mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
f62f8e4508
Summary: I had added support for compressing dwarf sections in a prior commit, this one adds support for decompressing. Usage is: llvm-objcopy --decompress-debug-sections input.o output.o Reviewers: jakehehrlich, jhenderson, alexshap Reviewed By: jhenderson Differential Revision: https://reviews.llvm.org/D51841 llvm-svn: 343451
1650 lines
58 KiB
C++
1650 lines
58 KiB
C++
//===- Object.cpp ---------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Object.h"
|
|
#include "llvm-objcopy.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FileOutputBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::objcopy;
|
|
using namespace object;
|
|
using namespace ELF;
|
|
|
|
Buffer::~Buffer() {}
|
|
|
|
void FileBuffer::allocate(size_t Size) {
|
|
Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
|
|
FileOutputBuffer::create(getName(), Size, FileOutputBuffer::F_executable);
|
|
handleAllErrors(BufferOrErr.takeError(), [this](const ErrorInfoBase &E) {
|
|
error("failed to open " + getName() + ": " + E.message());
|
|
});
|
|
Buf = std::move(*BufferOrErr);
|
|
}
|
|
|
|
Error FileBuffer::commit() { return Buf->commit(); }
|
|
|
|
uint8_t *FileBuffer::getBufferStart() {
|
|
return reinterpret_cast<uint8_t *>(Buf->getBufferStart());
|
|
}
|
|
|
|
void MemBuffer::allocate(size_t Size) {
|
|
Buf = WritableMemoryBuffer::getNewMemBuffer(Size, getName());
|
|
}
|
|
|
|
Error MemBuffer::commit() { return Error::success(); }
|
|
|
|
uint8_t *MemBuffer::getBufferStart() {
|
|
return reinterpret_cast<uint8_t *>(Buf->getBufferStart());
|
|
}
|
|
|
|
std::unique_ptr<WritableMemoryBuffer> MemBuffer::releaseMemoryBuffer() {
|
|
return std::move(Buf);
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
|
|
uint8_t *B = Buf.getBufferStart();
|
|
B += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
|
|
Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
|
|
Phdr.p_type = Seg.Type;
|
|
Phdr.p_flags = Seg.Flags;
|
|
Phdr.p_offset = Seg.Offset;
|
|
Phdr.p_vaddr = Seg.VAddr;
|
|
Phdr.p_paddr = Seg.PAddr;
|
|
Phdr.p_filesz = Seg.FileSize;
|
|
Phdr.p_memsz = Seg.MemSize;
|
|
Phdr.p_align = Seg.Align;
|
|
}
|
|
|
|
void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
|
|
void SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {}
|
|
void SectionBase::initialize(SectionTableRef SecTable) {}
|
|
void SectionBase::finalize() {}
|
|
void SectionBase::markSymbols() {}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
|
|
uint8_t *B = Buf.getBufferStart();
|
|
B += Sec.HeaderOffset;
|
|
Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
|
|
Shdr.sh_name = Sec.NameIndex;
|
|
Shdr.sh_type = Sec.Type;
|
|
Shdr.sh_flags = Sec.Flags;
|
|
Shdr.sh_addr = Sec.Addr;
|
|
Shdr.sh_offset = Sec.Offset;
|
|
Shdr.sh_size = Sec.Size;
|
|
Shdr.sh_link = Sec.Link;
|
|
Shdr.sh_info = Sec.Info;
|
|
Shdr.sh_addralign = Sec.Align;
|
|
Shdr.sh_entsize = Sec.EntrySize;
|
|
}
|
|
|
|
SectionVisitor::~SectionVisitor() {}
|
|
|
|
void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
|
|
error("Cannot write symbol section index table '" + Sec.Name + "' ");
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
|
|
error("Cannot write symbol table '" + Sec.Name + "' out to binary");
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const RelocationSection &Sec) {
|
|
error("Cannot write relocation section '" + Sec.Name + "' out to binary");
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
|
|
error("Cannot write '" + Sec.Name + "' out to binary");
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const GroupSection &Sec) {
|
|
error("Cannot write '" + Sec.Name + "' out to binary");
|
|
}
|
|
|
|
void SectionWriter::visit(const Section &Sec) {
|
|
if (Sec.Type == SHT_NOBITS)
|
|
return;
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Buf);
|
|
}
|
|
|
|
void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
|
|
|
|
void SectionWriter::visit(const OwnedDataSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
std::copy(std::begin(Sec.Data), std::end(Sec.Data), Buf);
|
|
}
|
|
|
|
static const std::vector<uint8_t> ZlibGnuMagic = {'Z', 'L', 'I', 'B'};
|
|
|
|
static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
|
|
return Data.size() > ZlibGnuMagic.size() &&
|
|
std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
|
|
}
|
|
|
|
template <class ELFT>
|
|
static std::tuple<uint64_t, uint64_t>
|
|
getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
|
|
const bool IsGnuDebug = isDataGnuCompressed(Data);
|
|
const uint64_t DecompressedSize =
|
|
IsGnuDebug
|
|
? support::endian::read64be(reinterpret_cast<const uint64_t *>(
|
|
Data.data() + ZlibGnuMagic.size()))
|
|
: reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
|
|
const uint64_t DecompressedAlign =
|
|
IsGnuDebug ? 1
|
|
: reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
|
|
->ch_addralign;
|
|
|
|
return std::make_tuple(DecompressedSize, DecompressedAlign);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
|
|
if (!zlib::isAvailable()) {
|
|
std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
|
|
return;
|
|
}
|
|
|
|
const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
|
|
? (ZlibGnuMagic.size() + sizeof(Sec.Size))
|
|
: sizeof(Elf_Chdr_Impl<ELFT>);
|
|
|
|
StringRef CompressedContent(
|
|
reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
|
|
Sec.OriginalData.size() - DataOffset);
|
|
|
|
SmallVector<char, 128> DecompressedContent;
|
|
if (Error E = zlib::uncompress(CompressedContent, DecompressedContent,
|
|
static_cast<size_t>(Sec.Size)))
|
|
reportError(Sec.Name, std::move(E));
|
|
|
|
std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const DecompressedSection &Sec) {
|
|
error("Cannot write compressed section '" + Sec.Name + "' ");
|
|
}
|
|
|
|
void DecompressedSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void OwnedDataSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const CompressedSection &Sec) {
|
|
error("Cannot write compressed section '" + Sec.Name + "' ");
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart();
|
|
Buf += Sec.Offset;
|
|
|
|
if (Sec.CompressionType == DebugCompressionType::None) {
|
|
std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
|
|
return;
|
|
}
|
|
|
|
if (Sec.CompressionType == DebugCompressionType::GNU) {
|
|
const char *Magic = "ZLIB";
|
|
memcpy(Buf, Magic, strlen(Magic));
|
|
Buf += strlen(Magic);
|
|
const uint64_t DecompressedSize =
|
|
support::endian::read64be(&Sec.DecompressedSize);
|
|
memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
|
|
Buf += sizeof(DecompressedSize);
|
|
} else {
|
|
Elf_Chdr_Impl<ELFT> Chdr;
|
|
Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
|
|
Chdr.ch_size = Sec.DecompressedSize;
|
|
Chdr.ch_addralign = Sec.DecompressedAlign;
|
|
memcpy(Buf, &Chdr, sizeof(Chdr));
|
|
Buf += sizeof(Chdr);
|
|
}
|
|
|
|
std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
|
|
}
|
|
|
|
CompressedSection::CompressedSection(const SectionBase &Sec,
|
|
