mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
ae65e281f3
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
961 lines
36 KiB
C++
961 lines
36 KiB
C++
//===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions identifies calls to builtin functions that allocate
|
|
// or free memory.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/Utils/Local.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "memory-builtins"
|
|
|
|
enum AllocType : uint8_t {
|
|
OpNewLike = 1<<0, // allocates; never returns null
|
|
MallocLike = 1<<1 | OpNewLike, // allocates; may return null
|
|
CallocLike = 1<<2, // allocates + bzero
|
|
ReallocLike = 1<<3, // reallocates
|
|
StrDupLike = 1<<4,
|
|
MallocOrCallocLike = MallocLike | CallocLike,
|
|
AllocLike = MallocLike | CallocLike | StrDupLike,
|
|
AnyAlloc = AllocLike | ReallocLike
|
|
};
|
|
|
|
struct AllocFnsTy {
|
|
AllocType AllocTy;
|
|
unsigned NumParams;
|
|
// First and Second size parameters (or -1 if unused)
|
|
int FstParam, SndParam;
|
|
};
|
|
|
|
// FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
|
|
// know which functions are nounwind, noalias, nocapture parameters, etc.
|
|
static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
|
|
{LibFunc_malloc, {MallocLike, 1, 0, -1}},
|
|
{LibFunc_valloc, {MallocLike, 1, 0, -1}},
|
|
{LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
|
|
{LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
|
|
{LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t)
|
|
{LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
|
|
{MallocLike, 3, 0, -1}},
|
|
{LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long)
|
|
{LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow)
|
|
{LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t)
|
|
{LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
|
|
{MallocLike, 3, 0, -1}},
|
|
{LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
|
|
{LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
|
|
{LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t)
|
|
{LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
|
|
{MallocLike, 3, 0, -1}},
|
|
{LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long)
|
|
{LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow)
|
|
{LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t)
|
|
{LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
|
|
{MallocLike, 3, 0, -1}},
|
|
{LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
|
|
{LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
|
|
{LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long)
|
|
{LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow)
|
|
{LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
|
|
{LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
|
|
{LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long)
|
|
{LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow)
|
|
{LibFunc_calloc, {CallocLike, 2, 0, 1}},
|
|
{LibFunc_realloc, {ReallocLike, 2, 1, -1}},
|
|
{LibFunc_reallocf, {ReallocLike, 2, 1, -1}},
|
|
{LibFunc_strdup, {StrDupLike, 1, -1, -1}},
|
|
{LibFunc_strndup, {StrDupLike, 2, 1, -1}}
|
|
// TODO: Handle "int posix_memalign(void **, size_t, size_t)"
|
|
};
|
|
|
|
static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
|
|
bool &IsNoBuiltin) {
|
|
// Don't care about intrinsics in this case.
|
|
if (isa<IntrinsicInst>(V))
|
|
return nullptr;
|
|
|
|
if (LookThroughBitCast)
|
|
V = V->stripPointerCasts();
|
|
|
|
ImmutableCallSite CS(V);
|
|
if (!CS.getInstruction())
|
|
return nullptr;
|
|
|
|
IsNoBuiltin = CS.isNoBuiltin();
|
|
|
|
if (const Function *Callee = CS.getCalledFunction())
|
|
return Callee;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns the allocation data for the given value if it's either a call to a
|
|
/// known allocation function, or a call to a function with the allocsize
|
|
/// attribute.
|
|
static Optional<AllocFnsTy>
|
|
getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
|
|
const TargetLibraryInfo *TLI) {
|
|
// Make sure that the function is available.
|
|
StringRef FnName = Callee->getName();
|
|
LibFunc TLIFn;
|
|
if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
|
|
return None;
|
|
|
|
const auto *Iter = find_if(
|
|
AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
|
|
return P.first == TLIFn;
|
|
});
|
|
|
|
if (Iter == std::end(AllocationFnData))
|
|
return None;
|
|
|
|
const AllocFnsTy *FnData = &Iter->second;
|
|
if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
|
|
return None;
|
|
|
|
// Check function prototype.
