mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
e4700c1d8b
These are the parameters x86 already uses. llvm-svn: 327020
611 lines
20 KiB
C++
611 lines
20 KiB
C++
//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief Implements the AMDGPU specific subclass of TargetSubtarget.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "AMDGPUCallLowering.h"
|
|
#include "AMDGPUInstructionSelector.h"
|
|
#include "AMDGPULegalizerInfo.h"
|
|
#include "AMDGPURegisterBankInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "amdgpu-subtarget"
|
|
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
#include "AMDGPUGenSubtargetInfo.inc"
|
|
|
|
AMDGPUSubtarget::~AMDGPUSubtarget() = default;
|
|
|
|
AMDGPUSubtarget &
|
|
AMDGPUSubtarget::initializeSubtargetDependencies(const Triple &TT,
|
|
StringRef GPU, StringRef FS) {
|
|
// Determine default and user-specified characteristics
|
|
// On SI+, we want FP64 denormals to be on by default. FP32 denormals can be
|
|
// enabled, but some instructions do not respect them and they run at the
|
|
// double precision rate, so don't enable by default.
|
|
//
|
|
// We want to be able to turn these off, but making this a subtarget feature
|
|
// for SI has the unhelpful behavior that it unsets everything else if you
|
|
// disable it.
|
|
|
|
SmallString<256> FullFS("+promote-alloca,+dx10-clamp,+load-store-opt,");
|
|
|
|
if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA.
|
|
FullFS += "+flat-address-space,+flat-for-global,+unaligned-buffer-access,+trap-handler,";
|
|
|
|
// FIXME: I don't think think Evergreen has any useful support for
|
|
// denormals, but should be checked. Should we issue a warning somewhere
|
|
// if someone tries to enable these?
|
|
if (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
|
|
FullFS += "+fp64-fp16-denormals,";
|
|
} else {
|
|
FullFS += "-fp32-denormals,";
|
|
}
|
|
|
|
FullFS += FS;
|
|
|
|
ParseSubtargetFeatures(GPU, FullFS);
|
|
|
|
// We don't support FP64 for EG/NI atm.
|
|
assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
|
|
|
|
// Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es
|
|
// on VI and newer hardware to avoid assertion failures due to missing ADDR64
|
|
// variants of MUBUF instructions.
|
|
if (!hasAddr64() && !FS.contains("flat-for-global")) {
|
|
FlatForGlobal = true;
|
|
}
|
|
|
|
// Set defaults if needed.
|
|
if (MaxPrivateElementSize == 0)
|
|
MaxPrivateElementSize = 4;
|
|
|
|
if (LDSBankCount == 0)
|
|
LDSBankCount = 32;
|
|
|
|
if (TT.getArch() == Triple::amdgcn) {
|
|
if (LocalMemorySize == 0)
|
|
LocalMemorySize = 32768;
|
|
|
|
// Do something sensible for unspecified target.
|
|
if (!HasMovrel && !HasVGPRIndexMode)
|
|
HasMovrel = true;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
|
|
const TargetMachine &TM)
|
|
: AMDGPUGenSubtargetInfo(TT, GPU, FS),
|
|
TargetTriple(TT),
|
|
Gen(TT.getArch() == Triple::amdgcn ? SOUTHERN_ISLANDS : R600),
|
|
IsaVersion(ISAVersion0_0_0),
|
|
WavefrontSize(0),
|
|
LocalMemorySize(0),
|
|
LDSBankCount(0),
|
|
MaxPrivateElementSize(0),
|
|
|
|
FastFMAF32(false),
|
|
HalfRate64Ops(false),
|
|
|
|
FP32Denormals(false),
|
|
FP64FP16Denormals(false),
|
|
FPExceptions(false),
|
|
DX10Clamp(false),
|
|
FlatForGlobal(false),
|
|
AutoWaitcntBeforeBarrier(false),
|
|
CodeObjectV3(false),
|
|
UnalignedScratchAccess(false),
|
|
UnalignedBufferAccess(false),
|
|
|
|
HasApertureRegs(false),
|
|
EnableXNACK(false),
|
|
TrapHandler(false),
|
|
DebuggerInsertNops(false),
|
|
DebuggerReserveRegs(false),
|
|
DebuggerEmitPrologue(false),
|
|
|
|
EnableHugePrivateBuffer(false),
|
|
EnableVGPRSpilling(false),
