1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp
Keno Fischer 089fc0dcee [WebAssembly] Fix conflict between ret legalization and sjlj
Summary:
When the WebAssembly backend encounters a return type that doesn't
fit within i32, SelectionDAG performs sret demotion, adding an
additional argument to the start of the function that contains
a pointer to an sret buffer to use instead. However, this conflicts
with the emscripten sjlj lowering pass. There we translate calls like:

```
	call {i32, i32} @foo()
```

into (in pseudo-llvm)
```
	%addr = @foo
	call {i32, i32} @__invoke_{i32,i32}(%addr)
```

i.e. we perform an indirect call through an extra function.
However, the sret transform now transforms this into
the equivalent of
```
        %addr = @foo
        %sret = alloca {i32, i32}
        call {i32, i32} @__invoke_{i32,i32}(%sret, %addr)
```
(while simultaneously translation the implementation of @foo as well).
Unfortunately, this doesn't work out. The __invoke_ ABI expected
the function address to be the first argument, causing crashes.

There is several possible ways to fix this:
1. Implementing the sret rewrite at the IR level as well and performing
   it as part of lowering to __invoke
2. Fixing the wasm backend to recognize that __invoke has a special ABI
3. A change to the binaryen/emscripten ABI to recognize this situation

This revision implements the middle option, teaching the backend to
treat __invoke_ functions specially in sret lowering. This is achieved
by
1) Introducing a new CallingConv ID for invoke functions
2) When this CallingConv ID is seen in the backend and the first argument
   is marked as sret (a function pointer would never be marked as sret),
   swapping the first two arguments.

Reviewed By: tlively, aheejin
Differential Revision: https://reviews.llvm.org/D65463