DebugCompressionType CompressionType)
|
|
: SectionBase(Sec), CompressionType(CompressionType),
|
|
DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
|
|
|
|
if (!zlib::isAvailable()) {
|
|
CompressionType = DebugCompressionType::None;
|
|
return;
|
|
}
|
|
|
|
if (Error E = zlib::compress(
|
|
StringRef(reinterpret_cast<const char *>(OriginalData.data()),
|
|
OriginalData.size()),
|
|
CompressedData))
|
|
reportError(Name, std::move(E));
|
|
|
|
size_t ChdrSize;
|
|
if (CompressionType == DebugCompressionType::GNU) {
|
|
Name = ".z" + Sec.Name.substr(1);
|
|
ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
|
|
} else {
|
|
Flags |= ELF::SHF_COMPRESSED;
|
|
ChdrSize =
|
|
std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
|
|
sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
|
|
std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
|
|
sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
|
|
}
|
|
Size = ChdrSize + CompressedData.size();
|
|
Align = 8;
|
|
}
|
|
|
|
CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
|
|
uint64_t DecompressedSize,
|
|
uint64_t DecompressedAlign)
|
|
: CompressionType(DebugCompressionType::None),
|
|
DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
|
|
OriginalData = CompressedData;
|
|
}
|
|
|
|
void CompressedSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void StringTableSection::addString(StringRef Name) {
|
|
StrTabBuilder.add(Name);
|
|
Size = StrTabBuilder.getSize();
|
|
}
|
|
|
|
uint32_t StringTableSection::findIndex(StringRef Name) const {
|
|
return StrTabBuilder.getOffset(Name);
|
|
}
|
|
|
|
void StringTableSection::finalize() { StrTabBuilder.finalize(); }
|
|
|
|
void SectionWriter::visit(const StringTableSection &Sec) {
|
|
Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
|
|
}
|
|
|
|
void StringTableSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
auto *IndexesBuffer = reinterpret_cast<Elf_Word *>(Buf);
|
|
std::copy(std::begin(Sec.Indexes), std::end(Sec.Indexes), IndexesBuffer);
|
|
}
|
|
|
|
void SectionIndexSection::initialize(SectionTableRef SecTable) {
|
|
Size = 0;
|
|
setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
|
|
Link,
|
|
"Link field value " + Twine(Link) + " in section " + Name + " is invalid",
|
|
"Link field value " + Twine(Link) + " in section " + Name +
|
|
" is not a symbol table"));
|
|
Symbols->setShndxTable(this);
|
|
}
|
|
|
|
void SectionIndexSection::finalize() { Link = Symbols->Index; }
|
|
|
|
void SectionIndexSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
|
|
switch (Index) {
|
|
case SHN_ABS:
|
|
case SHN_COMMON:
|
|
return true;
|
|
}
|
|
if (Machine == EM_HEXAGON) {
|
|
switch (Index) {
|
|
case SHN_HEXAGON_SCOMMON:
|
|
case SHN_HEXAGON_SCOMMON_2:
|
|
case SHN_HEXAGON_SCOMMON_4:
|
|
case SHN_HEXAGON_SCOMMON_8:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Large indexes force us to clarify exactly what this function should do. This
|
|
// function should return the value that will appear in st_shndx when written
|
|
// out.
|
|
uint16_t Symbol::getShndx() const {
|
|
if (DefinedIn != nullptr) {
|
|
if (DefinedIn->Index >= SHN_LORESERVE)
|
|
return SHN_XINDEX;
|
|
return DefinedIn->Index;
|
|
}
|
|
switch (ShndxType) {
|
|
// This means that we don't have a defined section but we do need to
|
|
// output a legitimate section index.
|
|
case SYMBOL_SIMPLE_INDEX:
|
|
return SHN_UNDEF;
|
|
case SYMBOL_ABS:
|
|
case SYMBOL_COMMON:
|
|
case SYMBOL_HEXAGON_SCOMMON:
|
|
case SYMBOL_HEXAGON_SCOMMON_2:
|
|
case SYMBOL_HEXAGON_SCOMMON_4:
|
|
case SYMBOL_HEXAGON_SCOMMON_8:
|
|
case SYMBOL_XINDEX:
|
|
return static_cast<uint16_t>(ShndxType);
|
|
}
|
|
llvm_unreachable("Symbol with invalid ShndxType encountered");
|
|
}
|
|
|
|
void SymbolTableSection::assignIndices() {
|
|
uint32_t Index = 0;
|
|
for (auto &Sym : Symbols)
|
|
Sym->Index = Index++;
|
|
}
|
|
|
|
void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
|
|
SectionBase *DefinedIn, uint64_t Value,
|
|
uint8_t Visibility, uint16_t Shndx,
|
|
uint64_t Size) {
|
|
Symbol Sym;
|
|
Sym.Name = Name.str();
|
|
Sym.Binding = Bind;
|
|
Sym.Type = Type;
|
|
Sym.DefinedIn = DefinedIn;
|
|
if (DefinedIn != nullptr)
|
|
DefinedIn->HasSymbol = true;
|
|
if (DefinedIn == nullptr) {
|
|
if (Shndx >= SHN_LORESERVE)
|
|
Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
|
|
else
|
|
Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
|
|
}
|
|
Sym.Value = Value;
|
|
Sym.Visibility = Visibility;
|
|
Sym.Size = Size;
|
|
Sym.Index = Symbols.size();
|
|
Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
|
|
Size += this->EntrySize;
|
|
}
|
|
|
|
void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
|
|
if (SectionIndexTable == Sec)
|
|
SectionIndexTable = nullptr;
|
|
if (SymbolNames == Sec) {
|
|
error("String table " + SymbolNames->Name +
|
|
" cannot be removed because it is referenced by the symbol table " +
|
|
this->Name);
|
|
}
|
|
removeSymbols([Sec](const Symbol &Sym) { return Sym.DefinedIn == Sec; });
|
|
}
|
|
|
|
void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
|
|
std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
|
|
[Callable](SymPtr &Sym) { Callable(*Sym); });
|
|
std::stable_partition(
|
|
std::begin(Symbols), std::end(Symbols),
|
|
[](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
|
|
assignIndices();
|
|
}
|
|
|
|
void SymbolTableSection::removeSymbols(
|
|
function_ref<bool(const Symbol &)> ToRemove) {
|
|
Symbols.erase(
|
|
std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
|
|
[ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
|
|
std::end(Symbols));
|
|
Size = Symbols.size() * EntrySize;
|
|
assignIndices();
|
|
}
|
|
|
|
void SymbolTableSection::initialize(SectionTableRef SecTable) {
|
|
Size = 0;
|
|
setStrTab(SecTable.getSectionOfType<StringTableSection>(
|
|
Link,
|
|
"Symbol table has link index of " + Twine(Link) +
|
|
" which is not a valid index",
|
|
"Symbol table has link index of " + Twine(Link) +
|
|
" which is not a string table"));
|
|
}
|
|
|
|
void SymbolTableSection::finalize() {
|
|
// Make sure SymbolNames is finalized before getting name indexes.
|
|
SymbolNames->finalize();
|
|
|
|
uint32_t MaxLocalIndex = 0;
|
|
for (auto &Sym : Symbols) {
|
|
Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
|
|
if (Sym->Binding == STB_LOCAL)
|
|
MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
|
|
}
|
|
// Now we need to set the Link and Info fields.
|
|
Link = SymbolNames->Index;
|
|
Info = MaxLocalIndex + 1;
|
|
}
|
|
|
|
void SymbolTableSection::prepareForLayout() {
|
|
// Add all potential section indexes before file layout so that the section
|
|
// index section has the approprite size.
|
|
if (SectionIndexTable != nullptr) {
|
|
for (const auto &Sym : Symbols) {
|
|
if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
|
|
SectionIndexTable->addIndex(Sym->DefinedIn->Index);
|
|
else
|
|
SectionIndexTable->addIndex(SHN_UNDEF);
|
|
}
|
|
}
|
|
// Add all of our strings to SymbolNames so that SymbolNames has the right
|
|
// size before layout is decided.
