mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
ae65e281f3
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
191 lines
7.5 KiB
C++
191 lines
7.5 KiB
C++
//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SSAUpdaterBulk class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
|
|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ssaupdaterbulk"
|
|
|
|
/// Helper function for finding a block which should have a value for the given
|
|
/// user. For PHI-nodes this block is the corresponding predecessor, for other
|
|
/// instructions it's their parent block.
|
|
static BasicBlock *getUserBB(Use *U) {
|
|
auto *User = cast<Instruction>(U->getUser());
|
|
|
|
if (auto *UserPN = dyn_cast<PHINode>(User))
|
|
return UserPN->getIncomingBlock(*U);
|
|
else
|
|
return User->getParent();
|
|
}
|
|
|
|
/// Add a new variable to the SSA rewriter. This needs to be called before
|
|
/// AddAvailableValue or AddUse calls.
|
|
unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) {
|
|
unsigned Var = Rewrites.size();
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = "
|
|
<< *Ty << ", Name = " << Name << "\n");
|
|
RewriteInfo RI(Name, Ty);
|
|
Rewrites.push_back(RI);
|
|
return Var;
|
|
}
|
|
|
|
/// Indicate that a rewritten value is available in the specified block with the
|
|
/// specified value.
|
|
void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) {
|
|
assert(Var < Rewrites.size() && "Variable not found!");
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var
|
|
<< ": added new available value" << *V << " in "
|
|
<< BB->getName() << "\n");
|
|
Rewrites[Var].Defines[BB] = V;
|
|
}
|
|
|
|
/// Record a use of the symbolic value. This use will be updated with a
|
|
/// rewritten value when RewriteAllUses is called.
|
|
void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
|
|
assert(Var < Rewrites.size() && "Variable not found!");
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get()
|
|
<< " in " << getUserBB(U)->getName() << "\n");
|
|
Rewrites[Var].Uses.push_back(U);
|
|
}
|
|
|
|
/// Return true if the SSAUpdater already has a value for the specified variable
|
|
/// in the specified block.
|
|
bool SSAUpdaterBulk::HasValueForBlock(unsigned Var, BasicBlock *BB) {
|
|
return (Var < Rewrites.size()) ? Rewrites[Var].Defines.count(BB) : false;
|
|
}
|
|
|
|
// Compute value at the given block BB. We either should already know it, or we
|
|
// should be able to recursively reach it going up dominator tree.
|
|
Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R,
|
|
DominatorTree *DT) {
|
|
if (!R.Defines.count(BB)) {
|
|
if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) {
|
|
BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock();
|
|
Value *V = computeValueAt(IDom, R, DT);
|
|
R.Defines[BB] = V;
|
|
} else
|
|
R.Defines[BB] = UndefValue::get(R.Ty);
|
|
}
|
|
return R.Defines[BB];
|
|
}
|
|
|
|
/// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
|
|
/// This is basically a subgraph limited by DefBlocks and UsingBlocks.
|
|
static void
|
|
ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks,
|
|
const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
|
|
SmallPtrSetImpl<BasicBlock *> &LiveInBlocks,
|
|
PredIteratorCache &PredCache) {
|
|
// To determine liveness, we must iterate through the predecessors of blocks
|
|
// where the def is live. Blocks are added to the worklist if we need to
|
|
// check their predecessors. Start with all the using blocks.
|
|
SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
|
|
UsingBlocks.end());
|
|
|
|
// Now that we have a set of blocks where the phi is live-in, recursively add
|
|
// their predecessors until we find the full region the value is live.
|
|
while (!LiveInBlockWorklist.empty()) {
|
|
BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
|
|
|
|
// The block really is live in here, insert it into the set. If already in
|
|
// the set, then it has already been processed.
|
|
if (!LiveInBlocks.insert(BB).second)
|
|
continue;
|
|
|
|
// Since the value is live into BB, it is either defined in a predecessor or
|
|
// live into it to. Add the preds to the worklist unless they are a
|
|
// defining block.
|
|
for (BasicBlock *P : PredCache.get(BB)) {
|
|
// The value is not live into a predecessor if it defines the value.
|
|
if (DefBlocks.count(P))
|
|
continue;
|
|
|
|
// Otherwise it is, add to the worklist.
|
|
LiveInBlockWorklist.push_back(P);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Perform all the necessary updates, including new PHI-nodes insertion and the
|
|
/// requested uses update.
|
|
void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT,
|
|
SmallVectorImpl<PHINode *> *InsertedPHIs) {
|
|
for (auto &R : Rewrites) {
|
|
// Compute locations for new phi-nodes.
|
|
// For that we need to initialize DefBlocks from definitions in R.Defines,
|
|
// UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
|
|
// this set for computing iterated dominance frontier (IDF).
|
|
// The IDF blocks are the blocks where we need to insert new phi-nodes.
|
|
ForwardIDFCalculator IDF(*DT);
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size()
|
|
<< " use(s)\n");
|
|
|
|
SmallPtrSet<BasicBlock *, 2> DefBlocks;
|
|
for (auto &Def : R.Defines)
|
|
DefBlocks.insert(Def.first);
|
|
IDF.setDefiningBlocks(DefBlocks);
|
|
|
|
SmallPtrSet<BasicBlock *, 2> UsingBlocks;
|
|
for (Use *U : R.Uses)
|
|
UsingBlocks.insert(getUserBB(U));
|
|
|
|
SmallVector<BasicBlock *, 32> IDFBlocks;
|
|
SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
|
|
ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache);
|
|
IDF.resetLiveInBlocks();
|
|
IDF.setLiveInBlocks(LiveInBlocks);
|
|
IDF.calculate(IDFBlocks);
|
|
|
|
// We've computed IDF, now insert new phi-nodes there.
|
|
SmallVector<PHINode *, 4> InsertedPHIsForVar;
|
|
for (auto *FrontierBB : IDFBlocks) {
|
|
IRBuilder<> B(FrontierBB, FrontierBB->begin());
|
|
PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
|
|
R.Defines[FrontierBB] = PN;
|
|
InsertedPHIsForVar.push_back(PN);
|
|
if (InsertedPHIs)
|
|
InsertedPHIs->push_back(PN);
|
|
}
|
|
|
|
// Fill in arguments of the inserted PHIs.
|
|
for (auto *PN : InsertedPHIsForVar) {
|
|
BasicBlock *PBB = PN->getParent();
|
|
for (BasicBlock *Pred : PredCache.get(PBB))
|
|
PN->addIncoming(computeValueAt(Pred, R, DT), Pred);
|
|
}
|
|
|
|
// Rewrite actual uses with the inserted definitions.
|
|
SmallPtrSet<Use *, 4> ProcessedUses;
|
|
for (Use *U : R.Uses) {
|
|
if (!ProcessedUses.insert(U).second)
|
|
continue;
|
|
Value *V = computeValueAt(getUserBB(U), R, DT);
|
|
Value *OldVal = U->get();
|
|
assert(OldVal && "Invalid use!");
|
|
// Notify that users of the existing value that it is being replaced.
|
|
if (OldVal != V && OldVal->hasValueHandle())
|
|
ValueHandleBase::ValueIsRAUWd(OldVal, V);
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V
|
|
<< "\n");
|
|
U->set(V);
|
|
}
|
|
}
|
|
}
|