|
|
int FstParam = FnData->FstParam;
|
|
int SndParam = FnData->SndParam;
|
|
FunctionType *FTy = Callee->getFunctionType();
|
|
|
|
if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
|
|
FTy->getNumParams() == FnData->NumParams &&
|
|
(FstParam < 0 ||
|
|
(FTy->getParamType(FstParam)->isIntegerTy(32) ||
|
|
FTy->getParamType(FstParam)->isIntegerTy(64))) &&
|
|
(SndParam < 0 ||
|
|
FTy->getParamType(SndParam)->isIntegerTy(32) ||
|
|
FTy->getParamType(SndParam)->isIntegerTy(64)))
|
|
return *FnData;
|
|
return None;
|
|
}
|
|
|
|
static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
|
|
const TargetLibraryInfo *TLI,
|
|
bool LookThroughBitCast = false) {
|
|
bool IsNoBuiltinCall;
|
|
if (const Function *Callee =
|
|
getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
|
|
if (!IsNoBuiltinCall)
|
|
return getAllocationDataForFunction(Callee, AllocTy, TLI);
|
|
return None;
|
|
}
|
|
|
|
static Optional<AllocFnsTy> getAllocationSize(const Value *V,
|
|
const TargetLibraryInfo *TLI) {
|
|
bool IsNoBuiltinCall;
|
|
const Function *Callee =
|
|
getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
|
|
if (!Callee)
|
|
return None;
|
|
|
|
// Prefer to use existing information over allocsize. This will give us an
|
|
// accurate AllocTy.
|
|
if (!IsNoBuiltinCall)
|
|
if (Optional<AllocFnsTy> Data =
|
|
getAllocationDataForFunction(Callee, AnyAlloc, TLI))
|
|
return Data;
|
|
|
|
Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
|
|
if (Attr == Attribute())
|
|
return None;
|
|
|
|
std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
|
|
|
|
AllocFnsTy Result;
|
|
// Because allocsize only tells us how many bytes are allocated, we're not
|
|
// really allowed to assume anything, so we use MallocLike.
|
|
Result.AllocTy = MallocLike;
|
|
Result.NumParams = Callee->getNumOperands();
|
|
Result.FstParam = Args.first;
|
|
Result.SndParam = Args.second.getValueOr(-1);
|
|
return Result;
|
|
}
|
|
|
|
static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
|
|
ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
|
|
return CS && CS.hasRetAttr(Attribute::NoAlias);
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
|
|
/// like).
|
|
bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
|
|
bool LookThroughBitCast) {
|
|
return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a function that returns a
|
|
/// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
|
|
bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
|
|
bool LookThroughBitCast) {
|
|
// it's safe to consider realloc as noalias since accessing the original
|
|
// pointer is undefined behavior
|
|
return isAllocationFn(V, TLI, LookThroughBitCast) ||
|
|
hasNoAliasAttr(V, LookThroughBitCast);
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates uninitialized memory (such as malloc).
|
|
bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
|
|
bool LookThroughBitCast) {
|
|
return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates zero-filled memory (such as calloc).
|
|
bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
|
|
bool LookThroughBitCast) {
|
|
return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates memory similar to malloc or calloc.
|
|
bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
|
|
bool LookThroughBitCast) {
|
|
return getAllocationData(V, MallocOrCallocLike, TLI,
|
|
LookThroughBitCast).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates memory (either malloc, calloc, or strdup like).
|
|
bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
|
|
bool LookThroughBitCast) {
|
|
return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
|
|
}
|
|
|
|
/// extractMallocCall - Returns the corresponding CallInst if the instruction
|
|
/// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
|
|
/// ignore InvokeInst here.
|
|
const CallInst *llvm::extractMallocCall(const Value *I,
|
|
const TargetLibraryInfo *TLI) {
|
|
return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
|
|
}
|
|
|
|
static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI,
|
|
bool LookThroughSExt = false) {
|
|
if (!CI)
|
|
return nullptr;
|
|
|
|
// The size of the malloc's result type must be known to determine array size.
|
|
Type *T = getMallocAllocatedType(CI, TLI);
|
|
if (!T || !T->isSized())
|
|
return nullptr;
|
|
|
|
unsigned ElementSize = DL.getTypeAllocSize(T);
|
|
if (StructType *ST = dyn_cast<StructType>(T))
|
|
ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
|
|
|
|
// If malloc call's arg can be determined to be a multiple of ElementSize,
|
|
// return the multiple. Otherwise, return NULL.
