LaneLen))
continue;
// Check whether each element matches the general interleaved rule.
// Ignore undef elements, as long as the defined elements match the rule.
// Outer loop processes all factors (x, y, z in the above example)
unsigned I = 0, J;
for (; I < Factor; I++) {
unsigned SavedLaneValue;
unsigned SavedNoUndefs = 0;
// Inner loop processes consecutive accesses (x, x+1... in the example)
for (J = 0; J < LaneLen - 1; J++) {
// Lane computes x's position in the Mask
unsigned Lane = J * Factor + I;
unsigned NextLane = Lane + Factor;
int LaneValue = Mask[Lane];
int NextLaneValue = Mask[NextLane];
// If both are defined, values must be sequential
if (LaneValue >= 0 && NextLaneValue >= 0 &&
LaneValue + 1 != NextLaneValue)
break;
// If the next value is undef, save the current one as reference
if (LaneValue >= 0 && NextLaneValue < 0) {
SavedLaneValue = LaneValue;
SavedNoUndefs = 1;
}
// Undefs are allowed, but defined elements must still be consecutive:
// i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
// Verify this by storing the last non-undef followed by an undef
// Check that following non-undef masks are incremented with the
// corresponding distance.
if (SavedNoUndefs > 0 && LaneValue < 0) {
SavedNoUndefs++;
if (NextLaneValue >= 0 &&
SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
break;
}
}
if (J < LaneLen - 1)
break;
int StartMask = 0;
if (Mask[I] >= 0) {
// Check that the start of the I range (J=0) is greater than 0
StartMask = Mask[I];
} else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
// StartMask defined by the last value in lane
StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
} else if (SavedNoUndefs > 0) {
// StartMask defined by some non-zero value in the j loop
StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
}
// else StartMask remains set to 0, i.e. all elements are undefs
if (StartMask < 0)
break;
// We must stay within the vectors; This case can happen with undefs.
if (StartMask + LaneLen > OpNumElts*2)
break;
}
// Found an interleaved mask of current factor.
if (I == Factor)
return true;
}
return false;
}
bool InterleavedAccess::lowerInterleavedLoad(
LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
if (!LI->isSimple())
return false;
SmallVector<ShuffleVectorInst *, 4> Shuffles;
SmallVector<ExtractElementInst *, 4> Extracts;
// Check if all users of this load are shufflevectors. If we encounter any
// users that are extractelement instructions, we save them to later check if
// they can be modifed to extract from one of the shufflevectors instead of
// the load.
for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
auto *Extract = dyn_cast<ExtractElementInst>(*UI);
if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
Extracts.push_back(Extract);
continue;
}
ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
return false;
Shuffles.push_back(SVI);
}
if (Shuffles.empty())
return false;
unsigned Factor, Index;
unsigned NumLoadElements = LI->getType()->getVectorNumElements();
// Check if the first shufflevector is DE-interleave shuffle.
if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
MaxFactor, NumLoadElements))
return false;
// Holds the corresponding index for each DE-interleave shuffle.
SmallVector<unsigned, 4> Indices;
Indices.push_back(Index);
Type *VecTy = Shuffles[0]->getType();
// Check if other shufflevectors are also DE-interleaved of the same type
// and factor as the first shufflevector.
for (unsigned i = 1; i < Shuffles.size(); i++) {
if (Shuffles[i]->getType() != VecTy)
return false;
if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
Index))
return false;
Indices.push_back(Index);
}
// Try and modify users of the load that are extractelement instructions to
// use the shufflevector instructions instead of the load.
if (!tryReplaceExtracts(Extracts, Shuffles))
return false;
LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
// Try to create target specific intrinsics to replace the load and shuffles.
if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
return false;
for (auto SVI : Shuffles)
DeadInsts.push_back(SVI);
DeadInsts.push_back(LI);
return true;
}
bool InterleavedAccess::tryReplaceExtracts(
ArrayRef<ExtractElementInst *> Extracts,
ArrayRef<ShuffleVectorInst *> Shuffles) {
// If there aren't any extractelement instructions to modify, there's nothing
// to do.
if (Extracts.empty())
return true;
// Maps extractelement instructions to vector-index pairs. The extractlement
// instructions will be modified to use the new vector and index operands.
DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
for (auto *Extract : Extracts) {
// The vector index that is extracted.
auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
auto Index = IndexOperand->getSExtValue();
// Look for a suitable shufflevector instruction. The goal is to modify the
// extractelement instruction (which uses an interleaved load) to use one
// of the shufflevector instructions instead of the load.
for (auto *Shuffle : Shuffles) {
// If the shufflevector instruction doesn't dominate the extract, we
// can't create a use of it.
if (!DT->dominates(Shuffle, Extract))
continue;
// Inspect the indices of the shufflevector instruction. If the shuffle
// selects the same index that is extracted, we can modify the
// extractelement instruction.
SmallVector<int, 4> Indices;
Shuffle->getShuffleMask(Indices);
for (unsigned I = 0; I < Indices.size(); ++I)
if (Indices[I] == Index) {
assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
"Vector operations do not match");
ReplacementMap[Extract] = std::make_pair(Shuffle, I);
break;
}
// If we found a suitable shufflevector instruction, stop looking.
if (ReplacementMap.count(Extract))
break;
}
// If we did not find a suitable shufflevector instruction, the
// extractelement instruction cannot be modified, so we must give up.
if (!ReplacementMap.count(Extract))
return false;
}
// Finally, perform the replacements.
IRBuilder<> Builder(Extracts[0]->getContext());
for (auto &Replacement : ReplacementMap) {
auto *Extract = Replacement.first;
auto *Vector = Replacement.second.first;
auto Index = Replacement.second.second;
Builder.SetInsertPoint(Extract);
Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
Extract->eraseFromParent();
}
return true;
}
bool InterleavedAccess::lowerInterleavedStore(
StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
if (!SI->isSimple())
return false;
ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
if (!SVI || !SVI->hasOneUse())
return false;
// Check if the shufflevector is RE-interleave shuffle.
unsigned Factor;
unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
return false;
LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
// Try to create target specific intrinsics to replace the store and shuffle.
if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
return false;
// Already have a new target specific interleaved store. Erase the old store.
DeadInsts.push_back(SI);
DeadInsts.push_back(SVI);
return true;
}
bool InterleavedAccess::runOnFunction(Function &F) {
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC || !LowerInterleavedAccesses)
return false;
LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &TM = TPC->getTM<TargetMachine>();
TLI = TM.getSubtargetImpl(F)->getTargetLowering();
MaxFactor = TLI->getMaxSupportedInterleaveFactor();
// Holds dead instructions that will be erased later.
SmallVector<Instruction *, 32> DeadInsts;
bool Changed = false;
for (auto &I : instructions(F)) {
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
Changed |= lowerInterleavedLoad(LI, DeadInsts);
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
Changed |= lowerInterleavedStore(SI, DeadInsts);
}
for (auto I : DeadInsts)
I->eraseFromParent();
return Changed;
}