|
|
EnablePromoteAlloca(false),
|
|
EnableLoadStoreOpt(false),
|
|
EnableUnsafeDSOffsetFolding(false),
|
|
EnableSIScheduler(false),
|
|
DumpCode(false),
|
|
|
|
FP64(false),
|
|
FMA(false),
|
|
MIMG_R128(false),
|
|
IsGCN(false),
|
|
GCN3Encoding(false),
|
|
CIInsts(false),
|
|
GFX9Insts(false),
|
|
SGPRInitBug(false),
|
|
HasSMemRealTime(false),
|
|
Has16BitInsts(false),
|
|
HasIntClamp(false),
|
|
HasVOP3PInsts(false),
|
|
HasMadMixInsts(false),
|
|
HasMovrel(false),
|
|
HasVGPRIndexMode(false),
|
|
HasScalarStores(false),
|
|
HasInv2PiInlineImm(false),
|
|
HasSDWA(false),
|
|
HasSDWAOmod(false),
|
|
HasSDWAScalar(false),
|
|
HasSDWASdst(false),
|
|
HasSDWAMac(false),
|
|
HasSDWAOutModsVOPC(false),
|
|
HasDPP(false),
|
|
FlatAddressSpace(false),
|
|
FlatInstOffsets(false),
|
|
FlatGlobalInsts(false),
|
|
FlatScratchInsts(false),
|
|
AddNoCarryInsts(false),
|
|
HasUnpackedD16VMem(false),
|
|
|
|
R600ALUInst(false),
|
|
CaymanISA(false),
|
|
CFALUBug(false),
|
|
HasVertexCache(false),
|
|
TexVTXClauseSize(0),
|
|
ScalarizeGlobal(false),
|
|
|
|
FeatureDisable(false),
|
|
InstrItins(getInstrItineraryForCPU(GPU)) {
|
|
AS = AMDGPU::getAMDGPUAS(TT);
|
|
initializeSubtargetDependencies(TT, GPU, FS);
|
|
}
|
|
|
|
unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
|
|
const Function &F) const {
|
|
if (NWaves == 1)
|
|
return getLocalMemorySize();
|
|
unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
|
|
unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
|
|
unsigned MaxWaves = getMaxWavesPerEU();
|
|
return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves;
|
|
}
|
|
|
|
unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
|
|
const Function &F) const {
|
|
unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
|
|
unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
|
|
unsigned MaxWaves = getMaxWavesPerEU();
|
|
unsigned Limit = getLocalMemorySize() * MaxWaves / WorkGroupsPerCu;
|
|
unsigned NumWaves = Limit / (Bytes ? Bytes : 1u);
|
|
NumWaves = std::min(NumWaves, MaxWaves);
|
|
NumWaves = std::max(NumWaves, 1u);
|
|
return NumWaves;
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
|
|
switch (CC) {
|
|
case CallingConv::AMDGPU_CS:
|
|
case CallingConv::AMDGPU_KERNEL:
|
|
case CallingConv::SPIR_KERNEL:
|
|
return std::make_pair(getWavefrontSize() * 2, getWavefrontSize() * 4);
|
|
case CallingConv::AMDGPU_VS:
|
|
case CallingConv::AMDGPU_LS:
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_ES:
|
|
case CallingConv::AMDGPU_GS:
|
|
case CallingConv::AMDGPU_PS:
|
|
return std::make_pair(1, getWavefrontSize());
|
|
default:
|
|
return std::make_pair(1, 16 * getWavefrontSize());
|
|
}
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
|
|
const Function &F) const {
|
|
// FIXME: 1024 if function.
|
|
// Default minimum/maximum flat work group sizes.
|
|
std::pair<unsigned, unsigned> Default =
|
|
getDefaultFlatWorkGroupSize(F.getCallingConv());
|
|
|
|
// TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa
|
|
// starts using "amdgpu-flat-work-group-size" attribute.
|
|
Default.second = AMDGPU::getIntegerAttribute(
|
|
F, "amdgpu-max-work-group-size", Default.second);
|
|
Default.first = std::min(Default.first, Default.second);
|
|
|
|
// Requested minimum/maximum flat work group sizes.
|
|
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
|
|
F, "amdgpu-flat-work-group-size", Default);
|
|
|
|
// Make sure requested minimum is less than requested maximum.
|
|
if (Requested.first > Requested.second)
|
|
return Default;
|
|
|
|
// Make sure requested values do not violate subtarget's specifications.