|
|
Value *MallocArg = CI->getArgOperand(0);
|
|
Value *Multiple = nullptr;
|
|
if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
|
|
return Multiple;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// getMallocType - Returns the PointerType resulting from the malloc call.
|
|
/// The PointerType depends on the number of bitcast uses of the malloc call:
|
|
/// 0: PointerType is the calls' return type.
|
|
/// 1: PointerType is the bitcast's result type.
|
|
/// >1: Unique PointerType cannot be determined, return NULL.
|
|
PointerType *llvm::getMallocType(const CallInst *CI,
|
|
const TargetLibraryInfo *TLI) {
|
|
assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
|
|
|
|
PointerType *MallocType = nullptr;
|
|
unsigned NumOfBitCastUses = 0;
|
|
|
|
// Determine if CallInst has a bitcast use.
|
|
for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
|
|
UI != E;)
|
|
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
|
|
MallocType = cast<PointerType>(BCI->getDestTy());
|
|
NumOfBitCastUses++;
|
|
}
|
|
|
|
// Malloc call has 1 bitcast use, so type is the bitcast's destination type.
|
|
if (NumOfBitCastUses == 1)
|
|
return MallocType;
|
|
|
|
// Malloc call was not bitcast, so type is the malloc function's return type.
|
|
if (NumOfBitCastUses == 0)
|
|
return cast<PointerType>(CI->getType());
|
|
|
|
// Type could not be determined.
|
|
return nullptr;
|
|
}
|
|
|
|
/// getMallocAllocatedType - Returns the Type allocated by malloc call.
|
|
/// The Type depends on the number of bitcast uses of the malloc call:
|
|
/// 0: PointerType is the malloc calls' return type.
|
|
/// 1: PointerType is the bitcast's result type.
|
|
/// >1: Unique PointerType cannot be determined, return NULL.
|
|
Type *llvm::getMallocAllocatedType(const CallInst *CI,
|
|
const TargetLibraryInfo *TLI) {
|
|
PointerType *PT = getMallocType(CI, TLI);
|
|
return PT ? PT->getElementType() : nullptr;
|
|
}
|
|
|
|
/// getMallocArraySize - Returns the array size of a malloc call. If the
|
|
/// argument passed to malloc is a multiple of the size of the malloced type,
|
|
/// then return that multiple. For non-array mallocs, the multiple is
|
|
/// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
|
|
/// determined.
|
|
Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI,
|
|
bool LookThroughSExt) {
|
|
assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
|
|
return computeArraySize(CI, DL, TLI, LookThroughSExt);
|
|
}
|
|
|
|
/// extractCallocCall - Returns the corresponding CallInst if the instruction
|
|
/// is a calloc call.
|
|
const CallInst *llvm::extractCallocCall(const Value *I,
|
|
const TargetLibraryInfo *TLI) {
|
|
return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
|
|
}
|
|
|
|
/// isFreeCall - Returns non-null if the value is a call to the builtin free()
|
|
const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
|
|
bool IsNoBuiltinCall;
|
|
const Function *Callee =
|
|
getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
|
|
if (Callee == nullptr || IsNoBuiltinCall)
|
|
return nullptr;
|
|
|
|
StringRef FnName = Callee->getName();
|
|
LibFunc TLIFn;
|
|
if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
|
|
return nullptr;
|
|
|
|
unsigned ExpectedNumParams;
|
|
if (TLIFn == LibFunc_free ||
|
|
TLIFn == LibFunc_ZdlPv || // operator delete(void*)
|
|
TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
|
|
TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
|
|
TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
|
|
TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
|
|
TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*)
|
|
ExpectedNumParams = 1;
|
|
else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint)
|
|
TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong)
|
|
TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
|
|
TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
|
|
TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint)
|
|
TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong)
|
|
TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
|
|
TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
|
|
TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint)
|
|
TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
|
|
TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
|
|
TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
|
|
TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint)
|
|
TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
|
|
TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
|
|
TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow)
|
|
ExpectedNumParams = 2;
|
|
else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
|
|
TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow)
|
|
ExpectedNumParams = 3;
|
|
else
|
|
return nullptr;
|
|
|
|
// Check free prototype.