|
|
for (auto &Sym : Symbols)
|
|
SymbolNames->addString(Sym->Name);
|
|
}
|
|
|
|
const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
|
|
if (Symbols.size() <= Index)
|
|
error("Invalid symbol index: " + Twine(Index));
|
|
return Symbols[Index].get();
|
|
}
|
|
|
|
Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
|
|
return const_cast<Symbol *>(
|
|
static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart();
|
|
Buf += Sec.Offset;
|
|
Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Buf);
|
|
// Loop though symbols setting each entry of the symbol table.
|
|
for (auto &Symbol : Sec.Symbols) {
|
|
Sym->st_name = Symbol->NameIndex;
|
|
Sym->st_value = Symbol->Value;
|
|
Sym->st_size = Symbol->Size;
|
|
Sym->st_other = Symbol->Visibility;
|
|
Sym->setBinding(Symbol->Binding);
|
|
Sym->setType(Symbol->Type);
|
|
Sym->st_shndx = Symbol->getShndx();
|
|
++Sym;
|
|
}
|
|
}
|
|
|
|
void SymbolTableSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
template <class SymTabType>
|
|
void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
|
|
const SectionBase *Sec) {
|
|
if (Symbols == Sec) {
|
|
error("Symbol table " + Symbols->Name +
|
|
" cannot be removed because it is "
|
|
"referenced by the relocation "
|
|
"section " +
|
|
this->Name);
|
|
}
|
|
}
|
|
|
|
template <class SymTabType>
|
|
void RelocSectionWithSymtabBase<SymTabType>::initialize(
|
|
SectionTableRef SecTable) {
|
|
if (Link != SHN_UNDEF)
|
|
setSymTab(SecTable.getSectionOfType<SymTabType>(
|
|
Link,
|
|
"Link field value " + Twine(Link) + " in section " + Name +
|
|
" is invalid",
|
|
"Link field value " + Twine(Link) + " in section " + Name +
|
|
" is not a symbol table"));
|
|
|
|
if (Info != SHN_UNDEF)
|
|
setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
|
|
" in section " + Name +
|
|
" is invalid"));
|
|
else
|
|
setSection(nullptr);
|
|
}
|
|
|
|
template <class SymTabType>
|
|
void RelocSectionWithSymtabBase<SymTabType>::finalize() {
|
|
this->Link = Symbols ? Symbols->Index : 0;
|
|
|
|
if (SecToApplyRel != nullptr)
|
|
this->Info = SecToApplyRel->Index;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
|
|
|
|
template <class ELFT>
|
|
static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
|
|
Rela.r_addend = Addend;
|
|
}
|
|
|
|
template <class RelRange, class T>
|
|
static void writeRel(const RelRange &Relocations, T *Buf) {
|
|
for (const auto &Reloc : Relocations) {
|
|
Buf->r_offset = Reloc.Offset;
|
|
setAddend(*Buf, Reloc.Addend);
|
|
Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
|
|
++Buf;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
if (Sec.Type == SHT_REL)
|
|
writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
|
|
else
|
|
writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
|
|
}
|
|
|
|
void RelocationSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void RelocationSection::removeSymbols(
|
|
function_ref<bool(const Symbol &)> ToRemove) {
|
|
for (const Relocation &Reloc : Relocations)
|
|
if (ToRemove(*Reloc.RelocSymbol))
|
|
error("not stripping symbol '" + Reloc.RelocSymbol->Name +
|
|
"' because it is named in a relocation");
|
|
}
|
|
|
|
void RelocationSection::markSymbols() {
|
|
for (const Relocation &Reloc : Relocations)
|
|
Reloc.RelocSymbol->Referenced = true;
|
|
}
|
|
|
|
void SectionWriter::visit(const DynamicRelocationSection &Sec) {
|
|
std::copy(std::begin(Sec.Contents), std::end(Sec.Contents),
|
|
Out.getBufferStart() + Sec.Offset);
|
|
}
|
|
|
|
void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void Section::removeSectionReferences(const SectionBase *Sec) {
|
|
if (LinkSection == Sec) {
|
|
error("Section " + LinkSection->Name +
|
|
" cannot be removed because it is "
|
|
"referenced by the section " +
|
|
this->Name);
|
|
}
|
|
}
|
|
|
|
void GroupSection::finalize() {
|
|
this->Info = Sym->Index;
|
|
this->Link = SymTab->Index;
|
|
}
|
|
|
|
void GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
|
|
if (ToRemove(*Sym)) {
|
|
error("Symbol " + Sym->Name +
|
|
" cannot be removed because it is "
|
|
"referenced by the section " +
|
|
this->Name + "[" + Twine(this->Index) + "]");
|
|
}
|
|
}
|
|
|
|
void GroupSection::markSymbols() {
|
|
if (Sym)
|
|
Sym->Referenced = true;
|
|
}
|
|
|
|
void Section::initialize(SectionTableRef SecTable) {
|
|
if (Link != ELF::SHN_UNDEF) {
|
|
LinkSection =
|
|
SecTable.getSection(Link, "Link field value " + Twine(Link) +
|
|
" in section " + Name + " is invalid");
|
|
if (LinkSection->Type == ELF::SHT_SYMTAB)
|
|
LinkSection = nullptr;
|
|
}
|
|
}
|
|
|
|
void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
|
|
|
|
void GnuDebugLinkSection::init(StringRef File, StringRef Data) {
|
|
FileName = sys::path::filename(File);
|
|
// The format for the .gnu_debuglink starts with the file name and is
|
|
// followed by a null terminator and then the CRC32 of the file. The CRC32
|
|
// should be 4 byte aligned. So we add the FileName size, a 1 for the null
|
|
// byte, and then finally push the size to alignment and add 4.
|
|
Size = alignTo(FileName.size() + 1, 4) + 4;
|
|
// The CRC32 will only be aligned if we align the whole section.
|
|
Align = 4;
|
|
Type = ELF::SHT_PROGBITS;
|
|
Name = ".gnu_debuglink";
|
|
// For sections not found in segments, OriginalOffset is only used to
|
|
// establish the order that sections should go in. By using the maximum
|
|
// possible offset we cause this section to wind up at the end.
|
|
OriginalOffset = std::numeric_limits<uint64_t>::max();
|
|
JamCRC crc;
|
|
crc.update(ArrayRef<char>(Data.data(), Data.size()));
|
|
// The CRC32 value needs to be complemented because the JamCRC dosn't
|
|
// finalize the CRC32 value. It also dosn't negate the initial CRC32 value
|
|
// but it starts by default at 0xFFFFFFFF which is the complement of zero.
|
|
CRC32 = ~crc.getCRC();
|
|
}
|
|
|
|
GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) {
|
|
// Read in the file to compute the CRC of it.
|
|
auto DebugOrErr = MemoryBuffer::getFile(File);
|
|
if (!DebugOrErr)
|
|
error("'" + File + "': " + DebugOrErr.getError().message());
|
|
auto Debug = std::move(*DebugOrErr);
|
|
init(File, Debug->getBuffer());
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
|
|
auto Buf = Out.getBufferStart() + Sec.Offset;
|
|
char *File = reinterpret_cast<char *>(Buf);
|
|
Elf_Word *CRC =
|
|
reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
|
|
*CRC = Sec.CRC32;
|
|
std::copy(std::begin(Sec.FileName), std::end(Sec.FileName), File);
|
|
}
|
|
|
|
void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
|
|
ELF::Elf32_Word *Buf =
|
|
reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
|
|
*Buf++ = Sec.FlagWord;
|
|
for (const auto *S : Sec.GroupMembers)
|
|
support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
|
|
}
|
|
|
|
void GroupSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
// Returns true IFF a section is wholly inside the range of a segment
|
|
static bool sectionWithinSegment(const SectionBase &Section,
|
|
const Segment &Segment) {
|
|
// If a section is empty it should be treated like it has a size of 1. This is
|
|
// to clarify the case when an empty section lies on a boundary between two
|
|
// segments and ensures that the section "belongs" to the second segment and
|
|
// not the first.
