mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
7a1762f190
Currently all AA analyses marked as preserved are stateless, not taking into account their dependent analyses. So there's no need to mark them as preserved, they won't be invalidated unless their analyses are. SCEVAAResults was the one exception to this, it was treated like a typical analysis result. Make it like the others and don't invalidate unless SCEV is invalidated. Reviewed By: asbirlea Differential Revision: https://reviews.llvm.org/D102032
928 lines
30 KiB
C++
928 lines
30 KiB
C++
//===- GVNSink.cpp - sink expressions into successors ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file GVNSink.cpp
|
|
/// This pass attempts to sink instructions into successors, reducing static
|
|
/// instruction count and enabling if-conversion.
|
|
///
|
|
/// We use a variant of global value numbering to decide what can be sunk.
|
|
/// Consider:
|
|
///
|
|
/// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ]
|
|
/// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ]
|
|
/// \ /
|
|
/// [ %e = phi i32 %a2, %c2 ]
|
|
/// [ add i32 %e, 4 ]
|
|
///
|
|
///
|
|
/// GVN would number %a1 and %c1 differently because they compute different
|
|
/// results - the VN of an instruction is a function of its opcode and the
|
|
/// transitive closure of its operands. This is the key property for hoisting
|
|
/// and CSE.
|
|
///
|
|
/// What we want when sinking however is for a numbering that is a function of
|
|
/// the *uses* of an instruction, which allows us to answer the question "if I
|
|
/// replace %a1 with %c1, will it contribute in an equivalent way to all
|
|
/// successive instructions?". The PostValueTable class in GVN provides this
|
|
/// mapping.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/ArrayRecycler.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/Transforms/Scalar/GVNExpression.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "gvn-sink"
|
|
|
|
STATISTIC(NumRemoved, "Number of instructions removed");
|
|
|
|
namespace llvm {
|
|
namespace GVNExpression {
|
|
|
|
LLVM_DUMP_METHOD void Expression::dump() const {
|
|
print(dbgs());
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
} // end namespace GVNExpression
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
|
|
static bool isMemoryInst(const Instruction *I) {
|
|
return isa<LoadInst>(I) || isa<StoreInst>(I) ||
|
|
(isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
|
|
(isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
|
|
}
|
|
|
|
/// Iterates through instructions in a set of blocks in reverse order from the
|
|
/// first non-terminator. For example (assume all blocks have size n):
|
|
/// LockstepReverseIterator I([B1, B2, B3]);
|
|
/// *I-- = [B1[n], B2[n], B3[n]];
|
|
/// *I-- = [B1[n-1], B2[n-1], B3[n-1]];
|
|
/// *I-- = [B1[n-2], B2[n-2], B3[n-2]];
|
|
/// ...
|
|
///
|
|
/// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
|
|
/// to
|
|
/// determine which blocks are still going and the order they appear in the
|
|
/// list returned by operator*.
|
|
class LockstepReverseIterator {
|
|
ArrayRef<BasicBlock *> Blocks;
|
|
SmallSetVector<BasicBlock *, 4> ActiveBlocks;
|
|
SmallVector<Instruction *, 4> Insts;
|
|
bool Fail;
|
|
|
|
public:
|
|
LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
|
|
reset();
|
|
}
|
|
|
|
void reset() {
|
|
Fail = false;
|
|
ActiveBlocks.clear();
|
|
for (BasicBlock *BB : Blocks)
|
|
ActiveBlocks.insert(BB);
|
|
Insts.clear();
|
|
for (BasicBlock *BB : Blocks) {
|
|
if (BB->size() <= 1) {
|
|
// Block wasn't big enough - only contained a terminator.
|
|
ActiveBlocks.remove(BB);
|
|
continue;
|
|
}
|
|
Insts.push_back(BB->getTerminator()->getPrevNode());
|
|
}
|
|
if (Insts.empty())
|
|
Fail = true;
|
|
}
|
|
|
|
bool isValid() const { return !Fail; }
|
|
ArrayRef<Instruction *> operator*() const { return Insts; }
|
|
|
|
// Note: This needs to return a SmallSetVector as the elements of
|
|
// ActiveBlocks will be later copied to Blocks using std::copy. The
|
|
// resultant order of elements in Blocks needs to be deterministic.