|
|
// FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
|
|
// attribute will exist.
|
|
FunctionType *FTy = Callee->getFunctionType();
|
|
if (!FTy->getReturnType()->isVoidTy())
|
|
return nullptr;
|
|
if (FTy->getNumParams() != ExpectedNumParams)
|
|
return nullptr;
|
|
if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
|
|
return nullptr;
|
|
|
|
return dyn_cast<CallInst>(I);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions to compute size of objects.
|
|
//
|
|
static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
|
|
if (Data.second.isNegative() || Data.first.ult(Data.second))
|
|
return APInt(Data.first.getBitWidth(), 0);
|
|
return Data.first - Data.second;
|
|
}
|
|
|
|
/// Compute the size of the object pointed by Ptr. Returns true and the
|
|
/// object size in Size if successful, and false otherwise.
|
|
/// If RoundToAlign is true, then Size is rounded up to the alignment of
|
|
/// allocas, byval arguments, and global variables.
|
|
bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
|
|
ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
|
|
SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
|
|
if (!Visitor.bothKnown(Data))
|
|
return false;
|
|
|
|
Size = getSizeWithOverflow(Data).getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
|
|
const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI,
|
|
bool MustSucceed) {
|
|
assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
|
|
"ObjectSize must be a call to llvm.objectsize!");
|
|
|
|
bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
|
|
ObjectSizeOpts EvalOptions;
|
|
// Unless we have to fold this to something, try to be as accurate as
|
|
// possible.
|
|
if (MustSucceed)
|
|
EvalOptions.EvalMode =
|
|
MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
|
|
else
|
|
EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
|
|
|
|
EvalOptions.NullIsUnknownSize =
|
|
cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
|
|
|
|
// FIXME: Does it make sense to just return a failure value if the size won't
|
|
// fit in the output and `!MustSucceed`?
|
|
uint64_t Size;
|
|
auto *ResultType = cast<IntegerType>(ObjectSize->getType());
|
|
if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
|
|
isUIntN(ResultType->getBitWidth(), Size))
|
|
return ConstantInt::get(ResultType, Size);
|
|
|
|
if (!MustSucceed)
|
|
return nullptr;
|
|
|
|
return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
|
|
}
|
|
|
|
STATISTIC(ObjectVisitorArgument,
|
|
"Number of arguments with unsolved size and offset");
|
|
STATISTIC(ObjectVisitorLoad,
|
|
"Number of load instructions with unsolved size and offset");
|
|
|
|
APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
|
|
if (Options.RoundToAlign && Align)
|
|
return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
|
|
return Size;
|
|
}
|
|
|
|
ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI,
|
|
LLVMContext &Context,
|
|
ObjectSizeOpts Options)
|
|
: DL(DL), TLI(TLI), Options(Options) {
|
|
// Pointer size must be rechecked for each object visited since it could have
|
|
// a different address space.
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
|
|
IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
|
|
Zero = APInt::getNullValue(IntTyBits);
|
|
|
|
V = V->stripPointerCasts();
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
// If we have already seen this instruction, bail out. Cycles can happen in
|
|
// unreachable code after constant propagation.
|
|
if (!SeenInsts.insert(I).second)
|
|
return unknown();
|
|
|
|
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
|
|
return visitGEPOperator(*GEP);
|
|
return visit(*I);
|
|
}
|
|
if (Argument *A = dyn_cast<Argument>(V))
|
|
return visitArgument(*A);
|
|
if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
|
|
return visitConstantPointerNull(*P);
|
|
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
|
|
return visitGlobalAlias(*GA);
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return visitGlobalVariable(*GV);
|
|
if (UndefValue *UV = dyn_cast<UndefValue>(V))
|
|
return visitUndefValue(*UV);
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (CE->getOpcode() == Instruction::IntToPtr)
|
|
return unknown(); // clueless
|
|
if (CE->getOpcode() == Instruction::GetElementPtr)
|
|
return visitGEPOperator(cast<GEPOperator>(*CE));
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
|
|
<< *V << '\n');
|
|
return unknown();
|
|
}
|
|
|
|
/// When we're compiling N-bit code, and the user uses parameters that are
|
|
/// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
|
|
/// trouble with APInt size issues. This function handles resizing + overflow
|
|
/// checks for us. Check and zext or trunc \p I depending on IntTyBits and
|
|
/// I's value.
