1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Target/Mips/MipsInstrInfo.td

613 lines
21 KiB
C++

//===- MipsInstrInfo.td - Mips Register defs --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
// Call
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain,
SDNPOutFlag]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp, [SDNPOutFlag]>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
// Return
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
SDNPOptInFlag]>;
// These are target-independent nodes, but have target-specific formats.
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">;
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
def uimm16 : Operand<i32>;
def simm16 : Operand<i32>;
def shamt : Operand<i32>;
def addrlabel : Operand<i32>;
// Address operand
def mem : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops simm16, CPURegs);
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getValue() >> 16);
}]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (int32_t)N->getValue() == (short)N->getValue();
else
return (int64_t)N->getValue() == (short)N->getValue();
}]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getValue() == (unsigned short)N->getValue();
else
return (uint64_t)N->getValue() == (unsigned short)N->getValue();
}], LO16>;
// Node immediate fits as 32-bit zero extended on target immediate.
//def immZExt32 : PatLeaf<(imm), [{
// return (uint64_t)N->getValue() == (uint32_t)N->getValue();
//}], LO16>;
// shamt field must fit in 5 bits.
def immZExt5 : PatLeaf<(imm), [{
return N->getValue() == ((N->getValue()) & 0x1f) ;
}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr : ComplexPattern<i32, 2, "SelectAddr", [frameindex], []>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic 3 register operands
let isCommutable = 1 in
class ArithR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
InstrItinClass itin>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin>;
let isCommutable = 1 in
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[], IIAlu>;
// Arithmetic 2 register operands
let isCommutable = 1 in
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>;
// Arithmetic Multiply ADD/SUB
let rd=0 in
class MArithR<bits<6> func, string instr_asm> :
FR< 0x1c,
func,
(outs CPURegs:$rs),
(ins CPURegs:$rt),
!strconcat(instr_asm, " $rs, $rt"),
[], IIImul>;
// Logical
class LogicR<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
class LogicI<bits<6> op, string instr_asm, SDNode OpNode>:
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, uimm16:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immSExt16:$c))], IIAlu>;
class LogicNOR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))], IIAlu>;
// Shifts
let rt = 0 in
class LogicR_shift_imm<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, shamt:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu>;
class LogicR_shift_reg<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
// Load Upper Imediate
class LoadUpper<bits<6> op, string instr_asm>:
FI< op,
(outs CPURegs:$dst),
(ins uimm16:$imm),
!strconcat(instr_asm, " $dst, $imm"),
[], IIAlu>;
// Memory Load/Store
let isSimpleLoad = 1, hasDelaySlot = 1 in
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI< op,
(outs CPURegs:$dst),
(ins mem:$addr),
!strconcat(instr_asm, " $dst, $addr"),
[(set CPURegs:$dst, (OpNode addr:$addr))], IILoad>;
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI< op,
(outs),
(ins CPURegs:$dst, mem:$addr),
!strconcat(instr_asm, " $dst, $addr"),
[(OpNode CPURegs:$dst, addr:$addr)], IIStore>;
// Conditional Branch
let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in {
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op>:
FI< op,
(outs),
(ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
!strconcat(instr_asm, " $a, $b, $offset"),
[(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)],
IIBranch>;
class CBranchZero<bits<6> op, string instr_asm, PatFrag cond_op>:
FI< op,
(outs),
(ins CPURegs:$src, brtarget:$offset),
!strconcat(instr_asm, " $src, $offset"),
[(brcond (cond_op CPURegs:$src, 0), bb:$offset)],
IIBranch>;
}
// SetCC
class SetCC_R<bits<6> op, bits<6> func, string instr_asm,
PatFrag cond_op>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))],
IIAlu>;
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op,
Operand Od, PatLeaf imm_type>:
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))],
IIAlu>;
// Unconditional branch
let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFJ<bits<6> op, string instr_asm>:
FJ< op,
(outs),
(ins brtarget:$target),
!strconcat(instr_asm, " $target"),
[(br bb:$target)], IIBranch>;
let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs),
(ins CPURegs:$target),
!strconcat(instr_asm, " $target"),
[(brind CPURegs:$target)], IIBranch>;
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1,
// All calls clobber the non-callee saved registers...
Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2,
T3, T4, T5, T6, T7, T8, T9, K0, K1], Uses = [GP] in {
class JumpLink<bits<6> op, string instr_asm>:
FJ< op,
(outs),
(ins calltarget:$target),
!strconcat(instr_asm, " $target"),
[(MipsJmpLink imm:$target)], IIBranch>;
let rd=31 in
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs),
(ins CPURegs:$rs),
!strconcat(instr_asm, " $rs"),
[(MipsJmpLink CPURegs:$rs)], IIBranch>;
class BranchLink<string instr_asm>:
FI< 0x1,
(outs),
(ins CPURegs:$rs, brtarget:$target),
!strconcat(instr_asm, " $rs, $target"),
[], IIBranch>;
}
// Mul, Div
class MulDiv<bits<6> func, string instr_asm, InstrItinClass itin>:
FR< 0x00,
func,
(outs),
(ins CPURegs:$a, CPURegs:$b),
!strconcat(instr_asm, " $a, $b"),
[], itin>;
// Move from Hi/Lo
class MoveFromTo<bits<6> func, string instr_asm>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins),
!strconcat(instr_asm, " $dst"),
[], IIHiLo>;
// Count Leading Ones/Zeros in Word
class CountLeading<bits<6> func, string instr_asm>:
FR< 0x1c,
func,
(outs CPURegs:$dst),
(ins CPURegs:$src),
!strconcat(instr_asm, " $dst, $src"),
[], IIAlu>;
class EffectiveAddress<string instr_asm> :
FI<0x09,
(outs CPURegs:$dst),
(ins mem:$addr),
instr_asm,
[(set CPURegs:$dst, addr:$addr)], IIAlu>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// As stack alignment is always done with addiu, we need a 16-bit immediate
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : PseudoInstMips<(outs), (ins uimm16:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start imm:$amt)]>;
def ADJCALLSTACKUP : PseudoInstMips<(outs), (ins uimm16:$amt1, uimm16:$amt2),
"!ADJCALLSTACKUP $amt1",
[(callseq_end imm:$amt1, imm:$amt2)]>;
}
// When handling PIC code the assembler needs .cpload and .cprestore
// directives. If the real instructions corresponding these directives
// are used, we have the same behavior, but get also a bunch of warnings
// from the assembler.
def CPLOAD: PseudoInstMips<(outs), (ins CPURegs:$reg),
".set noreorder\n\t.cpload $reg\n\t.set reorder\n", []>;
def CPRESTORE: PseudoInstMips<(outs), (ins uimm16:$loc),
".cprestore $loc\n", []>;
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//
// Arithmetic
// ADDiu just accept 16-bit immediates but we handle this on Pat's.
// immZExt32 is used here so it can match GlobalAddress immediates.
def ADDiu : ArithI<0x09, "addiu", add, uimm16, immZExt16>;
def ADDi : ArithI<0x08, "addi", add, simm16, immSExt16>;
def MUL : ArithR<0x1c, 0x02, "mul", mul, IIImul>;
def ADDu : ArithR<0x00, 0x21, "addu", add, IIAlu>;
def SUBu : ArithR<0x00, 0x23, "subu", sub, IIAlu>;
def ADD : ArithOverflowR<0x00, 0x20, "add">;
def SUB : ArithOverflowR<0x00, 0x22, "sub">;
// Logical
def AND : LogicR<0x24, "and", and>;
def OR : LogicR<0x25, "or", or>;
def XOR : LogicR<0x26, "xor", xor>;
def ANDi : LogicI<0x0c, "andi", and>;
def ORi : LogicI<0x0d, "ori", or>;
def XORi : LogicI<0x0e, "xori", xor>;
def NOR : LogicNOR<0x00, 0x27, "nor">;
// Shifts
def SLL : LogicR_shift_imm<0x00, "sll", shl>;
def SRL : LogicR_shift_imm<0x02, "srl", srl>;
def SRA : LogicR_shift_imm<0x03, "sra", sra>;
def SLLV : LogicR_shift_reg<0x04, "sllv", shl>;
def SRLV : LogicR_shift_reg<0x06, "srlv", srl>;
def SRAV : LogicR_shift_reg<0x07, "srav", sra>;
// Load Upper Immediate
def LUi : LoadUpper<0x0f, "lui">;
// Load/Store
def LB : LoadM<0x20, "lb", sextloadi8>;
def LBu : LoadM<0x24, "lbu", zextloadi8>;
def LH : LoadM<0x21, "lh", sextloadi16>;
def LHu : LoadM<0x25, "lhu", zextloadi16>;
def LW : LoadM<0x23, "lw", load>;
def SB : StoreM<0x28, "sb", truncstorei8>;
def SH : StoreM<0x29, "sh", truncstorei16>;
def SW : StoreM<0x2b, "sw", store>;
// Conditional Branch
def BEQ : CBranch<0x04, "beq", seteq>;
def BNE : CBranch<0x05, "bne", setne>;
let rt=1 in
def BGEZ : CBranchZero<0x01, "bgez", setge>;
let rt=0 in {
def BGTZ : CBranchZero<0x07, "bgtz", setgt>;
def BLEZ : CBranchZero<0x07, "blez", setle>;
def BLTZ : CBranchZero<0x01, "bltz", setlt>;
}
// Set Condition Code
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>;
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>;
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>;
def SLTiu : SetCC_I<0x0b, "sltiu", setult, uimm16, immZExt16>;
// Unconditional jump
def J : JumpFJ<0x02, "j">;
def JR : JumpFR<0x00, 0x08, "jr">;
// Jump and Link (Call)
def JAL : JumpLink<0x03, "jal">;
def JALR : JumpLinkReg<0x00, 0x09, "jalr">;
def BGEZAL : BranchLink<"bgezal">;
def BLTZAL : BranchLink<"bltzal">;
// MulDiv and Move From Hi/Lo operations, have
// their correpondent SDNodes created on ISelDAG.