llvm-svn: 367935
2019-08-05 21:36:09 +00:00

1124 lines
44 KiB
C++

//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file lowers exception-related instructions and setjmp/longjmp
/// function calls in order to use Emscripten's JavaScript try and catch
/// mechanism.
///
/// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
/// try and catch syntax and relevant exception-related libraries implemented
/// in JavaScript glue code that will be produced by Emscripten. This is similar
/// to the current Emscripten asm.js exception handling in fastcomp. For
/// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
/// (Location: https://github.com/kripken/emscripten-fastcomp)
/// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
/// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
/// lib/Target/JSBackend/JSBackend.cpp
/// lib/Target/JSBackend/CallHandlers.h
///
/// * Exception handling
/// This pass lowers invokes and landingpads into library functions in JS glue
/// code. Invokes are lowered into function wrappers called invoke wrappers that
/// exist in JS side, which wraps the original function call with JS try-catch.
/// If an exception occurred, cxa_throw() function in JS side sets some
/// variables (see below) so we can check whether an exception occurred from
/// wasm code and handle it appropriately.
///
/// * Setjmp-longjmp handling
/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
/// The idea is that each block with a setjmp is broken up into two parts: the
/// part containing setjmp and the part right after the setjmp. The latter part
/// is either reached from the setjmp, or later from a longjmp. To handle the
/// longjmp, all calls that might longjmp are also called using invoke wrappers
/// and thus JS / try-catch. JS longjmp() function also sets some variables so
/// we can check / whether a longjmp occurred from wasm code. Each block with a
/// function call that might longjmp is also split up after the longjmp call.
/// After the longjmp call, we check whether a longjmp occurred, and if it did,
/// which setjmp it corresponds to, and jump to the right post-setjmp block.
/// We assume setjmp-longjmp handling always run after EH handling, which means
/// we don't expect any exception-related instructions when SjLj runs.
/// FIXME Currently this scheme does not support indirect call of setjmp,
/// because of the limitation of the scheme itself. fastcomp does not support it
/// either.
///
/// In detail, this pass does following things:
///
/// 1) Assumes the existence of global variables: __THREW__, __threwValue
/// __THREW__ and __threwValue will be set in invoke wrappers
/// in JS glue code. For what invoke wrappers are, refer to 3). These
/// variables are used for both exceptions and setjmp/longjmps.
/// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
/// means nothing occurred, 1 means an exception occurred, and other numbers
/// mean a longjmp occurred. In the case of longjmp, __threwValue variable
/// indicates the corresponding setjmp buffer the longjmp corresponds to.
///
/// * Exception handling
///
/// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
/// at link time.
/// The global variables in 1) will exist in wasm address space,
/// but their values should be set in JS code, so these functions
/// as interfaces to JS glue code. These functions are equivalent to the
/// following JS functions, which actually exist in asm.js version of JS
/// library.
///
/// function setThrew(threw, value) {
/// if (__THREW__ == 0) {
/// __THREW__ = threw;
/// __threwValue = value;
/// }
/// }
//
/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
///
/// In exception handling, getTempRet0 indicates the type of an exception
/// caught, and in setjmp/longjmp, it means the second argument to longjmp
/// function.
///
/// 3) Lower
/// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
/// into
/// __THREW__ = 0;
/// call @__invoke_SIG(func, arg1, arg2)
/// %__THREW__.val = __THREW__;
/// __THREW__ = 0;
/// if (%__THREW__.val == 1)
/// goto %lpad
/// else
/// goto %invoke.cont
/// SIG is a mangled string generated based on the LLVM IR-level function
/// signature. After LLVM IR types are lowered to the target wasm types,
/// the names for these wrappers will change based on wasm types as well,
/// as in invoke_vi (function takes an int and returns void). The bodies of
/// these wrappers will be generated in JS glue code, and inside those
/// wrappers we use JS try-catch to generate actual exception effects. It
/// also calls the original callee function. An example wrapper in JS code
/// would look like this:
/// function invoke_vi(index,a1) {
/// try {
/// Module["dynCall_vi"](index,a1); // This calls original callee
/// } catch(e) {
/// if (typeof e !== 'number' && e !== 'longjmp') throw e;
/// asm["setThrew"](1, 0); // setThrew is called here
/// }
/// }
/// If an exception is thrown, __THREW__ will be set to true in a wrapper,
/// so we can jump to the right BB based on this value.
///
/// 4) Lower
/// %val = landingpad catch c1 catch c2 catch c3 ...
/// ... use %val ...
/// into
/// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
/// %val = {%fmc, getTempRet0()}
/// ... use %val ...
/// Here N is a number calculated based on the number of clauses.
/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
///
/// 5) Lower
/// resume {%a, %b}
/// into
/// call @__resumeException(%a)
/// where __resumeException() is a function in JS glue code.
///
/// 6) Lower
/// call @llvm.eh.typeid.for(type) (intrinsic)
/// into
/// call @llvm_eh_typeid_for(type)
/// llvm_eh_typeid_for function will be generated in JS glue code.
///
/// * Setjmp / Longjmp handling
///
/// In case calls to longjmp() exists
///
/// 1) Lower
/// longjmp(buf, value)
/// into
/// emscripten_longjmp_jmpbuf(buf, value)
/// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
///
/// In case calls to setjmp() exists
///
/// 2) In the function entry that calls setjmp, initialize setjmpTable and
/// sejmpTableSize as follows:
/// setjmpTableSize = 4;
/// setjmpTable = (int *) malloc(40);
/// setjmpTable[0] = 0;
/// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
/// code.
///
/// 3) Lower
/// setjmp(buf)
/// into
/// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
/// setjmpTableSize = getTempRet0();
/// For each dynamic setjmp call, setjmpTable stores its ID (a number which
/// is incrementally assigned from 0) and its label (a unique number that
/// represents each callsite of setjmp). When we need more entries in
/// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
/// return the new table address, and assign the new table size in
/// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
/// buf. A BB with setjmp is split into two after setjmp call in order to