|
|
bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
|
|
// More bits than we can handle. Checking the bit width isn't necessary, but
|
|
// it's faster than checking active bits, and should give `false` in the
|
|
// vast majority of cases.
|
|
if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
|
|
return false;
|
|
if (I.getBitWidth() != IntTyBits)
|
|
I = I.zextOrTrunc(IntTyBits);
|
|
return true;
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
|
|
if (!I.getAllocatedType()->isSized())
|
|
return unknown();
|
|
|
|
APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
|
|
if (!I.isArrayAllocation())
|
|
return std::make_pair(align(Size, I.getAlignment()), Zero);
|
|
|
|
Value *ArraySize = I.getArraySize();
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
|
|
APInt NumElems = C->getValue();
|
|
if (!CheckedZextOrTrunc(NumElems))
|
|
return unknown();
|
|
|
|
bool Overflow;
|
|
Size = Size.umul_ov(NumElems, Overflow);
|
|
return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
|
|
Zero);
|
|
}
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
|
|
// No interprocedural analysis is done at the moment.
|
|
if (!A.hasByValOrInAllocaAttr()) {
|
|
++ObjectVisitorArgument;
|
|
return unknown();
|
|
}
|
|
PointerType *PT = cast<PointerType>(A.getType());
|
|
APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
|
|
return std::make_pair(align(Size, A.getParamAlignment()), Zero);
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
|
|
Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
|
|
if (!FnData)
|
|
return unknown();
|
|
|
|
// Handle strdup-like functions separately.
|
|
if (FnData->AllocTy == StrDupLike) {
|
|
APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
|
|
if (!Size)
|
|
return unknown();
|
|
|
|
// Strndup limits strlen.
|
|
if (FnData->FstParam > 0) {
|
|
ConstantInt *Arg =
|
|
dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
|
|
if (!Arg)
|
|
return unknown();
|
|
|
|
APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
|
|
if (Size.ugt(MaxSize))
|
|
Size = MaxSize + 1;
|
|
}
|
|
return std::make_pair(Size, Zero);
|
|
}
|
|
|
|
ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
|
|
if (!Arg)
|
|
return unknown();
|
|
|
|
APInt Size = Arg->getValue();
|
|
if (!CheckedZextOrTrunc(Size))
|
|
return unknown();
|
|
|
|
// Size is determined by just 1 parameter.
|
|
if (FnData->SndParam < 0)
|
|
return std::make_pair(Size, Zero);
|
|
|
|
Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
|
|
if (!Arg)
|
|
return unknown();
|
|
|
|
APInt NumElems = Arg->getValue();
|
|
if (!CheckedZextOrTrunc(NumElems))
|
|
return unknown();
|
|
|
|
bool Overflow;
|
|
Size = Size.umul_ov(NumElems, Overflow);
|
|
return Overflow ? unknown() : std::make_pair(Size, Zero);
|
|
|
|
// TODO: handle more standard functions (+ wchar cousins):
|
|
// - strdup / strndup
|
|
// - strcpy / strncpy
|
|
// - strcat / strncat
|
|
// - memcpy / memmove
|
|
// - strcat / strncat
|
|
// - memset
|
|
}
|
|
|
|
SizeOffsetType
|
|
ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
|
|
// If null is unknown, there's nothing we can do. Additionally, non-zero
|
|
// address spaces can make use of null, so we don't presume to know anything
|
|
// about that.
|
|
//
|
|
// TODO: How should this work with address space casts? We currently just drop
|
|
// them on the floor, but it's unclear what we should do when a NULL from
|
|
// addrspace(1) gets casted to addrspace(0) (or vice-versa).
|
|
if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
|
|
return unknown();
|
|
return std::make_pair(Zero, Zero);
|
|
}
|
|
|
|
SizeOffsetType
|
|
ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType
|
|
ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
|
|
// Easy cases were already folded by previous passes.