|
|
uint64_t SecSize = Section.Size ? Section.Size : 1;
|
|
return Segment.Offset <= Section.OriginalOffset &&
|
|
Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
|
|
}
|
|
|
|
// Returns true IFF a segment's original offset is inside of another segment's
|
|
// range.
|
|
static bool segmentOverlapsSegment(const Segment &Child,
|
|
const Segment &Parent) {
|
|
|
|
return Parent.OriginalOffset <= Child.OriginalOffset &&
|
|
Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
|
|
}
|
|
|
|
static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
|
|
// Any segment without a parent segment should come before a segment
|
|
// that has a parent segment.
|
|
if (A->OriginalOffset < B->OriginalOffset)
|
|
return true;
|
|
if (A->OriginalOffset > B->OriginalOffset)
|
|
return false;
|
|
return A->Index < B->Index;
|
|
}
|
|
|
|
static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
|
|
if (A->PAddr < B->PAddr)
|
|
return true;
|
|
if (A->PAddr > B->PAddr)
|
|
return false;
|
|
return A->Index < B->Index;
|
|
}
|
|
|
|
template <class ELFT> void BinaryELFBuilder<ELFT>::initFileHeader() {
|
|
Obj->Flags = 0x0;
|
|
Obj->Type = ET_REL;
|
|
Obj->Entry = 0x0;
|
|
Obj->Machine = EMachine;
|
|
Obj->Version = 1;
|
|
}
|
|
|
|
template <class ELFT> void BinaryELFBuilder<ELFT>::initHeaderSegment() {
|
|
Obj->ElfHdrSegment.Index = 0;
|
|
}
|
|
|
|
template <class ELFT> StringTableSection *BinaryELFBuilder<ELFT>::addStrTab() {
|
|
auto &StrTab = Obj->addSection<StringTableSection>();
|
|
StrTab.Name = ".strtab";
|
|
|
|
Obj->SectionNames = &StrTab;
|
|
return &StrTab;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolTableSection *
|
|
BinaryELFBuilder<ELFT>::addSymTab(StringTableSection *StrTab) {
|
|
auto &SymTab = Obj->addSection<SymbolTableSection>();
|
|
|
|
SymTab.Name = ".symtab";
|
|
SymTab.Link = StrTab->Index;
|
|
// TODO: Factor out dependence on ElfType here.
|
|
SymTab.EntrySize = sizeof(Elf_Sym);
|
|
|
|
// The symbol table always needs a null symbol
|
|
SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
|
|
|
|
Obj->SymbolTable = &SymTab;
|
|
return &SymTab;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void BinaryELFBuilder<ELFT>::addData(SymbolTableSection *SymTab) {
|
|
auto Data = ArrayRef<uint8_t>(
|
|
reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
|
|
MemBuf->getBufferSize());
|
|
auto &DataSection = Obj->addSection<Section>(Data);
|
|
DataSection.Name = ".data";
|
|
DataSection.Type = ELF::SHT_PROGBITS;
|
|
DataSection.Size = Data.size();
|
|
DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
|
|
|
|
std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
|
|
std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename),
|
|
[](char c) { return !isalnum(c); }, '_');
|
|
Twine Prefix = Twine("_binary_") + SanitizedFilename;
|
|
|
|
SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
|
|
/*Value=*/0, STV_DEFAULT, 0, 0);
|
|
SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
|
|
/*Value=*/DataSection.Size, STV_DEFAULT, 0, 0);
|
|
SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
|
|
/*Value=*/DataSection.Size, STV_DEFAULT, SHN_ABS, 0);
|
|
}
|
|
|
|
template <class ELFT> void BinaryELFBuilder<ELFT>::initSections() {
|
|
for (auto &Section : Obj->sections()) {
|
|
Section.initialize(Obj->sections());
|
|
}
|
|
}
|
|
|
|
template <class ELFT> std::unique_ptr<Object> BinaryELFBuilder<ELFT>::build() {
|
|
initFileHeader();
|
|
initHeaderSegment();
|
|
StringTableSection *StrTab = addStrTab();
|
|
SymbolTableSection *SymTab = addSymTab(StrTab);
|
|
initSections();
|
|
addData(SymTab);
|
|
|
|
return std::move(Obj);
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
|
|
for (auto &Parent : Obj.segments()) {
|
|
// Every segment will overlap with itself but we don't want a segment to
|
|
// be it's own parent so we avoid that situation.
|
|
if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
|
|
// We want a canonical "most parental" segment but this requires
|
|
// inspecting the ParentSegment.
|
|
if (compareSegmentsByOffset(&Parent, &Child))
|
|
if (Child.ParentSegment == nullptr ||
|
|
compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
|
|
Child.ParentSegment = &Parent;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::readProgramHeaders() {
|
|
uint32_t Index = 0;
|
|
for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
|
|
ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
|
|
(size_t)Phdr.p_filesz};
|
|
Segment &Seg = Obj.addSegment(Data);
|
|
Seg.Type = Phdr.p_type;
|
|
Seg.Flags = Phdr.p_flags;
|
|
Seg.OriginalOffset = Phdr.p_offset;
|
|
Seg.Offset = Phdr.p_offset;
|
|
Seg.VAddr = Phdr.p_vaddr;
|
|
Seg.PAddr = Phdr.p_paddr;
|
|
Seg.FileSize = Phdr.p_filesz;
|
|
Seg.MemSize = Phdr.p_memsz;
|
|
Seg.Align = Phdr.p_align;
|
|
Seg.Index = Index++;
|
|
for (auto &Section : Obj.sections()) {
|
|
if (sectionWithinSegment(Section, Seg)) {
|
|
Seg.addSection(&Section);
|
|
if (!Section.ParentSegment ||
|
|
Section.ParentSegment->Offset > Seg.Offset) {
|
|
Section.ParentSegment = &Seg;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
auto &ElfHdr = Obj.ElfHdrSegment;
|
|
ElfHdr.Index = Index++;
|
|
|
|
const auto &Ehdr = *ElfFile.getHeader();
|
|
auto &PrHdr = Obj.ProgramHdrSegment;
|
|
PrHdr.Type = PT_PHDR;
|
|
PrHdr.Flags = 0;
|
|
// The spec requires us to have p_vaddr % p_align == p_offset % p_align.
|
|
// Whereas this works automatically for ElfHdr, here OriginalOffset is
|
|
// always non-zero and to ensure the equation we assign the same value to
|
|
// VAddr as well.
|
|
PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff;
|
|
PrHdr.PAddr = 0;
|
|
PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
|
|
// The spec requires us to naturally align all the fields.
|
|
PrHdr.Align = sizeof(Elf_Addr);
|
|
PrHdr.Index = Index++;
|
|
|
|
// Now we do an O(n^2) loop through the segments in order to match up
|
|
// segments.