|
|
// Using SmallPtrSet instead causes non-deterministic order while
|
|
// copying. And we cannot simply sort Blocks as they need to match the
|
|
// corresponding Values.
|
|
SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
|
|
|
|
void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
|
|
for (auto II = Insts.begin(); II != Insts.end();) {
|
|
if (!llvm::is_contained(Blocks, (*II)->getParent())) {
|
|
ActiveBlocks.remove((*II)->getParent());
|
|
II = Insts.erase(II);
|
|
} else {
|
|
++II;
|
|
}
|
|
}
|
|
}
|
|
|
|
void operator--() {
|
|
if (Fail)
|
|
return;
|
|
SmallVector<Instruction *, 4> NewInsts;
|
|
for (auto *Inst : Insts) {
|
|
if (Inst == &Inst->getParent()->front())
|
|
ActiveBlocks.remove(Inst->getParent());
|
|
else
|
|
NewInsts.push_back(Inst->getPrevNode());
|
|
}
|
|
if (NewInsts.empty()) {
|
|
Fail = true;
|
|
return;
|
|
}
|
|
Insts = NewInsts;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Candidate solution for sinking. There may be different ways to
|
|
/// sink instructions, differing in the number of instructions sunk,
|
|
/// the number of predecessors sunk from and the number of PHIs
|
|
/// required.
|
|
struct SinkingInstructionCandidate {
|
|
unsigned NumBlocks;
|
|
unsigned NumInstructions;
|
|
unsigned NumPHIs;
|
|
unsigned NumMemoryInsts;
|
|
int Cost = -1;
|
|
SmallVector<BasicBlock *, 4> Blocks;
|
|
|
|
void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
|
|
unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
|
|
unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
|
|
Cost = (NumInstructions * (NumBlocks - 1)) -
|
|
(NumExtraPHIs *
|
|
NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
|
|
- SplitEdgeCost;
|
|
}
|
|
|
|
bool operator>(const SinkingInstructionCandidate &Other) const {
|
|
return Cost > Other.Cost;
|
|
}
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
|
|
OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
|
|
<< " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Describes a PHI node that may or may not exist. These track the PHIs
|
|
/// that must be created if we sunk a sequence of instructions. It provides
|
|
/// a hash function for efficient equality comparisons.
|
|
class ModelledPHI {
|
|
SmallVector<Value *, 4> Values;
|
|
SmallVector<BasicBlock *, 4> Blocks;
|
|
|
|
public:
|
|
ModelledPHI() = default;
|
|
|
|
ModelledPHI(const PHINode *PN) {
|
|
// BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
|
|
SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
|
|
for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
|
|
Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
|
|
llvm::sort(Ops);
|
|
for (auto &P : Ops) {
|
|
Blocks.push_back(P.first);
|
|
Values.push_back(P.second);
|
|
}
|
|
}
|
|
|
|
/// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
|
|
/// without the same ID.
|
|
/// \note This is specifically for DenseMapInfo - do not use this!
|
|
static ModelledPHI createDummy(size_t ID) {
|
|
ModelledPHI M;
|
|
M.Values.push_back(reinterpret_cast<Value*>(ID));
|
|
return M;
|
|
}
|
|
|
|
/// Create a PHI from an array of incoming values and incoming blocks.
|
|
template <typename VArray, typename BArray>
|
|
ModelledPHI(const VArray &V, const BArray &B) {
|
|
llvm::copy(V, std::back_inserter(Values));
|
|
llvm::copy(B, std::back_inserter(Blocks));
|
|
}
|
|
|
|
/// Create a PHI from [I[OpNum] for I in Insts].
|
|
template <typename BArray>
|
|
ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
|
|
llvm::copy(B, std::back_inserter(Blocks));
|
|
for (auto *I : Insts)
|
|
Values.push_back(I->getOperand(OpNum));
|
|
}
|
|
|
|
/// Restrict the PHI's contents down to only \c NewBlocks.
|
|
/// \c NewBlocks must be a subset of \c this->Blocks.
