1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-27 05:53:07 +01:00
llvm-mirror/lib/Target/Mips/Mips16HardFloat.cpp
Reed Kotler 3c79328838 Fix a problem with dual mips16/mips32 mode. When the underlying processor
has hard float, when you compile the mips32 code you have to make sure
that it knows to compile any mips32 routines as hard float. I need to clean
up the way mips16 hard float is specified but I need to first think through
all the details. Mips16 always has a form of soft float, the difference being
whether the underlying hardware has floating point. So it's not really
necessary to pass the -soft-float to llvm since soft-float is always true
for mips16 by virtue of the fact that it will not register floating point
registers. By using this fact, I can simplify the way this is all handled.

llvm-svn: 189690
2013-08-30 19:40:56 +00:00

496 lines
14 KiB
C++

//===---- Mips16HardFloat.cpp for Mips16 Hard Float --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass needed for Mips16 Hard Float
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips16-hard-float"
#include "Mips16HardFloat.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>
static void inlineAsmOut
(LLVMContext &C, StringRef AsmString, BasicBlock *BB ) {
std::vector<llvm::Type *> AsmArgTypes;
std::vector<llvm::Value*> AsmArgs;
llvm::FunctionType *AsmFTy =
llvm::FunctionType::get(Type::getVoidTy(C),
AsmArgTypes, false);
llvm::InlineAsm *IA =
llvm::InlineAsm::get(AsmFTy, AsmString, "", true,
/* IsAlignStack */ false,
llvm::InlineAsm::AD_ATT);
CallInst::Create(IA, AsmArgs, "", BB);
}
namespace {
class InlineAsmHelper {
LLVMContext &C;
BasicBlock *BB;
public:
InlineAsmHelper(LLVMContext &C_, BasicBlock *BB_) :
C(C_), BB(BB_) {
}
void Out(StringRef AsmString) {
inlineAsmOut(C, AsmString, BB);
}
};
}
//
// Return types that matter for hard float are:
// float, double, complex float, and complex double
//
enum FPReturnVariant {
FRet, DRet, CFRet, CDRet, NoFPRet
};
//
// Determine which FP return type this function has
//
static FPReturnVariant whichFPReturnVariant(Type *T) {
switch (T->getTypeID()) {
case Type::FloatTyID:
return FRet;
case Type::DoubleTyID:
return DRet;
case Type::StructTyID:
if (T->getStructNumElements() != 2)
break;
if ((T->getContainedType(0)->isFloatTy()) &&
(T->getContainedType(1)->isFloatTy()))
return CFRet;
if ((T->getContainedType(0)->isDoubleTy()) &&
(T->getContainedType(1)->isDoubleTy()))
return CDRet;
break;
default:
break;
}
return NoFPRet;
}
//
// Parameter type that matter are float, (float, float), (float, double),
// double, (double, double), (double, float)
//
enum FPParamVariant {
FSig, FFSig, FDSig,
DSig, DDSig, DFSig, NoSig
};
// which floating point parameter signature variant we are dealing with
//
typedef Type::TypeID TypeID;
const Type::TypeID FloatTyID = Type::FloatTyID;
const Type::TypeID DoubleTyID = Type::DoubleTyID;
static FPParamVariant whichFPParamVariantNeeded(Function &F) {
switch (F.arg_size()) {
case 0:
return NoSig;
case 1:{
TypeID ArgTypeID = F.getFunctionType()->getParamType(0)->getTypeID();
switch (ArgTypeID) {
case FloatTyID:
return FSig;
case DoubleTyID:
return DSig;
default:
return NoSig;
}
}
default: {
TypeID ArgTypeID0 = F.getFunctionType()->getParamType(0)->getTypeID();
TypeID ArgTypeID1 = F.getFunctionType()->getParamType(1)->getTypeID();
switch(ArgTypeID0) {
case FloatTyID: {
switch (ArgTypeID1) {
case FloatTyID:
return FFSig;
case DoubleTyID:
return FDSig;
default:
return FSig;
}
}
case DoubleTyID: {
switch (ArgTypeID1) {
case FloatTyID:
return DFSig;
case DoubleTyID:
return DDSig;
default:
return DSig;
}
}
default:
return NoSig;
}
}
}
llvm_unreachable("can't get here");
}
// Figure out if we need float point based on the function parameters.