// Special Mul, Div operations
def MULT : MulDiv<0x18, "mult", IIImul>;
def MULTu : MulDiv<0x19, "multu", IIImul>;
def DIV : MulDiv<0x1a, "div", IIIdiv>;
def DIVu : MulDiv<0x1b, "divu", IIIdiv>;
// Move From Hi/Lo
def MFHI : MoveFromTo<0x10, "mfhi">;
def MFLO : MoveFromTo<0x12, "mflo">;
def MTHI : MoveFromTo<0x11, "mthi">;
def MTLO : MoveFromTo<0x13, "mtlo">;
// Count Leading
// CLO/CLZ are part of the newer MIPS32(tm) instruction
// set and not older Mips I keep this for future use
// though.
//def CLO : CountLeading<0x21, "clo">;
//def CLZ : CountLeading<0x20, "clz">;
// MADD*/MSUB* are not part of MipsI either.
//def MADD : MArithR<0x00, "madd">;
//def MADDU : MArithR<0x01, "maddu">;
//def MSUB : MArithR<0x04, "msub">;
//def MSUBU : MArithR<0x05, "msubu">;
// No operation
let addr=0 in
def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>;
// Ret instruction - as mips does not have "ret" a
// jr $ra must be generated.
let isReturn=1, isTerminator=1, hasDelaySlot=1,
isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in
{
def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target),
"jr $target", [(MipsRet CPURegs:$target)], IIBranch>;
}
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu $dst, ${addr:stackloc}">;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : Pat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
// Arbitrary immediates
def : Pat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Call
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
def : Pat<(MipsJmpLink CPURegs:$dst),
(JALR CPURegs:$dst)>;
// GlobalAddress, Constant Pool, ExternalSymbol, and JumpTable
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
(ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : Pat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
(ADDiu CPURegs:$hi, tjumptable:$lo)>;
// Mips does not have not, so we increase the operation
def : Pat<(not CPURegs:$in),
(NOR CPURegs:$in, ZERO)>;
// extended load and stores
def : Pat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>;
def : Pat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>;
def : Pat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
// some peepholes
def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
///
/// brcond patterns
///
// direct match equal/notequal zero branches
def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst),
(BNE CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst),
(BEQ CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BGEZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BGEZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setgt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BGTZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setugt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BGTZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BLEZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BLEZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setlt CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BNE (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setult CPURegs:$lhs, immZExt16:$rhs), bb:$dst),
(BNE (SLTiu CPURegs:$lhs, immZExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setlt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BNE (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setult CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BNE (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setlt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BLTZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setult CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BLTZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
// generic brcond pattern
def : Pat<(brcond CPURegs:$cond, bb:$dst),
(BNE CPURegs:$cond, ZERO, bb:$dst)>;
///
/// setcc patterns, only matched when there
/// is no brcond following a setcc operation
///
// setcc 2 register operands
def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs),
(SLT CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs),
(SLTu CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs),
(OR (SLT CPURegs:$lhs, CPURegs:$rhs),
(SLT CPURegs:$rhs, CPURegs:$lhs))>;
def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs),
(XORi (OR (SLT CPURegs:$lhs, CPURegs:$rhs),
(SLT CPURegs:$rhs, CPURegs:$lhs)), 1)>;
// setcc reg/imm operands
def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, immZExt16:$rhs),
(XORi (SLTiu CPURegs:$lhs, immZExt16:$rhs), 1)>;