|
|
void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
|
|
auto BI = Blocks.begin();
|
|
auto VI = Values.begin();
|
|
while (BI != Blocks.end()) {
|
|
assert(VI != Values.end());
|
|
if (!llvm::is_contained(NewBlocks, *BI)) {
|
|
BI = Blocks.erase(BI);
|
|
VI = Values.erase(VI);
|
|
} else {
|
|
++BI;
|
|
++VI;
|
|
}
|
|
}
|
|
assert(Blocks.size() == NewBlocks.size());
|
|
}
|
|
|
|
ArrayRef<Value *> getValues() const { return Values; }
|
|
|
|
bool areAllIncomingValuesSame() const {
|
|
return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
|
|
}
|
|
|
|
bool areAllIncomingValuesSameType() const {
|
|
return llvm::all_of(
|
|
Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
|
|
}
|
|
|
|
bool areAnyIncomingValuesConstant() const {
|
|
return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
|
|
}
|
|
|
|
// Hash functor
|
|
unsigned hash() const {
|
|
return (unsigned)hash_combine_range(Values.begin(), Values.end());
|
|
}
|
|
|
|
bool operator==(const ModelledPHI &Other) const {
|
|
return Values == Other.Values && Blocks == Other.Blocks;
|
|
}
|
|
};
|
|
|
|
template <typename ModelledPHI> struct DenseMapInfo {
|
|
static inline ModelledPHI &getEmptyKey() {
|
|
static ModelledPHI Dummy = ModelledPHI::createDummy(0);
|
|
return Dummy;
|
|
}
|
|
|
|
static inline ModelledPHI &getTombstoneKey() {
|
|
static ModelledPHI Dummy = ModelledPHI::createDummy(1);
|
|
return Dummy;
|
|
}
|
|
|
|
static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
|
|
|
|
static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable
|
|
//===----------------------------------------------------------------------===//
|
|
// This is a value number table where the value number is a function of the
|
|
// *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
|
|
// that the program would be equivalent if we replaced A with PHI(A, B).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A GVN expression describing how an instruction is used. The operands
|
|
/// field of BasicExpression is used to store uses, not operands.
|
|
///
|
|
/// This class also contains fields for discriminators used when determining
|
|
/// equivalence of instructions with sideeffects.
|
|
class InstructionUseExpr : public GVNExpression::BasicExpression {
|
|
unsigned MemoryUseOrder = -1;
|
|
bool Volatile = false;
|
|
ArrayRef<int> ShuffleMask;
|
|
|
|
public:
|
|
InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
|
|
BumpPtrAllocator &A)
|
|
: GVNExpression::BasicExpression(I->getNumUses()) {
|
|
allocateOperands(R, A);
|
|
setOpcode(I->getOpcode());
|
|
setType(I->getType());
|
|
|
|
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
|
|
ShuffleMask = SVI->getShuffleMask().copy(A);
|
|
|
|
for (auto &U : I->uses())
|
|
op_push_back(U.getUser());
|
|
llvm::sort(op_begin(), op_end());
|
|
}
|
|
|
|
void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
|
|
void setVolatile(bool V) { Volatile = V; }
|
|
|
|
hash_code getHashValue() const override {
|
|
return hash_combine(GVNExpression::BasicExpression::getHashValue(),
|
|
MemoryUseOrder, Volatile, ShuffleMask);
|
|
}
|
|
|
|
template <typename Function> hash_code getHashValue(Function MapFn) {
|
|
hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile,
|
|
ShuffleMask);
|
|
for (auto *V : operands())
|
|
H = hash_combine(H, MapFn(V));
|
|
return H;
|
|
}
|
|
};
|
|
|
|
class ValueTable {
|
|
DenseMap<Value *, uint32_t> ValueNumbering;
|
|
DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
|
|
DenseMap<size_t, uint32_t> HashNumbering;
|
|
BumpPtrAllocator Allocator;
|
|
ArrayRecycler<Value *> Recycler;
|
|
uint32_t nextValueNumber = 1;
|
|
|
|
/// Create an expression for I based on its opcode and its uses. If I
|
|
/// touches or reads memory, the expression is also based upon its memory
|
|
/// order - see \c getMemoryUseOrder().