|
|
if (Requested.first < getMinFlatWorkGroupSize())
|
|
return Default;
|
|
if (Requested.second > getMaxFlatWorkGroupSize())
|
|
return Default;
|
|
|
|
return Requested;
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
|
|
const Function &F) const {
|
|
// Default minimum/maximum number of waves per execution unit.
|
|
std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
|
|
|
|
// Default/requested minimum/maximum flat work group sizes.
|
|
std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);
|
|
|
|
// If minimum/maximum flat work group sizes were explicitly requested using
|
|
// "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
|
|
// number of waves per execution unit to values implied by requested
|
|
// minimum/maximum flat work group sizes.
|
|
unsigned MinImpliedByFlatWorkGroupSize =
|
|
getMaxWavesPerEU(FlatWorkGroupSizes.second);
|
|
bool RequestedFlatWorkGroupSize = false;
|
|
|
|
// TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa
|
|
// starts using "amdgpu-flat-work-group-size" attribute.
|
|
if (F.hasFnAttribute("amdgpu-max-work-group-size") ||
|
|
F.hasFnAttribute("amdgpu-flat-work-group-size")) {
|
|
Default.first = MinImpliedByFlatWorkGroupSize;
|
|
RequestedFlatWorkGroupSize = true;
|
|
}
|
|
|
|
// Requested minimum/maximum number of waves per execution unit.
|
|
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
|
|
F, "amdgpu-waves-per-eu", Default, true);
|
|
|
|
// Make sure requested minimum is less than requested maximum.
|
|
if (Requested.second && Requested.first > Requested.second)
|
|
return Default;
|
|
|
|
// Make sure requested values do not violate subtarget's specifications.
|
|
if (Requested.first < getMinWavesPerEU() ||
|
|
Requested.first > getMaxWavesPerEU())
|
|
return Default;
|
|
if (Requested.second > getMaxWavesPerEU())
|
|
return Default;
|
|
|
|
// Make sure requested values are compatible with values implied by requested
|
|
// minimum/maximum flat work group sizes.
|
|
if (RequestedFlatWorkGroupSize &&
|
|
Requested.first < MinImpliedByFlatWorkGroupSize)
|
|
return Default;
|
|
|
|
return Requested;
|
|
}
|
|
|
|
bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
|
|
Function *Kernel = I->getParent()->getParent();
|
|
unsigned MinSize = 0;
|
|
unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
|
|
bool IdQuery = false;
|
|
|
|
// If reqd_work_group_size is present it narrows value down.
|
|
if (auto *CI = dyn_cast<CallInst>(I)) {
|
|
const Function *F = CI->getCalledFunction();
|
|
if (F) {
|
|
unsigned Dim = UINT_MAX;
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::amdgcn_workitem_id_x:
|
|
case Intrinsic::r600_read_tidig_x:
|
|
IdQuery = true;
|
|
LLVM_FALLTHROUGH;
|
|
case Intrinsic::r600_read_local_size_x:
|
|
Dim = 0;
|
|
break;
|
|
case Intrinsic::amdgcn_workitem_id_y:
|
|
case Intrinsic::r600_read_tidig_y:
|
|
IdQuery = true;
|
|
LLVM_FALLTHROUGH;
|
|
case Intrinsic::r600_read_local_size_y:
|
|
Dim = 1;
|
|
break;
|
|
case Intrinsic::amdgcn_workitem_id_z:
|
|
case Intrinsic::r600_read_tidig_z:
|
|
IdQuery = true;
|
|
LLVM_FALLTHROUGH;
|
|
case Intrinsic::r600_read_local_size_z:
|
|
Dim = 2;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (Dim <= 3) {
|
|
if (auto Node = Kernel->getMetadata("reqd_work_group_size"))
|
|
if (Node->getNumOperands() == 3)
|
|
MinSize = MaxSize = mdconst::extract<ConstantInt>(
|
|
Node->getOperand(Dim))->getZExtValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MaxSize)
|
|
return false;
|
|
|
|
// Range metadata is [Lo, Hi). For ID query we need to pass max size
|
|
// as Hi. For size query we need to pass Hi + 1.
