mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
92ba47acd7
Headers/Implementation files should be named after the class they declare/define. Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in favor of `class LiveIntarvals;` llvm-svn: 320546
2059 lines
69 KiB
C++
2059 lines
69 KiB
C++
//===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief SI Machine Scheduler interface
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SIMachineScheduler.h"
|
|
#include "AMDGPU.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/CodeGen/RegisterPressure.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <map>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "machine-scheduler"
|
|
|
|
// This scheduler implements a different scheduling algorithm than
|
|
// GenericScheduler.
|
|
//
|
|
// There are several specific architecture behaviours that can't be modelled
|
|
// for GenericScheduler:
|
|
// . When accessing the result of an SGPR load instruction, you have to wait
|
|
// for all the SGPR load instructions before your current instruction to
|
|
// have finished.
|
|
// . When accessing the result of an VGPR load instruction, you have to wait
|
|
// for all the VGPR load instructions previous to the VGPR load instruction
|
|
// you are interested in to finish.
|
|
// . The less the register pressure, the best load latencies are hidden
|
|
//
|
|
// Moreover some specifities (like the fact a lot of instructions in the shader
|
|
// have few dependencies) makes the generic scheduler have some unpredictable
|
|
// behaviours. For example when register pressure becomes high, it can either
|
|
// manage to prevent register pressure from going too high, or it can
|
|
// increase register pressure even more than if it hadn't taken register
|
|
// pressure into account.
|
|
//
|
|
// Also some other bad behaviours are generated, like loading at the beginning
|
|
// of the shader a constant in VGPR you won't need until the end of the shader.
|
|
//
|
|
// The scheduling problem for SI can distinguish three main parts:
|
|
// . Hiding high latencies (texture sampling, etc)
|
|
// . Hiding low latencies (SGPR constant loading, etc)
|
|
// . Keeping register usage low for better latency hiding and general
|
|
// performance
|
|
//
|
|
// Some other things can also affect performance, but are hard to predict
|
|
// (cache usage, the fact the HW can issue several instructions from different
|
|
// wavefronts if different types, etc)
|
|
//
|
|
// This scheduler tries to solve the scheduling problem by dividing it into
|
|
// simpler sub-problems. It divides the instructions into blocks, schedules
|
|
// locally inside the blocks where it takes care of low latencies, and then
|
|
// chooses the order of the blocks by taking care of high latencies.
|
|
// Dividing the instructions into blocks helps control keeping register
|
|
// usage low.
|
|
//
|
|
// First the instructions are put into blocks.
|
|
// We want the blocks help control register usage and hide high latencies
|
|
// later. To help control register usage, we typically want all local
|
|
// computations, when for example you create a result that can be comsummed
|
|
// right away, to be contained in a block. Block inputs and outputs would
|
|
// typically be important results that are needed in several locations of
|
|
// the shader. Since we do want blocks to help hide high latencies, we want
|
|
// the instructions inside the block to have a minimal set of dependencies
|
|
// on high latencies. It will make it easy to pick blocks to hide specific
|
|
// high latencies.
|
|
// The block creation algorithm is divided into several steps, and several
|
|
// variants can be tried during the scheduling process.
|
|
//
|
|
// Second the order of the instructions inside the blocks is chosen.
|
|
// At that step we do take into account only register usage and hiding
|
|
// low latency instructions
|
|
//
|
|
// Third the block order is chosen, there we try to hide high latencies
|
|
// and keep register usage low.
|
|
//
|
|
// After the third step, a pass is done to improve the hiding of low
|
|
// latencies.
|
|
//
|
|
// Actually when talking about 'low latency' or 'high latency' it includes
|
|
// both the latency to get the cache (or global mem) data go to the register,
|
|
// and the bandwidth limitations.
|
|
// Increasing the number of active wavefronts helps hide the former, but it
|
|
// doesn't solve the latter, thus why even if wavefront count is high, we have
|
|
// to try have as many instructions hiding high latencies as possible.
|
|
// The OpenCL doc says for example latency of 400 cycles for a global mem access,
|
|
// which is hidden by 10 instructions if the wavefront count is 10.
|
|
|
|
// Some figures taken from AMD docs:
|
|
// Both texture and constant L1 caches are 4-way associative with 64 bytes
|
|
// lines.
|
|
// Constant cache is shared with 4 CUs.
|
|
// For texture sampling, the address generation unit receives 4 texture
|
|
// addresses per cycle, thus we could expect texture sampling latency to be
|
|
// equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
|
|
// instructions in a wavefront group are executed every 4 cycles),
|
|
// or 16 instructions if the other wavefronts associated to the 3 other VALUs
|
|
// of the CU do texture sampling too. (Don't take these figures too seriously,
|
|
// as I'm not 100% sure of the computation)
|
|
// Data exports should get similar latency.
|
|
// For constant loading, the cache is shader with 4 CUs.
|
|
// The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
|
|
// I guess if the other CU don't read the cache, it can go up to 64B/cycle.
|
|
// It means a simple s_buffer_load should take one instruction to hide, as
|
|
// well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
|
|
// cache line.
|
|
//
|
|
// As of today the driver doesn't preload the constants in cache, thus the
|
|
// first loads get extra latency. The doc says global memory access can be
|
|
// 300-600 cycles. We do not specially take that into account when scheduling
|
|
// As we expect the driver to be able to preload the constants soon.
|
|
|
|
// common code //
|
|
|
|
#ifndef NDEBUG
|
|
|
|
static const char *getReasonStr(SIScheduleCandReason Reason) {
|
|
switch (Reason) {
|
|
case NoCand: return "NOCAND";
|
|
case RegUsage: return "REGUSAGE";
|
|
case Latency: return "LATENCY";
|
|
case Successor: return "SUCCESSOR";
|
|
case Depth: return "DEPTH";
|
|
case NodeOrder: return "ORDER";
|
|
}
|
|
llvm_unreachable("Unknown reason!");
|
|
}
|
|
|
|
#endif
|
|
|
|
static bool tryLess(int TryVal, int CandVal,
|
|
SISchedulerCandidate &TryCand,
|
|
SISchedulerCandidate &Cand,
|
|
SIScheduleCandReason Reason) {
|
|
if (TryVal < CandVal) {
|
|
TryCand.Reason = Reason;
|
|
return true;
|
|
}
|
|
if (TryVal > CandVal) {
|
|
if (Cand.Reason > Reason)
|
|
Cand.Reason = Reason;
|
|
return true;
|
|
}
|
|
Cand.setRepeat(Reason);
|
|
return false;
|
|
}
|
|
|
|
static bool tryGreater(int TryVal, int CandVal,
|
|
SISchedulerCandidate &TryCand,
|
|
SISchedulerCandidate &Cand,
|
|
SIScheduleCandReason Reason) {
|
|
if (TryVal > CandVal) {
|
|
TryCand.Reason = Reason;
|
|
return true;
|
|
}
|
|
if (TryVal < CandVal) {
|
|
if (Cand.Reason > Reason)
|
|
Cand.Reason = Reason;
|
|
return true;
|
|
}
|
|
Cand.setRepeat(Reason);
|
|
return false;
|
|
}
|
|
|
|
// SIScheduleBlock //
|
|
|
|
void SIScheduleBlock::addUnit(SUnit *SU) {
|
|
NodeNum2Index[SU->NodeNum] = SUnits.size();
|
|
SUnits.push_back(SU);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
|
|
|
|
dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
|
|
dbgs() << '\n';
|
|
}
|
|
#endif
|
|
|
|
void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
|
|
SISchedCandidate &TryCand) {
|
|
// Initialize the candidate if needed.
|
|
if (!Cand.isValid()) {
|
|
TryCand.Reason = NodeOrder;
|
|
return;
|
|
}
|
|
|
|
if (Cand.SGPRUsage > 60 &&
|
|
tryLess(TryCand.SGPRUsage, Cand.SGPRUsage, TryCand, Cand, RegUsage))
|
|
return;
|
|
|
|
// Schedule low latency instructions as top as possible.
|
|
// Order of priority is:
|
|
// . Low latency instructions which do not depend on other low latency
|
|
// instructions we haven't waited for
|
|
// . Other instructions which do not depend on low latency instructions
|
|
// we haven't waited for
|
|
// . Low latencies
|
|
// . All other instructions
|
|
// Goal is to get: low latency instructions - independent instructions
|
|
// - (eventually some more low latency instructions)
|
|
// - instructions that depend on the first low latency instructions.
|
|
// If in the block there is a lot of constant loads, the SGPR usage
|
|
// could go quite high, thus above the arbitrary limit of 60 will encourage
|
|
// use the already loaded constants (in order to release some SGPRs) before
|
|
// loading more.