|
|
InstructionUseExpr *createExpr(Instruction *I) {
|
|
InstructionUseExpr *E =
|
|
new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
|
|
if (isMemoryInst(I))
|
|
E->setMemoryUseOrder(getMemoryUseOrder(I));
|
|
|
|
if (CmpInst *C = dyn_cast<CmpInst>(I)) {
|
|
CmpInst::Predicate Predicate = C->getPredicate();
|
|
E->setOpcode((C->getOpcode() << 8) | Predicate);
|
|
}
|
|
return E;
|
|
}
|
|
|
|
/// Helper to compute the value number for a memory instruction
|
|
/// (LoadInst/StoreInst), including checking the memory ordering and
|
|
/// volatility.
|
|
template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
|
|
if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
|
|
return nullptr;
|
|
InstructionUseExpr *E = createExpr(I);
|
|
E->setVolatile(I->isVolatile());
|
|
return E;
|
|
}
|
|
|
|
public:
|
|
ValueTable() = default;
|
|
|
|
/// Returns the value number for the specified value, assigning
|
|
/// it a new number if it did not have one before.
|
|
uint32_t lookupOrAdd(Value *V) {
|
|
auto VI = ValueNumbering.find(V);
|
|
if (VI != ValueNumbering.end())
|
|
return VI->second;
|
|
|
|
if (!isa<Instruction>(V)) {
|
|
ValueNumbering[V] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
Instruction *I = cast<Instruction>(V);
|
|
InstructionUseExpr *exp = nullptr;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Load:
|
|
exp = createMemoryExpr(cast<LoadInst>(I));
|
|
break;
|
|
case Instruction::Store:
|
|
exp = createMemoryExpr(cast<StoreInst>(I));
|
|
break;
|
|
case Instruction::Call:
|
|
case Instruction::Invoke:
|
|
case Instruction::FNeg:
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::Select:
|
|
case Instruction::ExtractElement:
|
|
case Instruction::InsertElement:
|
|
case Instruction::ShuffleVector:
|
|
case Instruction::InsertValue:
|
|
case Instruction::GetElementPtr:
|
|
exp = createExpr(I);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!exp) {
|
|
ValueNumbering[V] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
uint32_t e = ExpressionNumbering[exp];
|
|
if (!e) {
|
|
hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
|
|
auto I = HashNumbering.find(H);
|
|
if (I != HashNumbering.end()) {
|
|
e = I->second;
|
|
} else {
|
|
e = nextValueNumber++;
|
|
HashNumbering[H] = e;
|
|
ExpressionNumbering[exp] = e;
|
|
}
|
|
}
|
|
ValueNumbering[V] = e;
|
|
return e;
|
|
}
|
|
|
|
/// Returns the value number of the specified value. Fails if the value has
|
|
/// not yet been numbered.
|
|
uint32_t lookup(Value *V) const {
|
|
auto VI = ValueNumbering.find(V);
|
|
assert(VI != ValueNumbering.end() && "Value not numbered?");
|
|
return VI->second;
|
|
}
|
|
|
|
/// Removes all value numberings and resets the value table.
|
|
void clear() {
|
|
ValueNumbering.clear();
|
|
ExpressionNumbering.clear();
|
|
HashNumbering.clear();
|
|
Recycler.clear(Allocator);
|
|
nextValueNumber = 1;
|
|
}
|
|
|
|
/// \c Inst uses or touches memory. Return an ID describing the memory state
|
|
/// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
|
|
/// the exact same memory operations happen after I1 and I2.
|
|
///
|
|
/// This is a very hard problem in general, so we use domain-specific
|
|
/// knowledge that we only ever check for equivalence between blocks sharing a
|
|
/// single immediate successor that is common, and when determining if I1 ==
|
|
/// I2 we will have already determined that next(I1) == next(I2). This
|
|
/// inductive property allows us to simply return the value number of the next
|
|
/// instruction that defines memory.