// We need to move variables in and/or out of floating point
// registers because of the ABI
//
static bool needsFPStubFromParams(Function &F) {
if (F.arg_size() >=1) {
Type *ArgType = F.getFunctionType()->getParamType(0);
switch (ArgType->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID:
return true;
default:
break;
}
}
return false;
}
static bool needsFPReturnHelper(Function &F) {
Type* RetType = F.getReturnType();
return whichFPReturnVariant(RetType) != NoFPRet;
}
static bool needsFPHelperFromSig(Function &F) {
return needsFPStubFromParams(F) || needsFPReturnHelper(F);
}
//
// We swap between FP and Integer registers to allow Mips16 and Mips32 to
// interoperate
//
static void swapFPIntParams
(FPParamVariant PV, Module *M, InlineAsmHelper &IAH,
bool LE, bool ToFP) {
//LLVMContext &Context = M->getContext();
std::string MI = ToFP? "mtc1 ": "mfc1 ";
switch (PV) {
case FSig:
IAH.Out(MI + "$$4,$$f12");
break;
case FFSig:
IAH.Out(MI +"$$4,$$f12");
IAH.Out(MI + "$$5,$$f14");
break;
case FDSig:
IAH.Out(MI + "$$4,$$f12");
if (LE) {
IAH.Out(MI + "$$6,$$f14");
IAH.Out(MI + "$$7,$$f15");
} else {
IAH.Out(MI + "$$7,$$f14");
IAH.Out(MI + "$$6,$$f15");
}
break;
case DSig:
if (LE) {
IAH.Out(MI + "$$4,$$f12");
IAH.Out(MI + "$$5,$$f13");
} else {
IAH.Out(MI + "$$5,$$f12");
IAH.Out(MI + "$$4,$$f13");
}
break;
case DDSig:
if (LE) {
IAH.Out(MI + "$$4,$$f12");
IAH.Out(MI + "$$5,$$f13");
IAH.Out(MI + "$$6,$$f14");
IAH.Out(MI + "$$7,$$f15");
} else {
IAH.Out(MI + "$$5,$$f12");
IAH.Out(MI + "$$4,$$f13");
IAH.Out(MI + "$$7,$$f14");
IAH.Out(MI + "$$6,$$f15");
}
break;
case DFSig:
if (LE) {
IAH.Out(MI + "$$4,$$f12");
IAH.Out(MI + "$$5,$$f13");
} else {
IAH.Out(MI + "$$5,$$f12");
IAH.Out(MI + "$$4,$$f13");
}
IAH.Out(MI + "$$6,$$f14");
break;
case NoSig:
return;
}
}
//
// Make sure that we know we already need a stub for this function.