|
|
if (tryLess(TryCand.HasLowLatencyNonWaitedParent,
|
|
Cand.HasLowLatencyNonWaitedParent,
|
|
TryCand, Cand, SIScheduleCandReason::Depth))
|
|
return;
|
|
|
|
if (tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
|
|
TryCand, Cand, SIScheduleCandReason::Depth))
|
|
return;
|
|
|
|
if (TryCand.IsLowLatency &&
|
|
tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
|
|
TryCand, Cand, SIScheduleCandReason::Depth))
|
|
return;
|
|
|
|
if (tryLess(TryCand.VGPRUsage, Cand.VGPRUsage, TryCand, Cand, RegUsage))
|
|
return;
|
|
|
|
// Fall through to original instruction order.
|
|
if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
|
|
TryCand.Reason = NodeOrder;
|
|
}
|
|
}
|
|
|
|
SUnit* SIScheduleBlock::pickNode() {
|
|
SISchedCandidate TopCand;
|
|
|
|
for (SUnit* SU : TopReadySUs) {
|
|
SISchedCandidate TryCand;
|
|
std::vector<unsigned> pressure;
|
|
std::vector<unsigned> MaxPressure;
|
|
// Predict register usage after this instruction.
|
|
TryCand.SU = SU;
|
|
TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
|
|
TryCand.SGPRUsage = pressure[DAG->getSGPRSetID()];
|
|
TryCand.VGPRUsage = pressure[DAG->getVGPRSetID()];
|
|
TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
|
|
TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
|
|
TryCand.HasLowLatencyNonWaitedParent =
|
|
HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
|
|
tryCandidateTopDown(TopCand, TryCand);
|
|
if (TryCand.Reason != NoCand)
|
|
TopCand.setBest(TryCand);
|
|
}
|
|
|
|
return TopCand.SU;
|
|
}
|
|
|
|
|
|
// Schedule something valid.
|
|
void SIScheduleBlock::fastSchedule() {
|
|
TopReadySUs.clear();
|
|
if (Scheduled)
|
|
undoSchedule();
|
|
|
|
for (SUnit* SU : SUnits) {
|
|
if (!SU->NumPredsLeft)
|
|
TopReadySUs.push_back(SU);
|
|
}
|
|
|
|
while (!TopReadySUs.empty()) {
|
|
SUnit *SU = TopReadySUs[0];
|
|
ScheduledSUnits.push_back(SU);
|
|
nodeScheduled(SU);
|
|
}
|
|
|
|
Scheduled = true;
|
|
}
|
|
|
|
// Returns if the register was set between first and last.
|
|
static bool isDefBetween(unsigned Reg,
|
|
SlotIndex First, SlotIndex Last,
|
|
const MachineRegisterInfo *MRI,
|
|
const LiveIntervals *LIS) {
|
|
for (MachineRegisterInfo::def_instr_iterator
|
|
UI = MRI->def_instr_begin(Reg),
|
|
UE = MRI->def_instr_end(); UI != UE; ++UI) {
|
|
const MachineInstr* MI = &*UI;
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
|
|
if (InstSlot >= First && InstSlot <= Last)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
|
|
MachineBasicBlock::iterator EndBlock) {
|
|
IntervalPressure Pressure, BotPressure;
|
|
RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
|
|
LiveIntervals *LIS = DAG->getLIS();
|
|
MachineRegisterInfo *MRI = DAG->getMRI();
|
|
DAG->initRPTracker(TopRPTracker);
|
|
DAG->initRPTracker(BotRPTracker);
|
|
DAG->initRPTracker(RPTracker);
|
|
|
|
// Goes though all SU. RPTracker captures what had to be alive for the SUs
|
|
// to execute, and what is still alive at the end.
|
|
for (SUnit* SU : ScheduledSUnits) {
|
|
RPTracker.setPos(SU->getInstr());
|
|
RPTracker.advance();
|
|
}
|
|
|
|
// Close the RPTracker to finalize live ins/outs.
|
|
RPTracker.closeRegion();
|
|
|
|
// Initialize the live ins and live outs.
|
|
TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
|
|
BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
|
|
|
|
// Do not Track Physical Registers, because it messes up.
|
|
for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
|
|
if (TargetRegisterInfo::isVirtualRegister(RegMaskPair.RegUnit))
|
|
LiveInRegs.insert(RegMaskPair.RegUnit);
|
|
}
|
|
LiveOutRegs.clear();
|
|
// There is several possibilities to distinguish:
|
|
// 1) Reg is not input to any instruction in the block, but is output of one
|
|
// 2) 1) + read in the block and not needed after it
|
|
// 3) 1) + read in the block but needed in another block
|
|
// 4) Reg is input of an instruction but another block will read it too
|
|
// 5) Reg is input of an instruction and then rewritten in the block.
|
|
// result is not read in the block (implies used in another block)
|
|
// 6) Reg is input of an instruction and then rewritten in the block.
|
|
// result is read in the block and not needed in another block
|
|
// 7) Reg is input of an instruction and then rewritten in the block.
|
|
// result is read in the block but also needed in another block
|
|
// LiveInRegs will contains all the regs in situation 4, 5, 6, 7
|
|
// We want LiveOutRegs to contain only Regs whose content will be read after
|
|
// in another block, and whose content was written in the current block,
|
|
// that is we want it to get 1, 3, 5, 7
|
|
// Since we made the MIs of a block to be packed all together before
|
|
// scheduling, then the LiveIntervals were correct, and the RPTracker was
|
|
// able to correctly handle 5 vs 6, 2 vs 3.
|
|
// (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
|
|
// The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
|
|
// Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
|
|
// The use of findDefBetween removes the case 4.
|
|
for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
|
|
unsigned Reg = RegMaskPair.RegUnit;
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
|
|
LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
|
|
LIS)) {
|
|
LiveOutRegs.insert(Reg);
|
|
}
|
|
}
|
|
|
|
// Pressure = sum_alive_registers register size
|
|
// Internally llvm will represent some registers as big 128 bits registers
|
|
// for example, but they actually correspond to 4 actual 32 bits registers.
|
|
// Thus Pressure is not equal to num_alive_registers * constant.
|
|
LiveInPressure = TopPressure.MaxSetPressure;
|
|
LiveOutPressure = BotPressure.MaxSetPressure;
|
|
|
|
// Prepares TopRPTracker for top down scheduling.
|
|
TopRPTracker.closeTop();
|
|
}
|
|
|
|
void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
|
|
MachineBasicBlock::iterator EndBlock) {
|
|
if (!Scheduled)
|
|
fastSchedule();
|
|
|
|
// PreScheduling phase to set LiveIn and LiveOut.
|
|
initRegPressure(BeginBlock, EndBlock);
|
|
undoSchedule();
|
|
|
|
// Schedule for real now.
|
|
|
|
TopReadySUs.clear();
|
|
|
|
for (SUnit* SU : SUnits) {
|
|
if (!SU->NumPredsLeft)
|
|
TopReadySUs.push_back(SU);
|
|
}
|
|
|
|
while (!TopReadySUs.empty()) {
|
|
SUnit *SU = pickNode();
|
|
ScheduledSUnits.push_back(SU);
|
|
TopRPTracker.setPos(SU->getInstr());
|
|
TopRPTracker.advance();
|
|
nodeScheduled(SU);
|
|
}
|
|
|
|
// TODO: compute InternalAdditionnalPressure.
|
|
InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
|
|
|
|
// Check everything is right.
|
|
#ifndef NDEBUG
|
|
assert(SUnits.size() == ScheduledSUnits.size() &&
|
|
TopReadySUs.empty());
|
|
for (SUnit* SU : SUnits) {
|
|
assert(SU->isScheduled &&
|
|
SU->NumPredsLeft == 0);
|
|
}
|
|
#endif
|
|
|
|
Scheduled = true;
|
|
}
|
|
|
|
void SIScheduleBlock::undoSchedule() {
|
|
for (SUnit* SU : SUnits) {
|
|
SU->isScheduled = false;
|
|
for (SDep& Succ : SU->Succs) {
|
|
if (BC->isSUInBlock(Succ.getSUnit(), ID))
|
|
undoReleaseSucc(SU, &Succ);
|
|
}
|
|
}
|
|
HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
|
|
ScheduledSUnits.clear();
|
|
Scheduled = false;
|
|
}
|
|
|
|
void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
|
|
SUnit *SuccSU = SuccEdge->getSUnit();
|
|
|
|
if (SuccEdge->isWeak()) {
|
|
++SuccSU->WeakPredsLeft;
|
|
return;
|
|
}
|
|
++SuccSU->NumPredsLeft;
|
|
}
|
|
|
|
void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
|
|
SUnit *SuccSU = SuccEdge->getSUnit();
|
|
|
|
if (SuccEdge->isWeak()) {
|
|
--SuccSU->WeakPredsLeft;
|
|
return;
|
|
}
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft == 0) {
|
|
dbgs() << "*** Scheduling failed! ***\n";
|
|
SuccSU->dump(DAG);
|
|
dbgs() << " has been released too many times!\n";
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
#endif
|
|
|
|
--SuccSU->NumPredsLeft;
|
|
}
|
|
|
|
/// Release Successors of the SU that are in the block or not.