|
|
uint32_t getMemoryUseOrder(Instruction *Inst) {
|
|
auto *BB = Inst->getParent();
|
|
for (auto I = std::next(Inst->getIterator()), E = BB->end();
|
|
I != E && !I->isTerminator(); ++I) {
|
|
if (!isMemoryInst(&*I))
|
|
continue;
|
|
if (isa<LoadInst>(&*I))
|
|
continue;
|
|
CallInst *CI = dyn_cast<CallInst>(&*I);
|
|
if (CI && CI->onlyReadsMemory())
|
|
continue;
|
|
InvokeInst *II = dyn_cast<InvokeInst>(&*I);
|
|
if (II && II->onlyReadsMemory())
|
|
continue;
|
|
return lookupOrAdd(&*I);
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class GVNSink {
|
|
public:
|
|
GVNSink() = default;
|
|
|
|
bool run(Function &F) {
|
|
LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
|
|
<< "\n");
|
|
|
|
unsigned NumSunk = 0;
|
|
ReversePostOrderTraversal<Function*> RPOT(&F);
|
|
for (auto *N : RPOT)
|
|
NumSunk += sinkBB(N);
|
|
|
|
return NumSunk > 0;
|
|
}
|
|
|
|
private:
|
|
ValueTable VN;
|
|
|
|
bool shouldAvoidSinkingInstruction(Instruction *I) {
|
|
// These instructions may change or break semantics if moved.
|
|
if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
|
|
I->getType()->isTokenTy())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// The main heuristic function. Analyze the set of instructions pointed to by
|
|
/// LRI and return a candidate solution if these instructions can be sunk, or
|
|
/// None otherwise.
|
|
Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
|
|
LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
|
|
ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
|
|
|
|
/// Create a ModelledPHI for each PHI in BB, adding to PHIs.
|
|
void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
|
|
SmallPtrSetImpl<Value *> &PHIContents) {
|
|
for (PHINode &PN : BB->phis()) {
|
|
auto MPHI = ModelledPHI(&PN);
|
|
PHIs.insert(MPHI);
|
|
for (auto *V : MPHI.getValues())
|
|
PHIContents.insert(V);
|
|
}
|
|
}
|
|
|
|
/// The main instruction sinking driver. Set up state and try and sink
|
|
/// instructions into BBEnd from its predecessors.
|
|
unsigned sinkBB(BasicBlock *BBEnd);
|
|
|
|
/// Perform the actual mechanics of sinking an instruction from Blocks into
|
|
/// BBEnd, which is their only successor.
|
|
void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
|
|
|
|
/// Remove PHIs that all have the same incoming value.
|
|
void foldPointlessPHINodes(BasicBlock *BB) {
|
|
auto I = BB->begin();
|
|
while (PHINode *PN = dyn_cast<PHINode>(I++)) {
|
|
if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
|
|
return V == PN->getIncomingValue(0);
|
|
}))
|
|
continue;
|
|
if (PN->getIncomingValue(0) != PN)
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
else
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
};
|
|
|
|
Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
|
|
LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
|
|
ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
|
|
auto Insts = *LRI;
|
|
LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
|
|
: Insts) {
|
|
I->dump();
|
|
} dbgs() << " ]\n";);
|
|
|
|
DenseMap<uint32_t, unsigned> VNums;
|
|
for (auto *I : Insts) {
|
|
uint32_t N = VN.lookupOrAdd(I);
|
|
LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
|
|
if (N == ~0U)
|
|
return None;
|
|
VNums[N]++;
|
|
}
|
|
unsigned VNumToSink =
|
|
std::max_element(VNums.begin(), VNums.end(),
|
|
[](const std::pair<uint32_t, unsigned> &I,
|
|
const std::pair<uint32_t, unsigned> &J) {
|
|
return I.second < J.second;
|
|
})
|
|
->first;
|
|
|
|
if (VNums[VNumToSink] == 1)
|
|
// Can't sink anything!
|
|
return None;
|
|
|
|
// Now restrict the number of incoming blocks down to only those with
|
|
// VNumToSink.
|
|
auto &ActivePreds = LRI.getActiveBlocks();
|
|
unsigned InitialActivePredSize = ActivePreds.size();
|
|
SmallVector<Instruction *, 4> NewInsts;
|
|
for (auto *I : Insts) {
|
|
if (VN.lookup(I) != VNumToSink)
|
|
ActivePreds.remove(I->getParent());
|
|
else
|
|
NewInsts.push_back(I);
|
|
}
|
|
for (auto *I : NewInsts)
|
|
if (shouldAvoidSinkingInstruction(I))
|
|
return None;
|
|
|
|
// If we've restricted the incoming blocks, restrict all needed PHIs also
|
|
// to that set.