// Having called needsFPHelperFromSig
//
static void assureFPCallStub(Function &F, Module *M,
const MipsSubtarget &Subtarget){
// for now we only need them for static relocation
if (Subtarget.getRelocationModel() == Reloc::PIC_)
return;
LLVMContext &Context = M->getContext();
bool LE = Subtarget.isLittle();
std::string Name = F.getName();
std::string SectionName = ".mips16.call.fp." + Name;
std::string StubName = "__call_stub_fp_" + Name;
//
// see if we already have the stub
//
Function *FStub = M->getFunction(StubName);
if (FStub && !FStub->isDeclaration()) return;
FStub = Function::Create(F.getFunctionType(),
Function::InternalLinkage, StubName, M);
FStub->addFnAttr("mips16_fp_stub");
FStub->addFnAttr(llvm::Attribute::Naked);
FStub->addFnAttr(llvm::Attribute::NoInline);
FStub->addFnAttr(llvm::Attribute::NoUnwind);
FStub->addFnAttr("nomips16");
FStub->setSection(SectionName);
BasicBlock *BB = BasicBlock::Create(Context, "entry", FStub);
InlineAsmHelper IAH(Context, BB);
IAH.Out(".set reorder");
FPReturnVariant RV = whichFPReturnVariant(FStub->getReturnType());
FPParamVariant PV = whichFPParamVariantNeeded(F);
swapFPIntParams(PV, M, IAH, LE, true);
if (RV != NoFPRet) {
IAH.Out("move $$18, $$31");
IAH.Out("jal " + Name);
} else {
IAH.Out("lui $$25,%hi(" + Name + ")");
IAH.Out("addiu $$25,$$25,%lo(" + Name + ")" );
}
switch (RV) {
case FRet:
IAH.Out("mfc1 $$2,$$f0");
break;
case DRet:
if (LE) {
IAH.Out("mfc1 $$2,$$f0");
IAH.Out("mfc1 $$3,$$f1");
} else {
IAH.Out("mfc1 $$3,$$f0");
IAH.Out("mfc1 $$2,$$f1");
}
break;
case CFRet:
if (LE) {
IAH.Out("mfc1 $$2,$$f0");
IAH.Out("mfc1 $$3,$$f2");
} else {
IAH.Out("mfc1 $$3,$$f0");
IAH.Out("mfc1 $$3,$$f2");
}
break;
case CDRet:
if (LE) {
IAH.Out("mfc1 $$4,$$f2");
IAH.Out("mfc1 $$5,$$f3");
IAH.Out("mfc1 $$2,$$f0");
IAH.Out("mfc1 $$3,$$f1");
} else {
IAH.Out("mfc1 $$5,$$f2");
IAH.Out("mfc1 $$4,$$f3");
IAH.Out("mfc1 $$3,$$f0");
IAH.Out("mfc1 $$2,$$f1");
}
break;
case NoFPRet:
break;
}
if (RV != NoFPRet)
IAH.Out("jr $$18");
else
IAH.Out("jr $$25");
new UnreachableInst(Context, BB);
}
//
// Functions that are inline intrinsics don't need helpers.
//
static const char *IntrinsicInline[] =
{"fabs", "llvm.powi.f64"};
static bool isIntrinsicInline(Function *F) {
return std::binary_search(
IntrinsicInline, array_endof(IntrinsicInline),
F->getName());
}
//
// Returns of float, double and complex need to be handled with a helper
// function.
//
static bool fixupFPReturnAndCall
(Function &F, Module *M, const MipsSubtarget &Subtarget) {
bool Modified = false;
LLVMContext &C = M->getContext();
Type *MyVoid = Type::getVoidTy(C);
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
Instruction &Inst = *I;
if (const ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
Value *RVal = RI->getReturnValue();
if (!RVal) continue;
//
// If there is a return value and it needs a helper function,
// figure out which one and add a call before the actual
// return to this helper. The purpose of the helper is to move
// floating point values from their soft float return mapping to
// where they would have been mapped to in floating point registers.
//
Type *T = RVal->getType();
FPReturnVariant RV = whichFPReturnVariant(T);
if (RV == NoFPRet) continue;
static const char* Helper[NoFPRet] =
{"__mips16_ret_sf", "__mips16_ret_df", "__mips16_ret_sc",
"__mips16_ret_dc"};
const char *Name = Helper[RV];
AttributeSet A;
Value *Params[] = {RVal};
Modified = true;
//
// These helper functions have a different calling ABI so
// this __Mips16RetHelper indicates that so that later
// during call setup, the proper call lowering to the helper
// functions will take place.