|
|
void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
|
|
for (SDep& Succ : SU->Succs) {
|
|
SUnit *SuccSU = Succ.getSUnit();
|
|
|
|
if (SuccSU->NodeNum >= DAG->SUnits.size())
|
|
continue;
|
|
|
|
if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
|
|
continue;
|
|
|
|
releaseSucc(SU, &Succ);
|
|
if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
|
|
TopReadySUs.push_back(SuccSU);
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlock::nodeScheduled(SUnit *SU) {
|
|
// Is in TopReadySUs
|
|
assert (!SU->NumPredsLeft);
|
|
std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
|
|
if (I == TopReadySUs.end()) {
|
|
dbgs() << "Data Structure Bug in SI Scheduler\n";
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
TopReadySUs.erase(I);
|
|
|
|
releaseSuccessors(SU, true);
|
|
// Scheduling this node will trigger a wait,
|
|
// thus propagate to other instructions that they do not need to wait either.
|
|
if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
|
|
HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
|
|
|
|
if (DAG->IsLowLatencySU[SU->NodeNum]) {
|
|
for (SDep& Succ : SU->Succs) {
|
|
std::map<unsigned, unsigned>::iterator I =
|
|
NodeNum2Index.find(Succ.getSUnit()->NodeNum);
|
|
if (I != NodeNum2Index.end())
|
|
HasLowLatencyNonWaitedParent[I->second] = 1;
|
|
}
|
|
}
|
|
SU->isScheduled = true;
|
|
}
|
|
|
|
void SIScheduleBlock::finalizeUnits() {
|
|
// We remove links from outside blocks to enable scheduling inside the block.
|
|
for (SUnit* SU : SUnits) {
|
|
releaseSuccessors(SU, false);
|
|
if (DAG->IsHighLatencySU[SU->NodeNum])
|
|
HighLatencyBlock = true;
|
|
}
|
|
HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
|
|
}
|
|
|
|
// we maintain ascending order of IDs
|
|
void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
|
|
unsigned PredID = Pred->getID();
|
|
|
|
// Check if not already predecessor.
|
|
for (SIScheduleBlock* P : Preds) {
|
|
if (PredID == P->getID())
|
|
return;
|
|
}
|
|
Preds.push_back(Pred);
|
|
|
|
assert(none_of(Succs,
|
|
[=](std::pair<SIScheduleBlock*,
|
|
SIScheduleBlockLinkKind> S) {
|
|
return PredID == S.first->getID();
|
|
}) &&
|
|
"Loop in the Block Graph!");
|
|
}
|
|
|
|
void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
|
|
SIScheduleBlockLinkKind Kind) {
|
|
unsigned SuccID = Succ->getID();
|
|
|
|
// Check if not already predecessor.
|
|
for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
|
|
if (SuccID == S.first->getID()) {
|
|
if (S.second == SIScheduleBlockLinkKind::NoData &&
|
|
Kind == SIScheduleBlockLinkKind::Data)
|
|
S.second = Kind;
|
|
return;
|
|
}
|
|
}
|
|
if (Succ->isHighLatencyBlock())
|
|
++NumHighLatencySuccessors;
|
|
Succs.push_back(std::make_pair(Succ, Kind));
|
|
|
|
assert(none_of(Preds,
|
|
[=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
|
|
"Loop in the Block Graph!");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void SIScheduleBlock::printDebug(bool full) {
|
|
dbgs() << "Block (" << ID << ")\n";
|
|
if (!full)
|
|
return;
|
|
|
|
dbgs() << "\nContains High Latency Instruction: "
|
|
<< HighLatencyBlock << '\n';
|
|
dbgs() << "\nDepends On:\n";
|
|
for (SIScheduleBlock* P : Preds) {
|
|
P->printDebug(false);
|
|
}
|
|
|
|
dbgs() << "\nSuccessors:\n";
|
|
for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
|
|
if (S.second == SIScheduleBlockLinkKind::Data)
|
|
dbgs() << "(Data Dep) ";
|
|
S.first->printDebug(false);
|
|
}
|
|
|
|
if (Scheduled) {
|
|
dbgs() << "LiveInPressure " << LiveInPressure[DAG->getSGPRSetID()] << ' '
|
|
<< LiveInPressure[DAG->getVGPRSetID()] << '\n';
|
|
dbgs() << "LiveOutPressure " << LiveOutPressure[DAG->getSGPRSetID()] << ' '
|
|
<< LiveOutPressure[DAG->getVGPRSetID()] << "\n\n";
|
|
dbgs() << "LiveIns:\n";
|
|
for (unsigned Reg : LiveInRegs)
|
|
dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
|
|
|
|
dbgs() << "\nLiveOuts:\n";
|
|
for (unsigned Reg : LiveOutRegs)
|
|
dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
|
|
}
|
|
|
|
dbgs() << "\nInstructions:\n";
|
|
if (!Scheduled) {
|
|
for (SUnit* SU : SUnits) {
|
|
SU->dump(DAG);
|
|
}
|
|
} else {
|
|
for (SUnit* SU : SUnits) {
|
|
SU->dump(DAG);
|
|
}
|
|
}
|
|
|
|
dbgs() << "///////////////////////\n";
|
|
}
|
|
#endif
|
|
|
|
// SIScheduleBlockCreator //
|
|
|
|
SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) :
|
|
DAG(DAG) {
|
|
}
|
|
|
|
SIScheduleBlockCreator::~SIScheduleBlockCreator() = default;
|
|
|
|
SIScheduleBlocks
|
|
SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
|
|
std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
|
|
Blocks.find(BlockVariant);
|
|
if (B == Blocks.end()) {
|
|
SIScheduleBlocks Res;
|
|
createBlocksForVariant(BlockVariant);
|
|
topologicalSort();
|
|
scheduleInsideBlocks();
|
|
fillStats();
|
|
Res.Blocks = CurrentBlocks;
|
|
Res.TopDownIndex2Block = TopDownIndex2Block;
|
|
Res.TopDownBlock2Index = TopDownBlock2Index;
|
|
Blocks[BlockVariant] = Res;
|
|
return Res;
|
|
} else {
|
|
return B->second;
|
|
}
|
|
}
|
|
|
|
bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
|
|
if (SU->NodeNum >= DAG->SUnits.size())
|
|
return false;
|
|
return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorHighLatenciesAlone() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &DAG->SUnits[i];
|
|
if (DAG->IsHighLatencySU[SU->NodeNum]) {
|
|
CurrentColoring[SU->NodeNum] = NextReservedID++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
|
|
for (const auto &PredDep : SU.Preds) {
|
|
if (PredDep.getSUnit() == &FromSU &&
|
|
PredDep.getKind() == llvm::SDep::Data)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorHighLatenciesGroups() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
unsigned NumHighLatencies = 0;
|
|
unsigned GroupSize;
|
|
int Color = NextReservedID;
|
|
unsigned Count = 0;
|
|
std::set<unsigned> FormingGroup;
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &DAG->SUnits[i];
|
|
if (DAG->IsHighLatencySU[SU->NodeNum])
|
|
++NumHighLatencies;
|
|
}
|
|
|
|
if (NumHighLatencies == 0)
|
|
return;
|
|
|
|
if (NumHighLatencies <= 6)
|
|
GroupSize = 2;
|
|
else if (NumHighLatencies <= 12)
|
|
GroupSize = 3;
|
|
else
|
|
GroupSize = 4;
|
|
|
|
for (unsigned SUNum : DAG->TopDownIndex2SU) {
|
|
const SUnit &SU = DAG->SUnits[SUNum];
|
|
if (DAG->IsHighLatencySU[SU.NodeNum]) {
|
|
unsigned CompatibleGroup = true;
|
|
int ProposedColor = Color;
|
|
std::vector<int> AdditionalElements;
|
|
|
|
// We don't want to put in the same block
|
|
// two high latency instructions that depend
|
|
// on each other.
|
|
// One way would be to check canAddEdge
|
|
// in both directions, but that currently is not
|
|
// enough because there the high latency order is
|
|
// enforced (via links).
|
|
// Instead, look at the dependencies between the
|
|
// high latency instructions and deduce if it is
|
|
// a data dependency or not.
|
|
for (unsigned j : FormingGroup) {
|
|
bool HasSubGraph;
|
|
std::vector<int> SubGraph;
|
|
// By construction (topological order), if SU and
|
|
// DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
|
|
// in the parent graph of SU.
|
|
#ifndef NDEBUG
|
|
SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
|
|
HasSubGraph);
|
|
assert(!HasSubGraph);
|
|
#endif
|
|
SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
|
|
HasSubGraph);
|
|
if (!HasSubGraph)
|
|
continue; // No dependencies between each other
|
|
else if (SubGraph.size() > 5) {
|
|
// Too many elements would be required to be added to the block.