|
|
if (IdQuery)
|
|
MinSize = 0;
|
|
else
|
|
++MaxSize;
|
|
|
|
MDBuilder MDB(I->getContext());
|
|
MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
|
|
APInt(32, MaxSize));
|
|
I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
|
|
return true;
|
|
}
|
|
|
|
R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS,
|
|
const TargetMachine &TM) :
|
|
AMDGPUSubtarget(TT, GPU, FS, TM),
|
|
InstrInfo(*this),
|
|
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
|
|
TLInfo(TM, *this) {}
|
|
|
|
SISubtarget::SISubtarget(const Triple &TT, StringRef GPU, StringRef FS,
|
|
const GCNTargetMachine &TM)
|
|
: AMDGPUSubtarget(TT, GPU, FS, TM), InstrInfo(*this),
|
|
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
|
|
TLInfo(TM, *this) {
|
|
CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
|
|
Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
|
|
|
|
RegBankInfo.reset(new AMDGPURegisterBankInfo(*getRegisterInfo()));
|
|
InstSelector.reset(new AMDGPUInstructionSelector(
|
|
*this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get())));
|
|
}
|
|
|
|
void SISubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
|
|
unsigned NumRegionInstrs) const {
|
|
// Track register pressure so the scheduler can try to decrease
|
|
// pressure once register usage is above the threshold defined by
|
|
// SIRegisterInfo::getRegPressureSetLimit()
|
|
Policy.ShouldTrackPressure = true;
|
|
|
|
// Enabling both top down and bottom up scheduling seems to give us less
|
|
// register spills than just using one of these approaches on its own.
|
|
Policy.OnlyTopDown = false;
|
|
Policy.OnlyBottomUp = false;
|
|
|
|
// Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
|
|
if (!enableSIScheduler())
|
|
Policy.ShouldTrackLaneMasks = true;
|
|
}
|
|
|
|
bool SISubtarget::isVGPRSpillingEnabled(const Function& F) const {
|
|
return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv());
|
|
}
|
|
|
|
unsigned SISubtarget::getKernArgSegmentSize(const MachineFunction &MF,
|
|
unsigned ExplicitArgBytes) const {
|
|
unsigned ImplicitBytes = getImplicitArgNumBytes(MF);
|
|
if (ImplicitBytes == 0)
|
|
return ExplicitArgBytes;
|
|
|
|
unsigned Alignment = getAlignmentForImplicitArgPtr();
|
|
return alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
|
|
}
|
|
|
|
unsigned SISubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
|
|
if (getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
if (SGPRs <= 80)
|
|
return 10;
|
|
if (SGPRs <= 88)
|
|
return 9;
|
|
if (SGPRs <= 100)
|
|
return 8;
|
|
return 7;
|
|
}
|
|
if (SGPRs <= 48)
|
|
return 10;
|
|
if (SGPRs <= 56)
|
|
return 9;
|
|
if (SGPRs <= 64)
|
|
return 8;
|
|
if (SGPRs <= 72)
|
|
return 7;
|
|
if (SGPRs <= 80)
|
|
return 6;
|
|
return 5;
|
|
}
|
|
|
|
unsigned SISubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
|
|
if (VGPRs <= 24)
|
|
return 10;
|
|
if (VGPRs <= 28)
|
|
return 9;
|
|
if (VGPRs <= 32)
|
|
return 8;
|
|
if (VGPRs <= 36)
|
|
return 7;
|
|
if (VGPRs <= 40)
|
|
return 6;
|
|
if (VGPRs <= 48)
|
|
return 5;
|
|
if (VGPRs <= 64)
|
|
return 4;
|
|
if (VGPRs <= 84)
|
|
return 3;
|
|
if (VGPRs <= 128)
|
|
return 2;
|
|
return 1;
|
|
}
|
|
|
|
unsigned SISubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
|
|
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
if (MFI.hasFlatScratchInit()) {
|
|
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
|
|
return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
|
|
if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
|
|
return 4; // FLAT_SCRATCH, VCC (in that order).
|
|
}
|
|
|
|
if (isXNACKEnabled())
|
|
return 4; // XNACK, VCC (in that order).
|
|
return 2; // VCC.
|
|
}
|
|
|
|
unsigned SISubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
// Compute maximum number of SGPRs function can use using default/requested
|
|
// minimum number of waves per execution unit.
|
|
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
|
|
unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
|
|
unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
|
|
|
|
// Check if maximum number of SGPRs was explicitly requested using
|
|
// "amdgpu-num-sgpr" attribute.
|
|
if (F.hasFnAttribute("amdgpu-num-sgpr")) {
|
|
unsigned Requested = AMDGPU::getIntegerAttribute(
|
|
F, "amdgpu-num-sgpr", MaxNumSGPRs);
|
|
|
|
// Make sure requested value does not violate subtarget's specifications.
|
|
if (Requested && (Requested <= getReservedNumSGPRs(MF)))
|
|
Requested = 0;
|
|
|
|
// If more SGPRs are required to support the input user/system SGPRs,
|
|
// increase to accommodate them.