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
|
|
SizeOffsetType PtrData = compute(GEP.getPointerOperand());
|
|
APInt Offset(IntTyBits, 0);
|
|
if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
|
|
return unknown();
|
|
|
|
return std::make_pair(PtrData.first, PtrData.second + Offset);
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
|
|
if (GA.isInterposable())
|
|
return unknown();
|
|
return compute(GA.getAliasee());
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
|
|
if (!GV.hasDefinitiveInitializer())
|
|
return unknown();
|
|
|
|
APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
|
|
return std::make_pair(align(Size, GV.getAlignment()), Zero);
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
|
|
// clueless
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
|
|
++ObjectVisitorLoad;
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
|
|
// too complex to analyze statically.
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
|
|
SizeOffsetType TrueSide = compute(I.getTrueValue());
|
|
SizeOffsetType FalseSide = compute(I.getFalseValue());
|
|
if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
|
|
if (TrueSide == FalseSide) {
|
|
return TrueSide;
|
|
}
|
|
|
|
APInt TrueResult = getSizeWithOverflow(TrueSide);
|
|
APInt FalseResult = getSizeWithOverflow(FalseSide);
|
|
|
|
if (TrueResult == FalseResult) {
|
|
return TrueSide;
|
|
}
|
|
if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
|
|
if (TrueResult.slt(FalseResult))
|
|
return TrueSide;
|
|
return FalseSide;
|
|
}
|
|
if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
|
|
if (TrueResult.sgt(FalseResult))
|
|
return TrueSide;
|
|
return FalseSide;
|
|
}
|
|
}
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
|
|
return std::make_pair(Zero, Zero);
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
|
|
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
|
|
<< '\n');
|
|
return unknown();
|
|
}
|
|
|
|
ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
|
|
const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
|
|
bool RoundToAlign)
|
|
: DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
|
|
RoundToAlign(RoundToAlign) {
|
|
// IntTy and Zero must be set for each compute() since the address space may
|
|
// be different for later objects.
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
|
|
// XXX - Are vectors of pointers possible here?
|
|
IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
|
|
Zero = ConstantInt::get(IntTy, 0);
|
|
|
|
SizeOffsetEvalType Result = compute_(V);
|
|
|
|
if (!bothKnown(Result)) {
|
|
// Erase everything that was computed in this iteration from the cache, so
|
|
// that no dangling references are left behind. We could be a bit smarter if
|
|
// we kept a dependency graph. It's probably not worth the complexity.
|
|
for (const Value *SeenVal : SeenVals) {
|
|
CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
|
|
// non-computable results can be safely cached
|
|
if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
|
|
CacheMap.erase(CacheIt);
|
|
}
|
|
}
|
|
|
|
SeenVals.clear();
|
|
return Result;
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
|
|
ObjectSizeOpts ObjSizeOptions;
|
|
ObjSizeOptions.RoundToAlign = RoundToAlign;
|
|
|
|
ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions);
|
|
SizeOffsetType Const = Visitor.compute(V);
|
|
if (Visitor.bothKnown(Const))
|
|
return std::make_pair(ConstantInt::get(Context, Const.first),
|
|
ConstantInt::get(Context, Const.second));
|
|
|
|
V = V->stripPointerCasts();
|
|
|
|
// Check cache.
|
|
CacheMapTy::iterator CacheIt = CacheMap.find(V);
|
|
if (CacheIt != CacheMap.end())
|
|
return CacheIt->second;
|
|
|
|
// Always generate code immediately before the instruction being
|
|
// processed, so that the generated code dominates the same BBs.
|
|
BuilderTy::InsertPointGuard Guard(Builder);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
Builder.SetInsertPoint(I);
|
|
|
|
// Now compute the size and offset.
|
|
SizeOffsetEvalType Result;
|
|
|
|
// Record the pointers that were handled in this run, so that they can be
|
|
// cleaned later if something fails. We also use this set to break cycles that
|
|
// can occur in dead code.
|
|
if (!SeenVals.insert(V).second) {
|
|
Result = unknown();
|
|
} else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
|
|
Result = visitGEPOperator(*GEP);
|
|
} else if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
Result = visit(*I);
|
|
} else if (isa<Argument>(V) ||
|
|
(isa<ConstantExpr>(V) &&
|
|
cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
|
|
isa<GlobalAlias>(V) ||
|
|
isa<GlobalVariable>(V)) {
|
|
// Ignore values where we cannot do more than ObjectSizeVisitor.