|
|
CompatibleGroup = false;
|
|
break;
|
|
}
|
|
else {
|
|
// Check the type of dependency
|
|
for (unsigned k : SubGraph) {
|
|
// If in the path to join the two instructions,
|
|
// there is another high latency instruction,
|
|
// or instructions colored for another block
|
|
// abort the merge.
|
|
if (DAG->IsHighLatencySU[k] ||
|
|
(CurrentColoring[k] != ProposedColor &&
|
|
CurrentColoring[k] != 0)) {
|
|
CompatibleGroup = false;
|
|
break;
|
|
}
|
|
// If one of the SU in the subgraph depends on the result of SU j,
|
|
// there'll be a data dependency.
|
|
if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
|
|
CompatibleGroup = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!CompatibleGroup)
|
|
break;
|
|
// Same check for the SU
|
|
if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
|
|
CompatibleGroup = false;
|
|
break;
|
|
}
|
|
// Add all the required instructions to the block
|
|
// These cannot live in another block (because they
|
|
// depend (order dependency) on one of the
|
|
// instruction in the block, and are required for the
|
|
// high latency instruction we add.
|
|
AdditionalElements.insert(AdditionalElements.end(),
|
|
SubGraph.begin(), SubGraph.end());
|
|
}
|
|
}
|
|
if (CompatibleGroup) {
|
|
FormingGroup.insert(SU.NodeNum);
|
|
for (unsigned j : AdditionalElements)
|
|
CurrentColoring[j] = ProposedColor;
|
|
CurrentColoring[SU.NodeNum] = ProposedColor;
|
|
++Count;
|
|
}
|
|
// Found one incompatible instruction,
|
|
// or has filled a big enough group.
|
|
// -> start a new one.
|
|
if (!CompatibleGroup) {
|
|
FormingGroup.clear();
|
|
Color = ++NextReservedID;
|
|
ProposedColor = Color;
|
|
FormingGroup.insert(SU.NodeNum);
|
|
CurrentColoring[SU.NodeNum] = ProposedColor;
|
|
Count = 0;
|
|
} else if (Count == GroupSize) {
|
|
FormingGroup.clear();
|
|
Color = ++NextReservedID;
|
|
ProposedColor = Color;
|
|
Count = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorComputeReservedDependencies() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
std::map<std::set<unsigned>, unsigned> ColorCombinations;
|
|
|
|
CurrentTopDownReservedDependencyColoring.clear();
|
|
CurrentBottomUpReservedDependencyColoring.clear();
|
|
|
|
CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
|
|
CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
|
|
|
|
// Traverse TopDown, and give different colors to SUs depending
|
|
// on which combination of High Latencies they depend on.
|
|
|
|
for (unsigned SUNum : DAG->TopDownIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
std::set<unsigned> SUColors;
|
|
|
|
// Already given.
|
|
if (CurrentColoring[SU->NodeNum]) {
|
|
CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
|
|
CurrentColoring[SU->NodeNum];
|
|
continue;
|
|
}
|
|
|
|
for (SDep& PredDep : SU->Preds) {
|
|
SUnit *Pred = PredDep.getSUnit();
|
|
if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
|
|
continue;
|
|
if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
|
|
SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
|
|
}
|
|
// Color 0 by default.
|
|
if (SUColors.empty())
|
|
continue;
|
|
// Same color than parents.
|
|
if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
|
|
CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
|
|
*SUColors.begin();
|
|
else {
|
|
std::map<std::set<unsigned>, unsigned>::iterator Pos =
|
|
ColorCombinations.find(SUColors);
|
|
if (Pos != ColorCombinations.end()) {
|
|
CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
|
|
} else {
|
|
CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
|
|
NextNonReservedID;
|
|
ColorCombinations[SUColors] = NextNonReservedID++;
|
|
}
|
|
}
|
|
}
|
|
|
|
ColorCombinations.clear();
|
|
|
|
// Same as before, but BottomUp.
|
|
|
|
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
std::set<unsigned> SUColors;
|
|
|
|
// Already given.
|
|
if (CurrentColoring[SU->NodeNum]) {
|
|
CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
|
|
CurrentColoring[SU->NodeNum];
|
|
continue;
|
|
}
|
|
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
|
|
continue;
|
|
if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
|
|
SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
|
|
}
|
|
// Keep color 0.
|
|
if (SUColors.empty())
|
|
continue;
|
|
// Same color than parents.
|
|
if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
|
|
CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
|
|
*SUColors.begin();
|
|
else {
|
|
std::map<std::set<unsigned>, unsigned>::iterator Pos =
|
|
ColorCombinations.find(SUColors);
|
|
if (Pos != ColorCombinations.end()) {
|
|
CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
|
|
} else {
|
|
CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
|
|
NextNonReservedID;
|
|
ColorCombinations[SUColors] = NextNonReservedID++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
|
|
|
|
// Every combination of colors given by the top down
|
|
// and bottom up Reserved node dependency
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &DAG->SUnits[i];
|
|
std::pair<unsigned, unsigned> SUColors;
|
|
|
|
// High latency instructions: already given.
|
|
if (CurrentColoring[SU->NodeNum])
|
|
continue;
|
|
|
|
SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
|
|
SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
|
|
|
|
std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
|
|
ColorCombinations.find(SUColors);
|
|
if (Pos != ColorCombinations.end()) {
|
|
CurrentColoring[SU->NodeNum] = Pos->second;
|
|
} else {
|
|
CurrentColoring[SU->NodeNum] = NextNonReservedID;
|
|
ColorCombinations[SUColors] = NextNonReservedID++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
std::vector<int> PendingColoring = CurrentColoring;
|
|
|
|
assert(DAGSize >= 1 &&
|
|
CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
|
|
CurrentTopDownReservedDependencyColoring.size() == DAGSize);
|
|
// If there is no reserved block at all, do nothing. We don't want
|
|
// everything in one block.
|
|
if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
|
|
CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
|
|
*std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
|
|
CurrentTopDownReservedDependencyColoring.end()) == 0)
|
|
return;
|
|
|
|
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
std::set<unsigned> SUColors;
|
|
std::set<unsigned> SUColorsPending;
|
|
|
|
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
|
|
continue;
|
|
|
|
if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
|
|
CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
|
|
continue;
|
|
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
|
|
continue;
|
|
if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
|
|
CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
|
|
SUColors.insert(CurrentColoring[Succ->NodeNum]);
|
|
SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
|
|
}
|
|
// If there is only one child/parent block, and that block
|
|
// is not among the ones we are removing in this path, then
|
|
// merge the instruction to that block
|
|
if (SUColors.size() == 1 && SUColorsPending.size() == 1)
|
|
PendingColoring[SU->NodeNum] = *SUColors.begin();
|
|
else // TODO: Attribute new colors depending on color
|
|
// combination of children.
|
|
PendingColoring[SU->NodeNum] = NextNonReservedID++;
|
|
}
|
|
CurrentColoring = PendingColoring;
|
|
}
|
|
|
|
|
|
void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
unsigned PreviousColor;
|
|
std::set<unsigned> SeenColors;
|
|
|
|
if (DAGSize <= 1)
|
|
return;
|
|
|
|
PreviousColor = CurrentColoring[0];
|
|
|
|
for (unsigned i = 1, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &DAG->SUnits[i];
|
|
unsigned CurrentColor = CurrentColoring[i];
|
|
unsigned PreviousColorSave = PreviousColor;
|
|
assert(i == SU->NodeNum);
|
|
|
|
if (CurrentColor != PreviousColor)
|
|
SeenColors.insert(PreviousColor);
|
|
PreviousColor = CurrentColor;
|
|
|
|
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
|
|
continue;
|
|
|
|
if (SeenColors.find(CurrentColor) == SeenColors.end())
|
|
continue;
|
|
|
|
if (PreviousColorSave != CurrentColor)
|
|
CurrentColoring[i] = NextNonReservedID++;
|
|
else
|
|
CurrentColoring[i] = CurrentColoring[i-1];
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
|
|
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
std::set<unsigned> SUColors;
|
|
|
|
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
|
|
continue;
|
|
|
|
// No predecessor: Vgpr constant loading.