|
|
for (auto &Child : Obj.segments())
|
|
setParentSegment(Child);
|
|
setParentSegment(ElfHdr);
|
|
setParentSegment(PrHdr);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
|
|
auto SecTable = Obj.sections();
|
|
auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
|
|
GroupSec->Link,
|
|
"Link field value " + Twine(GroupSec->Link) + " in section " +
|
|
GroupSec->Name + " is invalid",
|
|
"Link field value " + Twine(GroupSec->Link) + " in section " +
|
|
GroupSec->Name + " is not a symbol table");
|
|
auto Sym = SymTab->getSymbolByIndex(GroupSec->Info);
|
|
if (!Sym)
|
|
error("Info field value " + Twine(GroupSec->Info) + " in section " +
|
|
GroupSec->Name + " is not a valid symbol index");
|
|
GroupSec->setSymTab(SymTab);
|
|
GroupSec->setSymbol(Sym);
|
|
if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
|
|
GroupSec->Contents.empty())
|
|
error("The content of the section " + GroupSec->Name + " is malformed");
|
|
const ELF::Elf32_Word *Word =
|
|
reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
|
|
const ELF::Elf32_Word *End =
|
|
Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
|
|
GroupSec->setFlagWord(*Word++);
|
|
for (; Word != End; ++Word) {
|
|
uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
|
|
GroupSec->addMember(SecTable.getSection(
|
|
Index, "Group member index " + Twine(Index) + " in section " +
|
|
GroupSec->Name + " is invalid"));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
|
|
const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
|
|
StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
|
|
ArrayRef<Elf_Word> ShndxData;
|
|
|
|
auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
|
|
for (const auto &Sym : Symbols) {
|
|
SectionBase *DefSection = nullptr;
|
|
StringRef Name = unwrapOrError(Sym.getName(StrTabData));
|
|
|
|
if (Sym.st_shndx == SHN_XINDEX) {
|
|
if (SymTab->getShndxTable() == nullptr)
|
|
error("Symbol '" + Name +
|
|
"' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists.");
|
|
if (ShndxData.data() == nullptr) {
|
|
const Elf_Shdr &ShndxSec =
|
|
*unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
|
|
ShndxData = unwrapOrError(
|
|
ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
|
|
if (ShndxData.size() != Symbols.size())
|
|
error("Symbol section index table does not have the same number of "
|
|
"entries as the symbol table.");
|
|
}
|
|
Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
|
|
DefSection = Obj.sections().getSection(
|
|
Index,
|
|
"Symbol '" + Name + "' has invalid section index " + Twine(Index));
|
|
} else if (Sym.st_shndx >= SHN_LORESERVE) {
|
|
if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
|
|
error(
|
|
"Symbol '" + Name +
|
|
"' has unsupported value greater than or equal to SHN_LORESERVE: " +
|
|
Twine(Sym.st_shndx));
|
|
}
|
|
} else if (Sym.st_shndx != SHN_UNDEF) {
|
|
DefSection = Obj.sections().getSection(
|
|
Sym.st_shndx, "Symbol '" + Name +
|
|
"' is defined has invalid section index " +
|
|
Twine(Sym.st_shndx));
|
|
}
|
|
|
|
SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
|
|
Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
|
|
|
|
template <class ELFT>
|
|
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
|
|
ToSet = Rela.r_addend;
|
|
}
|
|
|
|
template <class T>
|
|
static void initRelocations(RelocationSection *Relocs,
|
|
SymbolTableSection *SymbolTable, T RelRange) {
|
|
for (const auto &Rel : RelRange) {
|
|
Relocation ToAdd;
|
|
ToAdd.Offset = Rel.r_offset;
|
|
getAddend(ToAdd.Addend, Rel);
|
|
ToAdd.Type = Rel.getType(false);
|
|
ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
|
|
Relocs->addRelocation(ToAdd);
|
|
}
|
|
}
|
|
|
|
SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
|
|
if (Index == SHN_UNDEF || Index > Sections.size())
|
|
error(ErrMsg);
|
|
return Sections[Index - 1].get();
|
|
}
|
|
|
|
template <class T>
|
|
T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
|
|
Twine TypeErrMsg) {
|
|
if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
|
|
return Sec;
|
|
error(TypeErrMsg);
|
|
}
|
|
|
|
template <class ELFT>
|
|
SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
|
|
ArrayRef<uint8_t> Data;
|
|
switch (Shdr.sh_type) {
|
|
case SHT_REL:
|
|
case SHT_RELA:
|
|
if (Shdr.sh_flags & SHF_ALLOC) {
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<DynamicRelocationSection>(Data);
|
|
}
|
|
return Obj.addSection<RelocationSection>();
|
|
case SHT_STRTAB:
|
|
// If a string table is allocated we don't want to mess with it. That would
|
|
// mean altering the memory image. There are no special link types or
|
|
// anything so we can just use a Section.
|
|
if (Shdr.sh_flags & SHF_ALLOC) {
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<Section>(Data);
|
|
}
|
|
return Obj.addSection<StringTableSection>();
|
|
case SHT_HASH:
|
|
case SHT_GNU_HASH:
|
|
// Hash tables should refer to SHT_DYNSYM which we're not going to change.
|
|
// Because of this we don't need to mess with the hash tables either.
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<Section>(Data);
|
|
case SHT_GROUP:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<GroupSection>(Data);
|
|
case SHT_DYNSYM:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<DynamicSymbolTableSection>(Data);
|
|
case SHT_DYNAMIC:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<DynamicSection>(Data);
|
|
case SHT_SYMTAB: {
|
|
auto &SymTab = Obj.addSection<SymbolTableSection>();
|
|
Obj.SymbolTable = &SymTab;
|
|
return SymTab;
|
|
}
|
|
case SHT_SYMTAB_SHNDX: {
|
|
auto &ShndxSection = Obj.addSection<SectionIndexSection>();
|
|
Obj.SectionIndexTable = &ShndxSection;
|
|
return ShndxSection;
|
|
}
|
|
case SHT_NOBITS:
|
|
return Obj.addSection<Section>(Data);
|
|
default: {
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
|
|
if (isDataGnuCompressed(Data) || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
|
|
uint64_t DecompressedSize, DecompressedAlign;
|
|
std::tie(DecompressedSize, DecompressedAlign) =
|
|
getDecompressedSizeAndAlignment<ELFT>(Data);
|
|
return Obj.addSection<CompressedSection>(Data, DecompressedSize,
|
|
DecompressedAlign);
|
|
}
|
|
|
|
return Obj.addSection<Section>(Data);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
|
|
uint32_t Index = 0;
|
|
for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
|
|
if (Index == 0) {
|
|
++Index;
|
|
continue;
|
|
}
|
|
auto &Sec = makeSection(Shdr);
|
|
Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
|
|
Sec.Type = Shdr.sh_type;
|
|
Sec.Flags = Shdr.sh_flags;
|
|
Sec.Addr = Shdr.sh_addr;
|
|
Sec.Offset = Shdr.sh_offset;
|
|
Sec.OriginalOffset = Shdr.sh_offset;
|
|
Sec.Size = Shdr.sh_size;
|
|
Sec.Link = Shdr.sh_link;
|
|
Sec.Info = Shdr.sh_info;
|
|
Sec.Align = Shdr.sh_addralign;
|
|
Sec.EntrySize = Shdr.sh_entsize;
|
|
Sec.Index = Index++;
|
|
Sec.OriginalData =
|
|
ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
|
|
(Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
|
|
}
|
|
|
|
// If a section index table exists we'll need to initialize it before we
|
|
// initialize the symbol table because the symbol table might need to
|
|
// reference it.
|
|
if (Obj.SectionIndexTable)
|
|
Obj.SectionIndexTable->initialize(Obj.sections());
|
|
|
|
// Now that all of the sections have been added we can fill out some extra
|
|
// details about symbol tables. We need the symbol table filled out before
|
|
// any relocations.
|
|
if (Obj.SymbolTable) {
|
|
Obj.SymbolTable->initialize(Obj.sections());
|
|
initSymbolTable(Obj.SymbolTable);
|
|
}
|
|
|
|
// Now that all sections and symbols have been added we can add
|
|
// relocations that reference symbols and set the link and info fields for
|
|
// relocation sections.