|
|
Result = unknown();
|
|
} else {
|
|
LLVM_DEBUG(
|
|
dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
|
|
<< '\n');
|
|
Result = unknown();
|
|
}
|
|
|
|
// Don't reuse CacheIt since it may be invalid at this point.
|
|
CacheMap[V] = Result;
|
|
return Result;
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
|
|
if (!I.getAllocatedType()->isSized())
|
|
return unknown();
|
|
|
|
// must be a VLA
|
|
assert(I.isArrayAllocation());
|
|
Value *ArraySize = I.getArraySize();
|
|
Value *Size = ConstantInt::get(ArraySize->getType(),
|
|
DL.getTypeAllocSize(I.getAllocatedType()));
|
|
Size = Builder.CreateMul(Size, ArraySize);
|
|
return std::make_pair(Size, Zero);
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
|
|
Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
|
|
if (!FnData)
|
|
return unknown();
|
|
|
|
// Handle strdup-like functions separately.
|
|
if (FnData->AllocTy == StrDupLike) {
|
|
// TODO
|
|
return unknown();
|
|
}
|
|
|
|
Value *FirstArg = CS.getArgument(FnData->FstParam);
|
|
FirstArg = Builder.CreateZExt(FirstArg, IntTy);
|
|
if (FnData->SndParam < 0)
|
|
return std::make_pair(FirstArg, Zero);
|
|
|
|
Value *SecondArg = CS.getArgument(FnData->SndParam);
|
|
SecondArg = Builder.CreateZExt(SecondArg, IntTy);
|
|
Value *Size = Builder.CreateMul(FirstArg, SecondArg);
|
|
return std::make_pair(Size, Zero);
|
|
|
|
// TODO: handle more standard functions (+ wchar cousins):
|
|
// - strdup / strndup
|
|
// - strcpy / strncpy
|
|
// - strcat / strncat
|
|
// - memcpy / memmove
|
|
// - strcat / strncat
|
|
// - memset
|
|
}
|
|
|
|
SizeOffsetEvalType
|
|
ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetEvalType
|
|
ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetEvalType
|
|
ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
|
|
SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
|
|
if (!bothKnown(PtrData))
|
|
return unknown();
|
|
|
|
Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
|
|
Offset = Builder.CreateAdd(PtrData.second, Offset);
|
|
return std::make_pair(PtrData.first, Offset);
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
|
|
// clueless
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
|
|
// Create 2 PHIs: one for size and another for offset.
|
|
PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
|
|
PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
|
|
|
|
// Insert right away in the cache to handle recursive PHIs.
|
|
CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
|
|
|
|
// Compute offset/size for each PHI incoming pointer.
|
|
for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
|
|
Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
|
|
SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
|
|
|
|
if (!bothKnown(EdgeData)) {
|
|
OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
|
|
OffsetPHI->eraseFromParent();
|
|
SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
|
|
SizePHI->eraseFromParent();
|
|
return unknown();
|
|
}
|
|
SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
|
|
OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
|
|
}
|
|
|
|
Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
|
|
if ((Tmp = SizePHI->hasConstantValue())) {
|
|
Size = Tmp;
|
|
SizePHI->replaceAllUsesWith(Size);
|
|
SizePHI->eraseFromParent();
|
|
}
|
|
if ((Tmp = OffsetPHI->hasConstantValue())) {
|
|
Offset = Tmp;
|
|
OffsetPHI->replaceAllUsesWith(Offset);
|
|
OffsetPHI->eraseFromParent();
|
|
}
|
|
return std::make_pair(Size, Offset);
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
|
|
SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
|
|
SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
|
|
|
|
if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
|
|
return unknown();
|
|
if (TrueSide == FalseSide)
|
|
return TrueSide;
|
|
|
|
Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
|
|
FalseSide.first);
|
|
Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
|
|
FalseSide.second);
|
|
return std::make_pair(Size, Offset);
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
|
|
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
|
|
<< '\n');
|
|
return unknown();
|
|
}
|