|
|
// Low latency instructions usually have a predecessor (the address)
|
|
if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
|
|
continue;
|
|
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
|
|
continue;
|
|
SUColors.insert(CurrentColoring[Succ->NodeNum]);
|
|
}
|
|
if (SUColors.size() == 1)
|
|
CurrentColoring[SU->NodeNum] = *SUColors.begin();
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
|
|
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
std::set<unsigned> SUColors;
|
|
|
|
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
|
|
continue;
|
|
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
|
|
continue;
|
|
SUColors.insert(CurrentColoring[Succ->NodeNum]);
|
|
}
|
|
if (SUColors.size() == 1)
|
|
CurrentColoring[SU->NodeNum] = *SUColors.begin();
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
|
|
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
std::set<unsigned> SUColors;
|
|
|
|
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
|
|
continue;
|
|
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
|
|
continue;
|
|
SUColors.insert(CurrentColoring[Succ->NodeNum]);
|
|
}
|
|
if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
|
|
CurrentColoring[SU->NodeNum] = *SUColors.begin();
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
std::map<unsigned, unsigned> ColorCount;
|
|
|
|
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
unsigned color = CurrentColoring[SU->NodeNum];
|
|
++ColorCount[color];
|
|
}
|
|
|
|
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
unsigned color = CurrentColoring[SU->NodeNum];
|
|
std::set<unsigned> SUColors;
|
|
|
|
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
|
|
continue;
|
|
|
|
if (ColorCount[color] > 1)
|
|
continue;
|
|
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
|
|
continue;
|
|
SUColors.insert(CurrentColoring[Succ->NodeNum]);
|
|
}
|
|
if (SUColors.size() == 1 && *SUColors.begin() != color) {
|
|
--ColorCount[color];
|
|
CurrentColoring[SU->NodeNum] = *SUColors.begin();
|
|
++ColorCount[*SUColors.begin()];
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::cutHugeBlocks() {
|
|
// TODO
|
|
}
|
|
|
|
void SIScheduleBlockCreator::regroupNoUserInstructions() {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
int GroupID = NextNonReservedID++;
|
|
|
|
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
|
|
SUnit *SU = &DAG->SUnits[SUNum];
|
|
bool hasSuccessor = false;
|
|
|
|
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
|
|
continue;
|
|
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
|
|
continue;
|
|
hasSuccessor = true;
|
|
}
|
|
if (!hasSuccessor)
|
|
CurrentColoring[SU->NodeNum] = GroupID;
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockCreator::colorExports() {
|
|
unsigned ExportColor = NextNonReservedID++;
|
|
SmallVector<unsigned, 8> ExpGroup;
|
|
|
|
// Put all exports together in a block.
|
|
// The block will naturally end up being scheduled last,
|
|
// thus putting exports at the end of the schedule, which
|
|
// is better for performance.
|
|
// However we must ensure, for safety, the exports can be put
|
|
// together in the same block without any other instruction.
|
|
// This could happen, for example, when scheduling after regalloc
|
|
// if reloading a spilled register from memory using the same
|
|
// register than used in a previous export.
|
|
// If that happens, do not regroup the exports.
|
|
for (unsigned SUNum : DAG->TopDownIndex2SU) {
|
|
const SUnit &SU = DAG->SUnits[SUNum];
|
|
if (SIInstrInfo::isEXP(*SU.getInstr())) {
|
|
// Check the EXP can be added to the group safely,
|
|
// ie without needing any other instruction.
|
|
// The EXP is allowed to depend on other EXP
|
|
// (they will be in the same group).
|
|
for (unsigned j : ExpGroup) {
|
|
bool HasSubGraph;
|
|
std::vector<int> SubGraph;
|
|
// By construction (topological order), if SU and
|
|
// DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
|
|
// in the parent graph of SU.
|
|
#ifndef NDEBUG
|
|
SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
|
|
HasSubGraph);
|
|
assert(!HasSubGraph);
|
|
#endif
|
|
SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
|
|
HasSubGraph);
|
|
if (!HasSubGraph)
|
|
continue; // No dependencies between each other
|
|
|
|
// SubGraph contains all the instructions required
|
|
// between EXP SUnits[j] and EXP SU.
|
|
for (unsigned k : SubGraph) {
|
|
if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
|
|
// Other instructions than EXP would be required in the group.
|
|
// Abort the groupping.
|
|
return;
|
|
}
|
|
}
|
|
|
|
ExpGroup.push_back(SUNum);
|
|
}
|
|
}
|
|
|
|
// The group can be formed. Give the color.
|
|
for (unsigned j : ExpGroup)
|
|
CurrentColoring[j] = ExportColor;
|
|
}
|
|
|
|
void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
|
|
unsigned DAGSize = DAG->SUnits.size();
|
|
std::map<unsigned,unsigned> RealID;
|
|
|
|
CurrentBlocks.clear();
|
|
CurrentColoring.clear();
|
|
CurrentColoring.resize(DAGSize, 0);
|
|
Node2CurrentBlock.clear();
|
|
|
|
// Restore links previous scheduling variant has overridden.
|
|
DAG->restoreSULinksLeft();
|
|
|
|
NextReservedID = 1;
|
|
NextNonReservedID = DAGSize + 1;
|
|
|
|
DEBUG(dbgs() << "Coloring the graph\n");
|
|
|
|
if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
|
|
colorHighLatenciesGroups();
|
|
else
|
|
colorHighLatenciesAlone();
|
|
colorComputeReservedDependencies();
|
|
colorAccordingToReservedDependencies();
|
|
colorEndsAccordingToDependencies();
|
|
if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
|
|
colorForceConsecutiveOrderInGroup();
|
|
regroupNoUserInstructions();
|
|
colorMergeConstantLoadsNextGroup();
|
|
colorMergeIfPossibleNextGroupOnlyForReserved();
|
|
colorExports();
|
|
|
|
// Put SUs of same color into same block
|
|
Node2CurrentBlock.resize(DAGSize, -1);
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &DAG->SUnits[i];
|
|
unsigned Color = CurrentColoring[SU->NodeNum];
|
|
if (RealID.find(Color) == RealID.end()) {
|
|
int ID = CurrentBlocks.size();
|
|
BlockPtrs.push_back(llvm::make_unique<SIScheduleBlock>(DAG, this, ID));
|
|
CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
|
|
RealID[Color] = ID;
|
|
}
|
|
CurrentBlocks[RealID[Color]]->addUnit(SU);
|
|
Node2CurrentBlock[SU->NodeNum] = RealID[Color];
|
|
}
|
|
|
|
// Build dependencies between blocks.
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &DAG->SUnits[i];
|
|
int SUID = Node2CurrentBlock[i];
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
|
|
continue;
|
|
if (Node2CurrentBlock[Succ->NodeNum] != SUID)
|
|
CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
|
|
SuccDep.isCtrl() ? NoData : Data);
|
|
}
|
|
for (SDep& PredDep : SU->Preds) {
|
|
SUnit *Pred = PredDep.getSUnit();
|
|
if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
|
|
continue;
|
|
if (Node2CurrentBlock[Pred->NodeNum] != SUID)
|
|
CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
|
|
}
|
|
}
|
|
|
|
// Free root and leafs of all blocks to enable scheduling inside them.
|
|
for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
|
|
SIScheduleBlock *Block = CurrentBlocks[i];
|
|
Block->finalizeUnits();
|
|
}
|
|
DEBUG(
|
|
dbgs() << "Blocks created:\n\n";
|
|
for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
|
|
SIScheduleBlock *Block = CurrentBlocks[i];
|
|
Block->printDebug(true);
|
|
}
|
|
);
|
|
}
|
|
|
|
// Two functions taken from Codegen/MachineScheduler.cpp
|
|
|
|
/// Non-const version.
|
|
static MachineBasicBlock::iterator
|
|
nextIfDebug(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::const_iterator End) {
|
|
for (; I != End; ++I) {
|
|
if (!I->isDebugValue())
|
|
break;
|
|
}
|
|
return I;
|
|
}
|
|
|
|
void SIScheduleBlockCreator::topologicalSort() {
|
|
unsigned DAGSize = CurrentBlocks.size();
|
|
std::vector<int> WorkList;
|
|
|
|
DEBUG(dbgs() << "Topological Sort\n");
|
|
|
|
WorkList.reserve(DAGSize);
|
|
TopDownIndex2Block.resize(DAGSize);
|
|
TopDownBlock2Index.resize(DAGSize);
|
|
BottomUpIndex2Block.resize(DAGSize);
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SIScheduleBlock *Block = CurrentBlocks[i];
|
|
unsigned Degree = Block->getSuccs().size();
|
|
TopDownBlock2Index[i] = Degree;
|
|
if (Degree == 0) {
|
|
WorkList.push_back(i);
|
|
}
|
|
}
|
|
|
|
int Id = DAGSize;
|
|
while (!WorkList.empty()) {
|
|
int i = WorkList.back();
|
|
SIScheduleBlock *Block = CurrentBlocks[i];
|
|
WorkList.pop_back();
|
|
TopDownBlock2Index[i] = --Id;
|
|
TopDownIndex2Block[Id] = i;
|
|
for (SIScheduleBlock* Pred : Block->getPreds()) {
|
|
if (!--TopDownBlock2Index[Pred->getID()])
|
|
WorkList.push_back(Pred->getID());
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Check correctness of the ordering.