|
|
for (auto &Section : Obj.sections()) {
|
|
if (&Section == Obj.SymbolTable)
|
|
continue;
|
|
Section.initialize(Obj.sections());
|
|
if (auto RelSec = dyn_cast<RelocationSection>(&Section)) {
|
|
auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
|
|
if (RelSec->Type == SHT_REL)
|
|
initRelocations(RelSec, Obj.SymbolTable,
|
|
unwrapOrError(ElfFile.rels(Shdr)));
|
|
else
|
|
initRelocations(RelSec, Obj.SymbolTable,
|
|
unwrapOrError(ElfFile.relas(Shdr)));
|
|
} else if (auto GroupSec = dyn_cast<GroupSection>(&Section)) {
|
|
initGroupSection(GroupSec);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::build() {
|
|
const auto &Ehdr = *ElfFile.getHeader();
|
|
|
|
Obj.Type = Ehdr.e_type;
|
|
Obj.Machine = Ehdr.e_machine;
|
|
Obj.Version = Ehdr.e_version;
|
|
Obj.Entry = Ehdr.e_entry;
|
|
Obj.Flags = Ehdr.e_flags;
|
|
|
|
readSectionHeaders();
|
|
readProgramHeaders();
|
|
|
|
uint32_t ShstrIndex = Ehdr.e_shstrndx;
|
|
if (ShstrIndex == SHN_XINDEX)
|
|
ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;
|
|
|
|
Obj.SectionNames =
|
|
Obj.sections().template getSectionOfType<StringTableSection>(
|
|
ShstrIndex,
|
|
"e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
|
|
" in elf header " + " is invalid",
|
|
"e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
|
|
" in elf header " + " is not a string table");
|
|
}
|
|
|
|
// A generic size function which computes sizes of any random access range.
|
|
template <class R> size_t size(R &&Range) {
|
|
return static_cast<size_t>(std::end(Range) - std::begin(Range));
|
|
}
|
|
|
|
Writer::~Writer() {}
|
|
|
|
Reader::~Reader() {}
|
|
|
|
std::unique_ptr<Object> BinaryReader::create() const {
|
|
if (MInfo.Is64Bit)
|
|
return MInfo.IsLittleEndian
|
|
? BinaryELFBuilder<ELF64LE>(MInfo.EMachine, MemBuf).build()
|
|
: BinaryELFBuilder<ELF64BE>(MInfo.EMachine, MemBuf).build();
|
|
else
|
|
return MInfo.IsLittleEndian
|
|
? BinaryELFBuilder<ELF32LE>(MInfo.EMachine, MemBuf).build()
|
|
: BinaryELFBuilder<ELF32BE>(MInfo.EMachine, MemBuf).build();
|
|
}
|
|
|
|
std::unique_ptr<Object> ELFReader::create() const {
|
|
auto Obj = llvm::make_unique<Object>();
|
|
if (auto *o = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
|
|
ELFBuilder<ELF32LE> Builder(*o, *Obj);
|
|
Builder.build();
|
|
return Obj;
|
|
} else if (auto *o = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
|
|
ELFBuilder<ELF64LE> Builder(*o, *Obj);
|
|
Builder.build();
|
|
return Obj;
|
|
} else if (auto *o = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
|
|
ELFBuilder<ELF32BE> Builder(*o, *Obj);
|
|
Builder.build();
|
|
return Obj;
|
|
} else if (auto *o = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
|
|
ELFBuilder<ELF64BE> Builder(*o, *Obj);
|
|
Builder.build();
|
|
return Obj;
|
|
}
|
|
error("Invalid file type");
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
|
|
uint8_t *B = Buf.getBufferStart();
|
|
Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(B);
|
|
std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
|
|
Ehdr.e_ident[EI_MAG0] = 0x7f;
|
|
Ehdr.e_ident[EI_MAG1] = 'E';
|
|
Ehdr.e_ident[EI_MAG2] = 'L';
|
|
Ehdr.e_ident[EI_MAG3] = 'F';
|
|
Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
|
|
Ehdr.e_ident[EI_DATA] =
|
|
ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
|
|
Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
|
|
Ehdr.e_ident[EI_OSABI] = ELFOSABI_NONE;
|
|
Ehdr.e_ident[EI_ABIVERSION] = 0;
|
|
|
|
Ehdr.e_type = Obj.Type;
|
|
Ehdr.e_machine = Obj.Machine;
|
|
Ehdr.e_version = Obj.Version;
|
|
Ehdr.e_entry = Obj.Entry;
|
|
Ehdr.e_phnum = size(Obj.segments());
|
|
Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
|
|
Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
|
|
Ehdr.e_flags = Obj.Flags;
|
|
Ehdr.e_ehsize = sizeof(Elf_Ehdr);
|
|
if (WriteSectionHeaders && size(Obj.sections()) != 0) {
|
|
Ehdr.e_shentsize = sizeof(Elf_Shdr);
|
|
Ehdr.e_shoff = Obj.SHOffset;
|
|
// """
|
|
// If the number of sections is greater than or equal to
|
|
// SHN_LORESERVE (0xff00), this member has the value zero and the actual
|
|
// number of section header table entries is contained in the sh_size field
|
|
// of the section header at index 0.
|
|
// """
|
|
auto Shnum = size(Obj.sections()) + 1;
|
|
if (Shnum >= SHN_LORESERVE)
|
|
Ehdr.e_shnum = 0;
|
|
else
|
|
Ehdr.e_shnum = Shnum;
|
|
// """
|
|
// If the section name string table section index is greater than or equal
|
|
// to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
|
|
// and the actual index of the section name string table section is
|
|
// contained in the sh_link field of the section header at index 0.
|
|
// """
|
|
if (Obj.SectionNames->Index >= SHN_LORESERVE)
|
|
Ehdr.e_shstrndx = SHN_XINDEX;
|
|
else
|
|
Ehdr.e_shstrndx = Obj.SectionNames->Index;
|
|
} else {
|
|
Ehdr.e_shentsize = 0;
|
|
Ehdr.e_shoff = 0;
|
|
Ehdr.e_shnum = 0;
|
|
Ehdr.e_shstrndx = 0;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
|
|
for (auto &Seg : Obj.segments())
|
|
writePhdr(Seg);
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
|
|
uint8_t *B = Buf.getBufferStart() + Obj.SHOffset;
|
|
// This reference serves to write the dummy section header at the begining
|
|
// of the file. It is not used for anything else
|
|
Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
|
|
Shdr.sh_name = 0;
|
|
Shdr.sh_type = SHT_NULL;
|
|
Shdr.sh_flags = 0;
|
|
Shdr.sh_addr = 0;
|
|
Shdr.sh_offset = 0;
|
|
// See writeEhdr for why we do this.
|
|
uint64_t Shnum = size(Obj.sections()) + 1;
|
|
if (Shnum >= SHN_LORESERVE)
|
|
Shdr.sh_size = Shnum;
|
|
else
|
|
Shdr.sh_size = 0;
|
|
// See writeEhdr for why we do this.
|
|
if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
|
|
Shdr.sh_link = Obj.SectionNames->Index;
|
|
else
|
|
Shdr.sh_link = 0;
|
|
Shdr.sh_info = 0;
|
|
Shdr.sh_addralign = 0;
|
|
Shdr.sh_entsize = 0;
|
|
|
|
for (auto &Sec : Obj.sections())
|
|
writeShdr(Sec);
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
|
|
for (auto &Sec : Obj.sections())
|
|
Sec.accept(*SecWriter);
|
|
}
|
|
|
|
void Object::removeSections(std::function<bool(const SectionBase &)> ToRemove) {
|
|
|
|
auto Iter = std::stable_partition(
|
|
std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
|
|
if (ToRemove(*Sec))
|
|
return false;
|
|
if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
|
|
if (auto ToRelSec = RelSec->getSection())
|
|
return !ToRemove(*ToRelSec);
|
|
}
|
|
return true;
|
|
});
|
|
if (SymbolTable != nullptr && ToRemove(*SymbolTable))
|
|
SymbolTable = nullptr;
|
|
if (SectionNames != nullptr && ToRemove(*SectionNames))
|
|
SectionNames = nullptr;
|
|
if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
|
|
SectionIndexTable = nullptr;
|
|
// Now make sure there are no remaining references to the sections that will
|
|
// be removed. Sometimes it is impossible to remove a reference so we emit
|
|
// an error here instead.