|
|
bool RecomputePHIContents = false;
|
|
if (ActivePreds.size() != InitialActivePredSize) {
|
|
ModelledPHISet NewNeededPHIs;
|
|
for (auto P : NeededPHIs) {
|
|
P.restrictToBlocks(ActivePreds);
|
|
NewNeededPHIs.insert(P);
|
|
}
|
|
NeededPHIs = NewNeededPHIs;
|
|
LRI.restrictToBlocks(ActivePreds);
|
|
RecomputePHIContents = true;
|
|
}
|
|
|
|
// The sunk instruction's results.
|
|
ModelledPHI NewPHI(NewInsts, ActivePreds);
|
|
|
|
// Does sinking this instruction render previous PHIs redundant?
|
|
if (NeededPHIs.erase(NewPHI))
|
|
RecomputePHIContents = true;
|
|
|
|
if (RecomputePHIContents) {
|
|
// The needed PHIs have changed, so recompute the set of all needed
|
|
// values.
|
|
PHIContents.clear();
|
|
for (auto &PHI : NeededPHIs)
|
|
PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
|
|
}
|
|
|
|
// Is this instruction required by a later PHI that doesn't match this PHI?
|
|
// if so, we can't sink this instruction.
|
|
for (auto *V : NewPHI.getValues())
|
|
if (PHIContents.count(V))
|
|
// V exists in this PHI, but the whole PHI is different to NewPHI
|
|
// (else it would have been removed earlier). We cannot continue
|
|
// because this isn't representable.
|
|
return None;
|
|
|
|
// Which operands need PHIs?
|
|
// FIXME: If any of these fail, we should partition up the candidates to
|
|
// try and continue making progress.
|
|
Instruction *I0 = NewInsts[0];
|
|
|
|
// If all instructions that are going to participate don't have the same
|
|
// number of operands, we can't do any useful PHI analysis for all operands.
|
|
auto hasDifferentNumOperands = [&I0](Instruction *I) {
|
|
return I->getNumOperands() != I0->getNumOperands();
|
|
};
|
|
if (any_of(NewInsts, hasDifferentNumOperands))
|
|
return None;
|
|
|
|
for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
|
|
ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
|
|
if (PHI.areAllIncomingValuesSame())
|
|
continue;
|
|
if (!canReplaceOperandWithVariable(I0, OpNum))
|
|
// We can 't create a PHI from this instruction!
|
|
return None;
|
|
if (NeededPHIs.count(PHI))
|
|
continue;
|
|
if (!PHI.areAllIncomingValuesSameType())
|
|
return None;
|
|
// Don't create indirect calls! The called value is the final operand.
|
|
if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
|
|
PHI.areAnyIncomingValuesConstant())
|
|
return None;
|
|
|
|
NeededPHIs.reserve(NeededPHIs.size());
|
|
NeededPHIs.insert(PHI);
|
|
PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
|
|
}
|
|
|
|
if (isMemoryInst(NewInsts[0]))
|
|
++MemoryInstNum;
|
|
|
|
SinkingInstructionCandidate Cand;
|
|
Cand.NumInstructions = ++InstNum;
|
|
Cand.NumMemoryInsts = MemoryInstNum;
|
|
Cand.NumBlocks = ActivePreds.size();
|
|
Cand.NumPHIs = NeededPHIs.size();
|
|
append_range(Cand.Blocks, ActivePreds);
|
|
|
|
return Cand;
|
|
}
|
|
|
|
unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
|
|
LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
|
|
BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
|
|
SmallVector<BasicBlock *, 4> Preds;
|
|
for (auto *B : predecessors(BBEnd)) {
|
|
auto *T = B->getTerminator();
|
|
if (isa<BranchInst>(T) || isa<SwitchInst>(T))
|
|
Preds.push_back(B);
|
|
else
|
|
return 0;
|
|
}
|
|
if (Preds.size() < 2)
|
|
return 0;
|
|
llvm::sort(Preds);
|
|
|
|
unsigned NumOrigPreds = Preds.size();
|
|
// We can only sink instructions through unconditional branches.