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SIScheduleBlock *Block = CurrentBlocks[i];
|
|
for (SIScheduleBlock* Pred : Block->getPreds()) {
|
|
assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
|
|
"Wrong Top Down topological sorting");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
|
|
TopDownIndex2Block.rend());
|
|
}
|
|
|
|
void SIScheduleBlockCreator::scheduleInsideBlocks() {
|
|
unsigned DAGSize = CurrentBlocks.size();
|
|
|
|
DEBUG(dbgs() << "\nScheduling Blocks\n\n");
|
|
|
|
// We do schedule a valid scheduling such that a Block corresponds
|
|
// to a range of instructions.
|
|
DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SIScheduleBlock *Block = CurrentBlocks[i];
|
|
Block->fastSchedule();
|
|
}
|
|
|
|
// Note: the following code, and the part restoring previous position
|
|
// is by far the most expensive operation of the Scheduler.
|
|
|
|
// Do not update CurrentTop.
|
|
MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
|
|
std::vector<MachineBasicBlock::iterator> PosOld;
|
|
std::vector<MachineBasicBlock::iterator> PosNew;
|
|
PosOld.reserve(DAG->SUnits.size());
|
|
PosNew.reserve(DAG->SUnits.size());
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
int BlockIndice = TopDownIndex2Block[i];
|
|
SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
|
|
std::vector<SUnit*> SUs = Block->getScheduledUnits();
|
|
|
|
for (SUnit* SU : SUs) {
|
|
MachineInstr *MI = SU->getInstr();
|
|
MachineBasicBlock::iterator Pos = MI;
|
|
PosOld.push_back(Pos);
|
|
if (&*CurrentTopFastSched == MI) {
|
|
PosNew.push_back(Pos);
|
|
CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
|
|
DAG->getCurrentBottom());
|
|
} else {
|
|
// Update the instruction stream.
|
|
DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
|
|
|
|
// Update LiveIntervals.
|
|
// Note: Moving all instructions and calling handleMove every time
|
|
// is the most cpu intensive operation of the scheduler.
|
|
// It would gain a lot if there was a way to recompute the
|
|
// LiveIntervals for the entire scheduling region.
|
|
DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
|
|
PosNew.push_back(CurrentTopFastSched);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we have Block of SUs == Block of MI.
|
|
// We do the final schedule for the instructions inside the block.
|
|
// The property that all the SUs of the Block are grouped together as MI
|
|
// is used for correct reg usage tracking.
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SIScheduleBlock *Block = CurrentBlocks[i];
|
|
std::vector<SUnit*> SUs = Block->getScheduledUnits();
|
|
Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
|
|
}
|
|
|
|
DEBUG(dbgs() << "Restoring MI Pos\n");
|
|
// Restore old ordering (which prevents a LIS->handleMove bug).
|
|
for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
|
|
MachineBasicBlock::iterator POld = PosOld[i-1];
|
|
MachineBasicBlock::iterator PNew = PosNew[i-1];
|
|
if (PNew != POld) {
|
|
// Update the instruction stream.
|
|
DAG->getBB()->splice(POld, DAG->getBB(), PNew);
|
|
|
|
// Update LiveIntervals.
|
|
DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
|
|
}
|
|
}
|
|
|
|
DEBUG(
|
|
for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
|
|
SIScheduleBlock *Block = CurrentBlocks[i];
|
|
Block->printDebug(true);
|
|
}
|
|
);
|
|
}
|
|
|
|
void SIScheduleBlockCreator::fillStats() {
|
|
unsigned DAGSize = CurrentBlocks.size();
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
int BlockIndice = TopDownIndex2Block[i];
|
|
SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
|
|
if (Block->getPreds().empty())
|
|
Block->Depth = 0;
|
|
else {
|
|
unsigned Depth = 0;
|
|
for (SIScheduleBlock *Pred : Block->getPreds()) {
|
|
if (Depth < Pred->Depth + Pred->getCost())
|
|
Depth = Pred->Depth + Pred->getCost();
|
|
}
|
|
Block->Depth = Depth;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
int BlockIndice = BottomUpIndex2Block[i];
|
|
SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
|
|
if (Block->getSuccs().empty())
|
|
Block->Height = 0;
|
|
else {
|
|
unsigned Height = 0;
|
|
for (const auto &Succ : Block->getSuccs())
|
|
Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
|
|
Block->Height = Height;
|
|
}
|
|
}
|
|
}
|
|
|
|
// SIScheduleBlockScheduler //
|
|
|
|
SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
|
|
SISchedulerBlockSchedulerVariant Variant,
|
|
SIScheduleBlocks BlocksStruct) :
|
|
DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
|
|
LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
|
|
SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
|
|
|
|
// Fill the usage of every output
|
|
// Warning: while by construction we always have a link between two blocks
|
|
// when one needs a result from the other, the number of users of an output
|
|
// is not the sum of child blocks having as input the same virtual register.
|
|
// Here is an example. A produces x and y. B eats x and produces x'.
|
|
// C eats x' and y. The register coalescer may have attributed the same
|
|
// virtual register to x and x'.
|
|
// To count accurately, we do a topological sort. In case the register is
|
|
// found for several parents, we increment the usage of the one with the
|
|
// highest topological index.
|
|
LiveOutRegsNumUsages.resize(Blocks.size());
|
|
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
|
|
SIScheduleBlock *Block = Blocks[i];
|
|
for (unsigned Reg : Block->getInRegs()) {
|
|
bool Found = false;
|
|
int topoInd = -1;
|
|
for (SIScheduleBlock* Pred: Block->getPreds()) {
|
|
std::set<unsigned> PredOutRegs = Pred->getOutRegs();
|
|
std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
|
|
|
|
if (RegPos != PredOutRegs.end()) {
|
|
Found = true;
|
|
if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
|
|
topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Found)
|
|
continue;
|
|
|
|
int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
|
|
++LiveOutRegsNumUsages[PredID][Reg];
|
|
}
|
|
}
|
|
|
|
LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
|
|
BlockNumPredsLeft.resize(Blocks.size());
|
|
BlockNumSuccsLeft.resize(Blocks.size());
|
|
|
|
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
|
|
SIScheduleBlock *Block = Blocks[i];
|
|
BlockNumPredsLeft[i] = Block->getPreds().size();
|
|
BlockNumSuccsLeft[i] = Block->getSuccs().size();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
|
|
SIScheduleBlock *Block = Blocks[i];
|
|
assert(Block->getID() == i);
|
|
}
|
|
#endif
|
|
|
|
std::set<unsigned> InRegs = DAG->getInRegs();
|
|
addLiveRegs(InRegs);
|
|
|
|
// Increase LiveOutRegsNumUsages for blocks
|
|
// producing registers consumed in another
|
|
// scheduling region.
|
|
for (unsigned Reg : DAG->getOutRegs()) {
|
|
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
|
|
// Do reverse traversal
|
|
int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
|
|
SIScheduleBlock *Block = Blocks[ID];
|
|
const std::set<unsigned> &OutRegs = Block->getOutRegs();
|
|
|
|
if (OutRegs.find(Reg) == OutRegs.end())
|
|
continue;
|
|
|
|
++LiveOutRegsNumUsages[ID][Reg];
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Fill LiveRegsConsumers for regs that were already
|
|
// defined before scheduling.
|
|
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
|
|
SIScheduleBlock *Block = Blocks[i];
|
|
for (unsigned Reg : Block->getInRegs()) {
|
|
bool Found = false;
|
|
for (SIScheduleBlock* Pred: Block->getPreds()) {
|
|
std::set<unsigned> PredOutRegs = Pred->getOutRegs();
|
|
std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
|
|
|
|
if (RegPos != PredOutRegs.end()) {
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Found)
|
|
++LiveRegsConsumers[Reg];
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
|
|
SIScheduleBlock *Block = Blocks[i];
|
|
if (BlockNumPredsLeft[i] == 0) {
|
|
ReadyBlocks.push_back(Block);
|
|
}
|
|
}
|
|
|
|
while (SIScheduleBlock *Block = pickBlock()) {
|
|
BlocksScheduled.push_back(Block);
|
|
blockScheduled(Block);
|
|
}
|
|
|
|
DEBUG(
|
|
dbgs() << "Block Order:";
|
|
for (SIScheduleBlock* Block : BlocksScheduled) {
|
|
dbgs() << ' ' << Block->getID();
|
|
}
|
|
dbgs() << '\n';
|
|
);
|
|
}
|
|
|
|
bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
|
|
SIBlockSchedCandidate &TryCand) {
|
|
if (!Cand.isValid()) {
|
|
TryCand.Reason = NodeOrder;
|
|
return true;
|
|
}
|
|
|
|
// Try to hide high latencies.
|
|
if (tryLess(TryCand.LastPosHighLatParentScheduled,
|
|
Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
|
|
return true;
|
|
// Schedule high latencies early so you can hide them better.