//
A = A.addAttribute(C, AttributeSet::FunctionIndex,
"__Mips16RetHelper");
A = A.addAttribute(C, AttributeSet::FunctionIndex,
Attribute::ReadNone);
A = A.addAttribute(C, AttributeSet::FunctionIndex,
Attribute::NoInline);
Value *F = (M->getOrInsertFunction(Name, A, MyVoid, T, NULL));
CallInst::Create(F, Params, "", &Inst );
} else if (const CallInst *CI = dyn_cast<CallInst>(I)) {
// pic mode calls are handled by already defined
// helper functions
if (Subtarget.getRelocationModel() != Reloc::PIC_ ) {
Function *F_ = CI->getCalledFunction();
if (F_ && !isIntrinsicInline(F_) && needsFPHelperFromSig(*F_)) {
assureFPCallStub(*F_, M, Subtarget);
Modified=true;
}
}
}
}
return Modified;
}
static void createFPFnStub(Function *F, Module *M, FPParamVariant PV,
const MipsSubtarget &Subtarget ) {
bool PicMode = Subtarget.getRelocationModel() == Reloc::PIC_;
bool LE = Subtarget.isLittle();
LLVMContext &Context = M->getContext();
std::string Name = F->getName();
std::string SectionName = ".mips16.fn." + Name;
std::string StubName = "__fn_stub_" + Name;
std::string LocalName = "__fn_local_" + Name;
Function *FStub = Function::Create
(F->getFunctionType(),
Function::InternalLinkage, StubName, M);
FStub->addFnAttr("mips16_fp_stub");
FStub->addFnAttr(llvm::Attribute::Naked);
FStub->addFnAttr(llvm::Attribute::NoUnwind);
FStub->addFnAttr(llvm::Attribute::NoInline);
FStub->addFnAttr("nomips16");
FStub->setSection(SectionName);
BasicBlock *BB = BasicBlock::Create(Context, "entry", FStub);
InlineAsmHelper IAH(Context, BB);
IAH.Out(" .set macro");
if (PicMode) {
IAH.Out(".set noreorder");
IAH.Out(".cpload $$2");
IAH.Out(".set reorder");
IAH.Out(".reloc 0,R_MIPS_NONE," + Name);
IAH.Out("la $$25," + LocalName);
}
else
IAH.Out("la $$25, " + Name);
swapFPIntParams(PV, M, IAH, LE, false);
IAH.Out("jr $$25");
IAH.Out(LocalName + " = " + Name);
new UnreachableInst(FStub->getContext(), BB);
}
//
// remove the use-soft-float attribute
//
static void removeUseSoftFloat(Function &F) {
AttributeSet A;
DEBUG(errs() << "removing -use-soft-float\n");
A = A.addAttribute(F.getContext(), AttributeSet::FunctionIndex,
"use-soft-float", "false");
F.removeAttributes(AttributeSet::FunctionIndex, A);
if (F.hasFnAttribute("use-soft-float")) {
DEBUG(errs() << "still has -use-soft-float\n");
}
F.addAttributes(AttributeSet::FunctionIndex, A);
}
namespace llvm {
//
// This pass only makes sense when the underlying chip has floating point but
// we are compiling as mips16.
// For all mips16 functions (that are not stubs we have already generated), or
// declared via attributes as nomips16, we must:
// 1) fixup all returns of float, double, single and double complex
// by calling a helper function before the actual return.
// 2) generate helper functions (stubs) that can be called by mips32 functions
// that will move parameters passed normally passed in floating point
// registers the soft float equivalents.
// 3) in the case of static relocation, generate helper functions so that
// mips16 functions can call extern functions of unknown type (mips16 or
// mips32).
// 4) TBD. For pic, calls to extern functions of unknown type are handled by
// predefined helper functions in libc but this work is currently done
// during call lowering but it should be moved here in the future.
//
bool Mips16HardFloat::runOnModule(Module &M) {
DEBUG(errs() << "Run on Module Mips16HardFloat\n");
bool Modified = false;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->hasFnAttribute("nomips16") &&
F->hasFnAttribute("use-soft-float")) {
removeUseSoftFloat(*F);
continue;
}
if (F->isDeclaration() || F->hasFnAttribute("mips16_fp_stub") ||
F->hasFnAttribute("nomips16")) continue;
Modified |= fixupFPReturnAndCall(*F, &M, Subtarget);
FPParamVariant V = whichFPParamVariantNeeded(*F);
if (V != NoSig) {
Modified = true;
createFPFnStub(F, &M, V, Subtarget);
}
}
return Modified;
}
char Mips16HardFloat::ID = 0;
}
ModulePass *llvm::createMips16HardFloat(MipsTargetMachine &TM) {
return new Mips16HardFloat(TM);
}