|
|
//
|
|
// FIXME: This really ends up using the requested number of SGPRs + number
|
|
// of reserved special registers in total. Theoretically you could re-use
|
|
// the last input registers for these special registers, but this would
|
|
// require a lot of complexity to deal with the weird aliasing.
|
|
unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs();
|
|
if (Requested && Requested < InputNumSGPRs)
|
|
Requested = InputNumSGPRs;
|
|
|
|
// Make sure requested value is compatible with values implied by
|
|
// default/requested minimum/maximum number of waves per execution unit.
|
|
if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
|
|
Requested = 0;
|
|
if (WavesPerEU.second &&
|
|
Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
|
|
Requested = 0;
|
|
|
|
if (Requested)
|
|
MaxNumSGPRs = Requested;
|
|
}
|
|
|
|
if (hasSGPRInitBug())
|
|
MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
|
|
|
|
return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF),
|
|
MaxAddressableNumSGPRs);
|
|
}
|
|
|
|
unsigned SISubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
// Compute maximum number of VGPRs function can use using default/requested
|
|
// minimum number of waves per execution unit.
|
|
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
|
|
unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
|
|
|
|
// Check if maximum number of VGPRs was explicitly requested using
|
|
// "amdgpu-num-vgpr" attribute.
|
|
if (F.hasFnAttribute("amdgpu-num-vgpr")) {
|
|
unsigned Requested = AMDGPU::getIntegerAttribute(
|
|
F, "amdgpu-num-vgpr", MaxNumVGPRs);
|
|
|
|
// Make sure requested value does not violate subtarget's specifications.
|
|
if (Requested && Requested <= getReservedNumVGPRs(MF))
|
|
Requested = 0;
|
|
|
|
// Make sure requested value is compatible with values implied by
|
|
// default/requested minimum/maximum number of waves per execution unit.
|
|
if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
|
|
Requested = 0;
|
|
if (WavesPerEU.second &&
|
|
Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
|
|
Requested = 0;
|
|
|
|
if (Requested)
|
|
MaxNumVGPRs = Requested;
|
|
}
|
|
|
|
return MaxNumVGPRs - getReservedNumVGPRs(MF);
|
|
}
|
|
|
|
namespace {
|
|
struct MemOpClusterMutation : ScheduleDAGMutation {
|
|
const SIInstrInfo *TII;
|
|
|
|
MemOpClusterMutation(const SIInstrInfo *tii) : TII(tii) {}
|
|
|
|
void apply(ScheduleDAGInstrs *DAGInstrs) override {
|
|
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
|
|
|
|
SUnit *SUa = nullptr;
|
|
// Search for two consequent memory operations and link them
|
|
// to prevent scheduler from moving them apart.
|
|
// In DAG pre-process SUnits are in the original order of
|
|
// the instructions before scheduling.
|
|
for (SUnit &SU : DAG->SUnits) {
|
|
MachineInstr &MI2 = *SU.getInstr();
|
|
if (!MI2.mayLoad() && !MI2.mayStore()) {
|
|
SUa = nullptr;
|
|
continue;
|
|
}
|
|
if (!SUa) {
|
|
SUa = &SU;
|
|
continue;
|
|
}
|
|
|
|
MachineInstr &MI1 = *SUa->getInstr();
|
|
if ((TII->isVMEM(MI1) && TII->isVMEM(MI2)) ||
|
|
(TII->isFLAT(MI1) && TII->isFLAT(MI2)) ||
|
|
(TII->isSMRD(MI1) && TII->isSMRD(MI2)) ||
|
|
(TII->isDS(MI1) && TII->isDS(MI2))) {
|
|
SU.addPredBarrier(SUa);
|
|
|
|
for (const SDep &SI : SU.Preds) {
|
|
if (SI.getSUnit() != SUa)
|
|
SUa->addPred(SDep(SI.getSUnit(), SDep::Artificial));
|
|
}
|
|
|
|
if (&SU != &DAG->ExitSU) {
|
|
for (const SDep &SI : SUa->Succs) {
|
|
if (SI.getSUnit() != &SU)
|
|
SI.getSUnit()->addPred(SDep(&SU, SDep::Artificial));
|
|
}
|
|
}
|
|
}
|
|
|
|
SUa = &SU;
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void SISubtarget::getPostRAMutations(
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
|
|
Mutations.push_back(llvm::make_unique<MemOpClusterMutation>(&InstrInfo));
|
|
}
|