|
|
if (tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
|
|
TryCand, Cand, Latency))
|
|
return true;
|
|
if (TryCand.IsHighLatency && tryGreater(TryCand.Height, Cand.Height,
|
|
TryCand, Cand, Depth))
|
|
return true;
|
|
if (tryGreater(TryCand.NumHighLatencySuccessors,
|
|
Cand.NumHighLatencySuccessors,
|
|
TryCand, Cand, Successor))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
|
|
SIBlockSchedCandidate &TryCand) {
|
|
if (!Cand.isValid()) {
|
|
TryCand.Reason = NodeOrder;
|
|
return true;
|
|
}
|
|
|
|
if (tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
|
|
TryCand, Cand, RegUsage))
|
|
return true;
|
|
if (tryGreater(TryCand.NumSuccessors > 0,
|
|
Cand.NumSuccessors > 0,
|
|
TryCand, Cand, Successor))
|
|
return true;
|
|
if (tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
|
|
return true;
|
|
if (tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
|
|
TryCand, Cand, RegUsage))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
|
|
SIBlockSchedCandidate Cand;
|
|
std::vector<SIScheduleBlock*>::iterator Best;
|
|
SIScheduleBlock *Block;
|
|
if (ReadyBlocks.empty())
|
|
return nullptr;
|
|
|
|
DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
|
|
VregCurrentUsage, SregCurrentUsage);
|
|
if (VregCurrentUsage > maxVregUsage)
|
|
maxVregUsage = VregCurrentUsage;
|
|
if (SregCurrentUsage > maxSregUsage)
|
|
maxSregUsage = SregCurrentUsage;
|
|
DEBUG(
|
|
dbgs() << "Picking New Blocks\n";
|
|
dbgs() << "Available: ";
|
|
for (SIScheduleBlock* Block : ReadyBlocks)
|
|
dbgs() << Block->getID() << ' ';
|
|
dbgs() << "\nCurrent Live:\n";
|
|
for (unsigned Reg : LiveRegs)
|
|
dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
|
|
dbgs() << '\n';
|
|
dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
|
|
dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';
|
|
);
|
|
|
|
Cand.Block = nullptr;
|
|
for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
|
|
E = ReadyBlocks.end(); I != E; ++I) {
|
|
SIBlockSchedCandidate TryCand;
|
|
TryCand.Block = *I;
|
|
TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
|
|
TryCand.VGPRUsageDiff =
|
|
checkRegUsageImpact(TryCand.Block->getInRegs(),
|
|
TryCand.Block->getOutRegs())[DAG->getVGPRSetID()];
|
|
TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
|
|
TryCand.NumHighLatencySuccessors =
|
|
TryCand.Block->getNumHighLatencySuccessors();
|
|
TryCand.LastPosHighLatParentScheduled =
|
|
(unsigned int) std::max<int> (0,
|
|
LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
|
|
LastPosWaitedHighLatency);
|
|
TryCand.Height = TryCand.Block->Height;
|
|
// Try not to increase VGPR usage too much, else we may spill.
|
|
if (VregCurrentUsage > 120 ||
|
|
Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
|
|
if (!tryCandidateRegUsage(Cand, TryCand) &&
|
|
Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
|
|
tryCandidateLatency(Cand, TryCand);
|
|
} else {
|
|
if (!tryCandidateLatency(Cand, TryCand))
|
|
tryCandidateRegUsage(Cand, TryCand);
|
|
}
|
|
if (TryCand.Reason != NoCand) {
|
|
Cand.setBest(TryCand);
|
|
Best = I;
|
|
DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
|
|
<< getReasonStr(Cand.Reason) << '\n');
|
|
}
|
|
}
|
|
|
|
DEBUG(
|
|
dbgs() << "Picking: " << Cand.Block->getID() << '\n';
|
|
dbgs() << "Is a block with high latency instruction: "
|
|
<< (Cand.IsHighLatency ? "yes\n" : "no\n");
|
|
dbgs() << "Position of last high latency dependency: "
|
|
<< Cand.LastPosHighLatParentScheduled << '\n';
|
|
dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
|
|
dbgs() << '\n';
|
|
);
|
|
|
|
Block = Cand.Block;
|
|
ReadyBlocks.erase(Best);
|
|
return Block;
|
|
}
|
|
|
|
// Tracking of currently alive registers to determine VGPR Usage.
|
|
|
|
void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
|
|
for (unsigned Reg : Regs) {
|
|
// For now only track virtual registers.
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
// If not already in the live set, then add it.
|
|
(void) LiveRegs.insert(Reg);
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
|
|
std::set<unsigned> &Regs) {
|
|
for (unsigned Reg : Regs) {
|
|
// For now only track virtual registers.
|
|
std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
|
|
assert (Pos != LiveRegs.end() && // Reg must be live.
|
|
LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
|
|
LiveRegsConsumers[Reg] >= 1);
|
|
--LiveRegsConsumers[Reg];
|
|
if (LiveRegsConsumers[Reg] == 0)
|
|
LiveRegs.erase(Pos);
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
|
|
for (const auto &Block : Parent->getSuccs()) {
|
|
if (--BlockNumPredsLeft[Block.first->getID()] == 0)
|
|
ReadyBlocks.push_back(Block.first);
|
|
|
|
if (Parent->isHighLatencyBlock() &&
|
|
Block.second == SIScheduleBlockLinkKind::Data)
|
|
LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
|
|
}
|
|
}
|
|
|
|
void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
|
|
decreaseLiveRegs(Block, Block->getInRegs());
|
|
addLiveRegs(Block->getOutRegs());
|
|
releaseBlockSuccs(Block);
|
|
for (std::map<unsigned, unsigned>::iterator RegI =
|
|
LiveOutRegsNumUsages[Block->getID()].begin(),
|
|
E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
|
|
std::pair<unsigned, unsigned> RegP = *RegI;
|
|
// We produce this register, thus it must not be previously alive.
|
|
assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
|
|
LiveRegsConsumers[RegP.first] == 0);
|
|
LiveRegsConsumers[RegP.first] += RegP.second;
|
|
}
|
|
if (LastPosHighLatencyParentScheduled[Block->getID()] >
|
|
(unsigned)LastPosWaitedHighLatency)
|
|
LastPosWaitedHighLatency =
|
|
LastPosHighLatencyParentScheduled[Block->getID()];
|
|
++NumBlockScheduled;
|
|
}
|
|
|
|
std::vector<int>
|
|
SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
|
|
std::set<unsigned> &OutRegs) {
|
|
std::vector<int> DiffSetPressure;
|
|
DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
|
|
|
|
for (unsigned Reg : InRegs) {
|
|
// For now only track virtual registers.
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
if (LiveRegsConsumers[Reg] > 1)
|
|
continue;
|
|
PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
|
|
for (; PSetI.isValid(); ++PSetI) {
|
|
DiffSetPressure[*PSetI] -= PSetI.getWeight();
|
|
}
|
|
}
|
|
|
|
for (unsigned Reg : OutRegs) {
|
|
// For now only track virtual registers.
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
|
|
for (; PSetI.isValid(); ++PSetI) {
|
|
DiffSetPressure[*PSetI] += PSetI.getWeight();
|
|
}
|
|
}
|
|
|
|
return DiffSetPressure;
|
|
}
|
|
|
|
// SIScheduler //
|
|
|
|
struct SIScheduleBlockResult
|
|
SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
|
|
SISchedulerBlockSchedulerVariant ScheduleVariant) {
|
|
SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
|
|
SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
|
|
std::vector<SIScheduleBlock*> ScheduledBlocks;
|
|
struct SIScheduleBlockResult Res;
|
|
|
|
ScheduledBlocks = Scheduler.getBlocks();
|
|
|
|
for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
|
|
SIScheduleBlock *Block = ScheduledBlocks[b];
|
|
std::vector<SUnit*> SUs = Block->getScheduledUnits();
|
|
|
|
for (SUnit* SU : SUs)
|
|
Res.SUs.push_back(SU->NodeNum);
|
|
}
|
|
|
|
Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
|
|
Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
|
|
return Res;
|
|
}
|
|
|
|
// SIScheduleDAGMI //
|
|
|
|
SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
|
|
ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)) {
|
|
SITII = static_cast<const SIInstrInfo*>(TII);
|
|
SITRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
|
|
VGPRSetID = SITRI->getVGPRPressureSet();
|
|
SGPRSetID = SITRI->getSGPRPressureSet();
|
|
}
|
|
|
|
SIScheduleDAGMI::~SIScheduleDAGMI() = default;
|
|
|
|
// Code adapted from scheduleDAG.cpp
|
|
// Does a topological sort over the SUs.