|
|
for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
|
|
for (auto &Segment : Segments)
|
|
Segment->removeSection(RemoveSec.get());
|
|
for (auto &KeepSec : make_range(std::begin(Sections), Iter))
|
|
KeepSec->removeSectionReferences(RemoveSec.get());
|
|
}
|
|
// Now finally get rid of them all togethor.
|
|
Sections.erase(Iter, std::end(Sections));
|
|
}
|
|
|
|
void Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
|
|
if (!SymbolTable)
|
|
return;
|
|
|
|
for (const SecPtr &Sec : Sections)
|
|
Sec->removeSymbols(ToRemove);
|
|
}
|
|
|
|
void Object::sortSections() {
|
|
// Put all sections in offset order. Maintain the ordering as closely as
|
|
// possible while meeting that demand however.
|
|
auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
|
|
return A->OriginalOffset < B->OriginalOffset;
|
|
};
|
|
std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
|
|
CompareSections);
|
|
}
|
|
|
|
static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
|
|
// Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
|
|
if (Align == 0)
|
|
Align = 1;
|
|
auto Diff =
|
|
static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
|
|
// We only want to add to Offset, however, so if Diff < 0 we can add Align and
|
|
// (Offset + Diff) & -Align == Addr & -Align will still hold.
|
|
if (Diff < 0)
|
|
Diff += Align;
|
|
return Offset + Diff;
|
|
}
|
|
|
|
// Orders segments such that if x = y->ParentSegment then y comes before x.
|
|
static void OrderSegments(std::vector<Segment *> &Segments) {
|
|
std::stable_sort(std::begin(Segments), std::end(Segments),
|
|
compareSegmentsByOffset);
|
|
}
|
|
|
|
// This function finds a consistent layout for a list of segments starting from
|
|
// an Offset. It assumes that Segments have been sorted by OrderSegments and
|
|
// returns an Offset one past the end of the last segment.
|
|
static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
|
|
uint64_t Offset) {
|
|
assert(std::is_sorted(std::begin(Segments), std::end(Segments),
|
|
compareSegmentsByOffset));
|
|
// The only way a segment should move is if a section was between two
|
|
// segments and that section was removed. If that section isn't in a segment
|
|
// then it's acceptable, but not ideal, to simply move it to after the
|
|
// segments. So we can simply layout segments one after the other accounting
|
|
// for alignment.
|
|
for (auto &Segment : Segments) {
|
|
// We assume that segments have been ordered by OriginalOffset and Index
|
|
// such that a parent segment will always come before a child segment in
|
|
// OrderedSegments. This means that the Offset of the ParentSegment should
|
|
// already be set and we can set our offset relative to it.
|
|
if (Segment->ParentSegment != nullptr) {
|
|
auto Parent = Segment->ParentSegment;
|
|
Segment->Offset =
|
|
Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
|
|
} else {
|
|
Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
|
|
Segment->Offset = Offset;
|
|
}
|
|
Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
// This function finds a consistent layout for a list of sections. It assumes
|
|
// that the ->ParentSegment of each section has already been laid out. The
|
|
// supplied starting Offset is used for the starting offset of any section that
|
|
// does not have a ParentSegment. It returns either the offset given if all
|
|
// sections had a ParentSegment or an offset one past the last section if there
|
|
// was a section that didn't have a ParentSegment.
|
|
template <class Range>
|
|
static uint64_t LayoutSections(Range Sections, uint64_t Offset) {
|
|
// Now the offset of every segment has been set we can assign the offsets
|
|
// of each section. For sections that are covered by a segment we should use
|
|
// the segment's original offset and the section's original offset to compute
|
|
// the offset from the start of the segment. Using the offset from the start
|
|
// of the segment we can assign a new offset to the section. For sections not
|
|
// covered by segments we can just bump Offset to the next valid location.
|
|
uint32_t Index = 1;
|
|
for (auto &Section : Sections) {
|
|
Section.Index = Index++;
|
|
if (Section.ParentSegment != nullptr) {
|
|
auto Segment = *Section.ParentSegment;
|
|
Section.Offset =
|
|
Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset);
|
|
} else {
|
|
Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align);
|
|
Section.Offset = Offset;
|
|
if (Section.Type != SHT_NOBITS)
|
|
Offset += Section.Size;
|
|
}
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
|
|
auto &ElfHdr = Obj.ElfHdrSegment;
|
|
ElfHdr.Type = PT_PHDR;
|
|
ElfHdr.Flags = 0;
|
|
ElfHdr.OriginalOffset = ElfHdr.Offset = 0;
|
|
ElfHdr.VAddr = 0;
|
|
ElfHdr.PAddr = 0;
|
|
ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
|
|
ElfHdr.Align = 0;
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
|
|
// We need a temporary list of segments that has a special order to it
|
|
// so that we know that anytime ->ParentSegment is set that segment has
|
|
// already had its offset properly set.
|
|
std::vector<Segment *> OrderedSegments;
|
|
for (auto &Segment : Obj.segments())
|
|
OrderedSegments.push_back(&Segment);
|
|
OrderedSegments.push_back(&Obj.ElfHdrSegment);
|
|
OrderedSegments.push_back(&Obj.ProgramHdrSegment);
|
|
OrderSegments(OrderedSegments);
|
|
// Offset is used as the start offset of the first segment to be laid out.
|
|
// Since the ELF Header (ElfHdrSegment) must be at the start of the file,
|
|
// we start at offset 0.
|
|
uint64_t Offset = 0;
|
|
Offset = LayoutSegments(OrderedSegments, Offset);
|
|
Offset = LayoutSections(Obj.sections(), Offset);
|
|
// If we need to write the section header table out then we need to align the
|
|
// Offset so that SHOffset is valid.
|
|
if (WriteSectionHeaders)
|
|
Offset = alignTo(Offset, sizeof(Elf_Addr));
|
|
Obj.SHOffset = Offset;
|
|
}
|
|
|
|
template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
|
|
// We already have the section header offset so we can calculate the total
|
|
// size by just adding up the size of each section header.
|
|
auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
|
|
return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) +
|
|
NullSectionSize;
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::write() {
|
|
writeEhdr();
|
|
writePhdrs();
|
|
writeSectionData();
|
|
if (WriteSectionHeaders)
|
|
writeShdrs();
|
|
if (auto E = Buf.commit())
|
|
reportError(Buf.getName(), errorToErrorCode(std::move(E)));
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::finalize() {
|
|
// It could happen that SectionNames has been removed and yet the user wants
|
|
// a section header table output. We need to throw an error if a user tries
|
|
// to do that.
|
|
if (Obj.SectionNames == nullptr && WriteSectionHeaders)
|
|
error("Cannot write section header table because section header string "
|
|
"table was removed.");
|
|
|
|
Obj.sortSections();
|
|
|
|
// We need to assign indexes before we perform layout because we need to know
|
|
// if we need large indexes or not. We can assign indexes first and check as
|
|
// we go to see if we will actully need large indexes.
|
|
bool NeedsLargeIndexes = false;
|
|
if (size(Obj.sections()) >= SHN_LORESERVE) {
|
|
auto Sections = Obj.sections();
|
|
NeedsLargeIndexes =
|
|
std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
|
|
[](const SectionBase &Sec) { return Sec.HasSymbol; });
|
|
// TODO: handle case where only one section needs the large index table but
|
|
// only needs it because the large index table hasn't been removed yet.