|
|
for (auto I = Preds.begin(); I != Preds.end();) {
|
|
if ((*I)->getTerminator()->getNumSuccessors() != 1)
|
|
I = Preds.erase(I);
|
|
else
|
|
++I;
|
|
}
|
|
|
|
LockstepReverseIterator LRI(Preds);
|
|
SmallVector<SinkingInstructionCandidate, 4> Candidates;
|
|
unsigned InstNum = 0, MemoryInstNum = 0;
|
|
ModelledPHISet NeededPHIs;
|
|
SmallPtrSet<Value *, 4> PHIContents;
|
|
analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
|
|
unsigned NumOrigPHIs = NeededPHIs.size();
|
|
|
|
while (LRI.isValid()) {
|
|
auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
|
|
NeededPHIs, PHIContents);
|
|
if (!Cand)
|
|
break;
|
|
Cand->calculateCost(NumOrigPHIs, Preds.size());
|
|
Candidates.emplace_back(*Cand);
|
|
--LRI;
|
|
}
|
|
|
|
llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>());
|
|
LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
|
|
: Candidates) dbgs()
|
|
<< " " << C << "\n";);
|
|
|
|
// Pick the top candidate, as long it is positive!
|
|
if (Candidates.empty() || Candidates.front().Cost <= 0)
|
|
return 0;
|
|
auto C = Candidates.front();
|
|
|
|
LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
|
|
BasicBlock *InsertBB = BBEnd;
|
|
if (C.Blocks.size() < NumOrigPreds) {
|
|
LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
|
|
BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
|
|
InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
|
|
if (!InsertBB) {
|
|
LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
|
|
// Edge couldn't be split.
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
for (unsigned I = 0; I < C.NumInstructions; ++I)
|
|
sinkLastInstruction(C.Blocks, InsertBB);
|
|
|
|
return C.NumInstructions;
|
|
}
|
|
|
|
void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
|
|
BasicBlock *BBEnd) {
|
|
SmallVector<Instruction *, 4> Insts;
|
|
for (BasicBlock *BB : Blocks)
|
|
Insts.push_back(BB->getTerminator()->getPrevNode());
|
|
Instruction *I0 = Insts.front();
|
|
|
|
SmallVector<Value *, 4> NewOperands;
|
|
for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
|
|
bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
|
|
return I->getOperand(O) != I0->getOperand(O);
|
|
});
|
|
if (!NeedPHI) {
|
|
NewOperands.push_back(I0->getOperand(O));
|
|
continue;
|
|
}
|
|
|
|
// Create a new PHI in the successor block and populate it.
|
|
auto *Op = I0->getOperand(O);
|
|
assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
|
|
auto *PN = PHINode::Create(Op->getType(), Insts.size(),
|
|
Op->getName() + ".sink", &BBEnd->front());
|
|
for (auto *I : Insts)
|
|
PN->addIncoming(I->getOperand(O), I->getParent());
|
|
NewOperands.push_back(PN);
|
|
}
|
|
|
|
// Arbitrarily use I0 as the new "common" instruction; remap its operands
|
|
// and move it to the start of the successor block.
|
|
for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
|
|
I0->getOperandUse(O).set(NewOperands[O]);
|
|
I0->moveBefore(&*BBEnd->getFirstInsertionPt());
|
|
|
|
// Update metadata and IR flags.
|
|
for (auto *I : Insts)
|
|
if (I != I0) {
|
|
combineMetadataForCSE(I0, I, true);
|
|
I0->andIRFlags(I);
|
|
}
|
|
|
|
for (auto *I : Insts)
|
|
if (I != I0)
|
|
I->replaceAllUsesWith(I0);
|
|
foldPointlessPHINodes(BBEnd);
|
|
|
|
// Finally nuke all instructions apart from the common instruction.
|
|
for (auto *I : Insts)
|
|
if (I != I0)
|
|
I->eraseFromParent();
|
|
|
|
NumRemoved += Insts.size() - 1;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Pass machinery / boilerplate
|
|
|
|
class GVNSinkLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
GVNSinkLegacyPass() : FunctionPass(ID) {
|
|
initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
GVNSink G;
|
|
return G.run(F);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
GVNSink G;
|
|
if (!G.run(F))
|
|
return PreservedAnalyses::all();
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
char GVNSinkLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
|
|
"Early GVN sinking of Expressions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
|
|
"Early GVN sinking of Expressions", false, false)
|
|
|
|
FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }
|