|
|
// Both TopDown and BottomUp
|
|
void SIScheduleDAGMI::topologicalSort() {
|
|
Topo.InitDAGTopologicalSorting();
|
|
|
|
TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
|
|
BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
|
|
}
|
|
|
|
// Move low latencies further from their user without
|
|
// increasing SGPR usage (in general)
|
|
// This is to be replaced by a better pass that would
|
|
// take into account SGPR usage (based on VGPR Usage
|
|
// and the corresponding wavefront count), that would
|
|
// try to merge groups of loads if it make sense, etc
|
|
void SIScheduleDAGMI::moveLowLatencies() {
|
|
unsigned DAGSize = SUnits.size();
|
|
int LastLowLatencyUser = -1;
|
|
int LastLowLatencyPos = -1;
|
|
|
|
for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
|
|
SUnit *SU = &SUnits[ScheduledSUnits[i]];
|
|
bool IsLowLatencyUser = false;
|
|
unsigned MinPos = 0;
|
|
|
|
for (SDep& PredDep : SU->Preds) {
|
|
SUnit *Pred = PredDep.getSUnit();
|
|
if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
|
|
IsLowLatencyUser = true;
|
|
}
|
|
if (Pred->NodeNum >= DAGSize)
|
|
continue;
|
|
unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
|
|
if (PredPos >= MinPos)
|
|
MinPos = PredPos + 1;
|
|
}
|
|
|
|
if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
|
|
unsigned BestPos = LastLowLatencyUser + 1;
|
|
if ((int)BestPos <= LastLowLatencyPos)
|
|
BestPos = LastLowLatencyPos + 1;
|
|
if (BestPos < MinPos)
|
|
BestPos = MinPos;
|
|
if (BestPos < i) {
|
|
for (unsigned u = i; u > BestPos; --u) {
|
|
++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
|
|
ScheduledSUnits[u] = ScheduledSUnits[u-1];
|
|
}
|
|
ScheduledSUnits[BestPos] = SU->NodeNum;
|
|
ScheduledSUnitsInv[SU->NodeNum] = BestPos;
|
|
}
|
|
LastLowLatencyPos = BestPos;
|
|
if (IsLowLatencyUser)
|
|
LastLowLatencyUser = BestPos;
|
|
} else if (IsLowLatencyUser) {
|
|
LastLowLatencyUser = i;
|
|
// Moves COPY instructions on which depends
|
|
// the low latency instructions too.
|
|
} else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
|
|
bool CopyForLowLat = false;
|
|
for (SDep& SuccDep : SU->Succs) {
|
|
SUnit *Succ = SuccDep.getSUnit();
|
|
if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
|
|
CopyForLowLat = true;
|
|
}
|
|
}
|
|
if (!CopyForLowLat)
|
|
continue;
|
|
if (MinPos < i) {
|
|
for (unsigned u = i; u > MinPos; --u) {
|
|
++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
|
|
ScheduledSUnits[u] = ScheduledSUnits[u-1];
|
|
}
|
|
ScheduledSUnits[MinPos] = SU->NodeNum;
|
|
ScheduledSUnitsInv[SU->NodeNum] = MinPos;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIScheduleDAGMI::restoreSULinksLeft() {
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
SUnits[i].isScheduled = false;
|
|
SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
|
|
SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
|
|
SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
|
|
SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
|
|
}
|
|
}
|
|
|
|
// Return the Vgpr and Sgpr usage corresponding to some virtual registers.
|
|
template<typename _Iterator> void
|
|
SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
|
|
unsigned &VgprUsage, unsigned &SgprUsage) {
|
|
VgprUsage = 0;
|
|
SgprUsage = 0;
|
|
for (_Iterator RegI = First; RegI != End; ++RegI) {
|
|
unsigned Reg = *RegI;
|
|
// For now only track virtual registers
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
PSetIterator PSetI = MRI.getPressureSets(Reg);
|
|
for (; PSetI.isValid(); ++PSetI) {
|
|
if (*PSetI == VGPRSetID)
|
|
VgprUsage += PSetI.getWeight();
|
|
else if (*PSetI == SGPRSetID)
|
|
SgprUsage += PSetI.getWeight();
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIScheduleDAGMI::schedule()
|
|
{
|
|
SmallVector<SUnit*, 8> TopRoots, BotRoots;
|
|
SIScheduleBlockResult Best, Temp;
|
|
DEBUG(dbgs() << "Preparing Scheduling\n");
|
|
|
|
buildDAGWithRegPressure();
|
|
DEBUG(
|
|
for(SUnit& SU : SUnits)
|
|
SU.dumpAll(this)
|
|
);
|
|
|
|
topologicalSort();
|
|
findRootsAndBiasEdges(TopRoots, BotRoots);
|
|
// We reuse several ScheduleDAGMI and ScheduleDAGMILive
|
|
// functions, but to make them happy we must initialize
|
|
// the default Scheduler implementation (even if we do not
|
|
// run it)
|
|
SchedImpl->initialize(this);
|
|
initQueues(TopRoots, BotRoots);
|
|
|
|
// Fill some stats to help scheduling.
|
|
|
|
SUnitsLinksBackup = SUnits;
|
|
IsLowLatencySU.clear();
|
|
LowLatencyOffset.clear();
|
|
IsHighLatencySU.clear();
|
|
|
|
IsLowLatencySU.resize(SUnits.size(), 0);
|
|
LowLatencyOffset.resize(SUnits.size(), 0);
|
|
IsHighLatencySU.resize(SUnits.size(), 0);
|
|
|
|
for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
|
|
SUnit *SU = &SUnits[i];
|
|
unsigned BaseLatReg;
|
|
int64_t OffLatReg;
|
|
if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
|
|
IsLowLatencySU[i] = 1;
|
|
if (SITII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseLatReg, OffLatReg,
|
|
TRI))
|
|
LowLatencyOffset[i] = OffLatReg;
|
|
} else if (SITII->isHighLatencyInstruction(*SU->getInstr()))
|
|
IsHighLatencySU[i] = 1;
|
|
}
|
|
|
|
SIScheduler Scheduler(this);
|
|
Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
|
|
SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
|
|
|
|
// if VGPR usage is extremely high, try other good performing variants
|
|
// which could lead to lower VGPR usage
|
|
if (Best.MaxVGPRUsage > 180) {
|
|
static const std::pair<SISchedulerBlockCreatorVariant,
|
|
SISchedulerBlockSchedulerVariant>
|
|
Variants[] = {
|
|
{ LatenciesAlone, BlockRegUsageLatency },
|
|
// { LatenciesAlone, BlockRegUsage },
|
|
{ LatenciesGrouped, BlockLatencyRegUsage },
|
|
// { LatenciesGrouped, BlockRegUsageLatency },
|
|
// { LatenciesGrouped, BlockRegUsage },
|
|
{ LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
|
|
// { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
|
|
// { LatenciesAlonePlusConsecutive, BlockRegUsage }
|
|
};
|
|
for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
|
|
Temp = Scheduler.scheduleVariant(v.first, v.second);
|
|
if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
|
|
Best = Temp;
|
|
}
|
|
}
|
|
// if VGPR usage is still extremely high, we may spill. Try other variants
|
|
// which are less performing, but that could lead to lower VGPR usage.
|
|
if (Best.MaxVGPRUsage > 200) {
|
|
static const std::pair<SISchedulerBlockCreatorVariant,
|
|
SISchedulerBlockSchedulerVariant>
|
|
Variants[] = {
|
|
// { LatenciesAlone, BlockRegUsageLatency },
|
|
{ LatenciesAlone, BlockRegUsage },
|
|
// { LatenciesGrouped, BlockLatencyRegUsage },
|
|
{ LatenciesGrouped, BlockRegUsageLatency },
|
|
{ LatenciesGrouped, BlockRegUsage },
|
|
// { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
|
|
{ LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
|
|
{ LatenciesAlonePlusConsecutive, BlockRegUsage }
|
|
};
|
|
for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
|
|
Temp = Scheduler.scheduleVariant(v.first, v.second);
|
|
if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
|
|
Best = Temp;
|
|
}
|
|
}
|
|
|
|
ScheduledSUnits = Best.SUs;
|
|
ScheduledSUnitsInv.resize(SUnits.size());
|
|
|
|
for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
|
|
ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
|
|
}
|
|
|
|
moveLowLatencies();
|
|
|
|
// Tell the outside world about the result of the scheduling.
|
|
|
|
assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
|
|
TopRPTracker.setPos(CurrentTop);
|
|
|
|
for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
|
|
E = ScheduledSUnits.end(); I != E; ++I) {
|
|
SUnit *SU = &SUnits[*I];
|
|
|
|
scheduleMI(SU, true);
|
|
|
|
DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
|
|
<< *SU->getInstr());
|
|
}
|
|
|
|
assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
|
|
|
|
placeDebugValues();
|
|
|
|
DEBUG({
|
|
dbgs() << "*** Final schedule for "
|
|
<< printMBBReference(*begin()->getParent()) << " ***\n";
|
|
dumpSchedule();
|
|
dbgs() << '\n';
|
|
});
|
|
}
|