|
|
}
|
|
|
|
if (NeedsLargeIndexes) {
|
|
// This means we definitely need to have a section index table but if we
|
|
// already have one then we should use it instead of making a new one.
|
|
if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
|
|
// Addition of a section to the end does not invalidate the indexes of
|
|
// other sections and assigns the correct index to the new section.
|
|
auto &Shndx = Obj.addSection<SectionIndexSection>();
|
|
Obj.SymbolTable->setShndxTable(&Shndx);
|
|
Shndx.setSymTab(Obj.SymbolTable);
|
|
}
|
|
} else {
|
|
// Since we don't need SectionIndexTable we should remove it and all
|
|
// references to it.
|
|
if (Obj.SectionIndexTable != nullptr) {
|
|
Obj.removeSections([this](const SectionBase &Sec) {
|
|
return &Sec == Obj.SectionIndexTable;
|
|
});
|
|
}
|
|
}
|
|
|
|
// Make sure we add the names of all the sections. Importantly this must be
|
|
// done after we decide to add or remove SectionIndexes.
|
|
if (Obj.SectionNames != nullptr)
|
|
for (const auto &Section : Obj.sections()) {
|
|
Obj.SectionNames->addString(Section.Name);
|
|
}
|
|
|
|
initEhdrSegment();
|
|
// Before we can prepare for layout the indexes need to be finalized.
|
|
uint64_t Index = 0;
|
|
for (auto &Sec : Obj.sections())
|
|
Sec.Index = Index++;
|
|
|
|
// The symbol table does not update all other sections on update. For
|
|
// instance, symbol names are not added as new symbols are added. This means
|
|
// that some sections, like .strtab, don't yet have their final size.
|
|
if (Obj.SymbolTable != nullptr)
|
|
Obj.SymbolTable->prepareForLayout();
|
|
|
|
assignOffsets();
|
|
|
|
// Finalize SectionNames first so that we can assign name indexes.
|
|
if (Obj.SectionNames != nullptr)
|
|
Obj.SectionNames->finalize();
|
|
// Finally now that all offsets and indexes have been set we can finalize any
|
|
// remaining issues.
|
|
uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr);
|
|
for (auto &Section : Obj.sections()) {
|
|
Section.HeaderOffset = Offset;
|
|
Offset += sizeof(Elf_Shdr);
|
|
if (WriteSectionHeaders)
|
|
Section.NameIndex = Obj.SectionNames->findIndex(Section.Name);
|
|
Section.finalize();
|
|
}
|
|
|
|
Buf.allocate(totalSize());
|
|
SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(Buf);
|
|
}
|
|
|
|
void BinaryWriter::write() {
|
|
for (auto &Section : Obj.sections()) {
|
|
if ((Section.Flags & SHF_ALLOC) == 0)
|
|
continue;
|
|
Section.accept(*SecWriter);
|
|
}
|
|
if (auto E = Buf.commit())
|
|
reportError(Buf.getName(), errorToErrorCode(std::move(E)));
|
|
}
|
|
|
|
void BinaryWriter::finalize() {
|
|
// TODO: Create a filter range to construct OrderedSegments from so that this
|
|
// code can be deduped with assignOffsets above. This should also solve the
|
|
// todo below for LayoutSections.
|
|
// We need a temporary list of segments that has a special order to it
|
|
// so that we know that anytime ->ParentSegment is set that segment has
|
|
// already had it's offset properly set. We only want to consider the segments
|
|
// that will affect layout of allocated sections so we only add those.
|
|
std::vector<Segment *> OrderedSegments;
|
|
for (auto &Section : Obj.sections()) {
|
|
if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) {
|
|
OrderedSegments.push_back(Section.ParentSegment);
|
|
}
|
|
}
|
|
|
|
// For binary output, we're going to use physical addresses instead of
|
|
// virtual addresses, since a binary output is used for cases like ROM
|
|
// loading and physical addresses are intended for ROM loading.
|
|
// However, if no segment has a physical address, we'll fallback to using
|
|
// virtual addresses for all.
|
|
if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments),
|
|
[](const Segment *Segment) { return Segment->PAddr == 0; }))
|
|
for (const auto &Segment : OrderedSegments)
|
|
Segment->PAddr = Segment->VAddr;
|
|
|
|
std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments),
|
|
compareSegmentsByPAddr);
|
|
|
|
// Because we add a ParentSegment for each section we might have duplicate
|
|
// segments in OrderedSegments. If there were duplicates then LayoutSegments
|
|
// would do very strange things.
|
|
auto End =
|
|
std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
|
|
OrderedSegments.erase(End, std::end(OrderedSegments));
|
|
|
|
uint64_t Offset = 0;
|
|
|
|
// Modify the first segment so that there is no gap at the start. This allows
|
|
// our layout algorithm to proceed as expected while not out writing out the
|
|
// gap at the start.
|
|
if (!OrderedSegments.empty()) {
|
|
auto Seg = OrderedSegments[0];
|
|
auto Sec = Seg->firstSection();
|
|
auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
|
|
Seg->OriginalOffset += Diff;
|
|
// The size needs to be shrunk as well.
|
|
Seg->FileSize -= Diff;
|
|
// The PAddr needs to be increased to remove the gap before the first
|
|
// section.
|
|
Seg->PAddr += Diff;
|
|
uint64_t LowestPAddr = Seg->PAddr;
|
|
for (auto &Segment : OrderedSegments) {
|
|
Segment->Offset = Segment->PAddr - LowestPAddr;
|
|
Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
|
|
}
|
|
}
|
|
|
|
// TODO: generalize LayoutSections to take a range. Pass a special range
|
|
// constructed from an iterator that skips values for which a predicate does
|
|
// not hold. Then pass such a range to LayoutSections instead of constructing
|
|
// AllocatedSections here.
|
|
std::vector<SectionBase *> AllocatedSections;
|
|
for (auto &Section : Obj.sections()) {
|
|
if ((Section.Flags & SHF_ALLOC) == 0)
|
|
continue;
|
|
AllocatedSections.push_back(&Section);
|
|
}
|
|
LayoutSections(make_pointee_range(AllocatedSections), Offset);
|
|
|
|
// Now that every section has been laid out we just need to compute the total
|
|
// file size. This might not be the same as the offset returned by
|
|
// LayoutSections, because we want to truncate the last segment to the end of
|
|
// its last section, to match GNU objcopy's behaviour.
|
|
TotalSize = 0;
|
|
for (const auto &Section : AllocatedSections) {
|
|
if (Section->Type != SHT_NOBITS)
|
|
TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
|
|
}
|
|
|
|
Buf.allocate(TotalSize);
|
|
SecWriter = llvm::make_unique<BinarySectionWriter>(Buf);
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace objcopy {
|
|
|
|
template class BinaryELFBuilder<ELF64LE>;
|
|
template class BinaryELFBuilder<ELF64BE>;
|
|
template class BinaryELFBuilder<ELF32LE>;
|
|
template class BinaryELFBuilder<ELF32BE>;
|
|
|
|
template class ELFBuilder<ELF64LE>;
|
|
template class ELFBuilder<ELF64BE>;
|
|
template class ELFBuilder<ELF32LE>;
|
|
template class ELFBuilder<ELF32BE>;
|
|
|
|
template class ELFWriter<ELF64LE>;
|
|
template class ELFWriter<ELF64BE>;
|
|
template class ELFWriter<ELF32LE>;
|
|
template class ELFWriter<ELF32BE>;
|
|
} // end namespace objcopy
|
|
} // end namespace llvm
|