/// make the post-setjmp BB the possible destination of longjmp BB.
///
///
/// 4) Lower every call that might longjmp into
/// __THREW__ = 0;
/// call @__invoke_SIG(func, arg1, arg2)
/// %__THREW__.val = __THREW__;
/// __THREW__ = 0;
/// if (%__THREW__.val != 0 & __threwValue != 0) {
/// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
/// setjmpTableSize);
/// if (%label == 0)
/// emscripten_longjmp(%__THREW__.val, __threwValue);
/// setTempRet0(__threwValue);
/// } else {
/// %label = -1;
/// }
/// longjmp_result = getTempRet0();
/// switch label {
/// label 1: goto post-setjmp BB 1
/// label 2: goto post-setjmp BB 2
/// ...
/// default: goto splitted next BB
/// }
/// testSetjmp examines setjmpTable to see if there is a matching setjmp
/// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
/// will be the address of matching jmp_buf buffer and __threwValue be the
/// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
/// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
/// each setjmp callsite. Label 0 means this longjmp buffer does not
/// correspond to one of the setjmp callsites in this function, so in this
/// case we just chain the longjmp to the caller. (Here we call
/// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
/// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
/// emscripten_longjmp takes an int. Both of them will eventually be lowered
/// to emscripten_longjmp in s2wasm, but here we need two signatures - we
/// can't translate an int value to a jmp_buf.)
/// Label -1 means no longjmp occurred. Otherwise we jump to the right
/// post-setjmp BB based on the label.
///
///===----------------------------------------------------------------------===//
#include "WebAssembly.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
static cl::list<std::string>
EHWhitelist("emscripten-cxx-exceptions-whitelist",
cl::desc("The list of function names in which Emscripten-style "
"exception handling is enabled (see emscripten "
"EMSCRIPTEN_CATCHING_WHITELIST options)"),
cl::CommaSeparated);
namespace {
class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
static const char *ResumeFName;
static const char *EHTypeIDFName;
static const char *EmLongjmpFName;
static const char *EmLongjmpJmpbufFName;
static const char *SaveSetjmpFName;
static const char *TestSetjmpFName;
static const char *FindMatchingCatchPrefix;
static const char *InvokePrefix;
bool EnableEH; // Enable exception handling
bool EnableSjLj; // Enable setjmp/longjmp handling
GlobalVariable *ThrewGV = nullptr;
GlobalVariable *ThrewValueGV = nullptr;
Function *GetTempRet0Func = nullptr;
Function *SetTempRet0Func = nullptr;
Function *ResumeF = nullptr;
Function *EHTypeIDF = nullptr;
Function *EmLongjmpF = nullptr;
Function *EmLongjmpJmpbufF = nullptr;
Function *SaveSetjmpF = nullptr;
Function *TestSetjmpF = nullptr;
// __cxa_find_matching_catch_N functions.
// Indexed by the number of clauses in an original landingpad instruction.
DenseMap<int, Function *> FindMatchingCatches;
// Map of <function signature string, invoke_ wrappers>
StringMap<Function *> InvokeWrappers;
// Set of whitelisted function names for exception handling
std::set<std::string> EHWhitelistSet;
StringRef getPassName() const override {
return "WebAssembly Lower Emscripten Exceptions";
}
bool runEHOnFunction(Function &F);
bool runSjLjOnFunction(Function &F);
Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
Value *&LongjmpResult, BasicBlock *&EndBB);
template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
bool canLongjmp(Module &M, const Value *Callee) const;
void rebuildSSA(Function &F);
public:
static char ID;
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
: ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
}
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
}
};
} // End anonymous namespace
const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
"llvm_eh_typeid_for";
const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
"emscripten_longjmp";
const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
"emscripten_longjmp_jmpbuf";
const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
"__cxa_find_matching_catch_";
const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
"WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
false, false)
ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
bool EnableSjLj) {
return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
}
static bool canThrow(const Value *V) {
if (const auto *F = dyn_cast<const Function>(V)) {
// Intrinsics cannot throw
if (F->isIntrinsic())
return false;
StringRef Name = F->getName();
// leave setjmp and longjmp (mostly) alone, we process them properly later
if (Name == "setjmp" || Name == "longjmp")
return false;
return !F->doesNotThrow();
}
// not a function, so an indirect call - can throw, we can't tell
return true;
}
// Get a global variable with the given name. If it doesn't exist declare it,
// which will generate an import and asssumes that it will exist at link time.
static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
const char *Name) {
auto* GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
if (!GV)
report_fatal_error(Twine("unable to create global: ") + Name);
return GV;
}
// Simple function name mangler.
// This function simply takes LLVM's string representation of parameter types
// and concatenate them with '_'. There are non-alphanumeric characters but llc
// is ok with it, and we need to postprocess these names after the lowering
// phase anyway.
static std::string getSignature(FunctionType *FTy) {
std::string Sig;
raw_string_ostream OS(Sig);
OS << *FTy->getReturnType();
for (Type *ParamTy : FTy->params())
OS << "_" << *ParamTy;
if (FTy->isVarArg())
OS << "_...";
Sig = OS.str();
Sig.erase(remove_if(Sig, isspace), Sig.end());
// When s2wasm parses .s file, a comma means the end of an argument. So a
// mangled function name can contain any character but a comma.
std::replace(Sig.begin(), Sig.end(), ',', '.');
return Sig;
}
// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
// This is because a landingpad instruction contains two more arguments, a
// personality function and a cleanup bit, and __cxa_find_matching_catch_N
// functions are named after the number of arguments in the original landingpad
// instruction.
Function *
WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
unsigned NumClauses) {
if (FindMatchingCatches.count(NumClauses))
return FindMatchingCatches[NumClauses];
PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
Function *F =
Function::Create(FTy, GlobalValue::ExternalLinkage,
FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
FindMatchingCatches[NumClauses] = F;
return F;
}
// Generate invoke wrapper seqence with preamble and postamble
// Preamble:
// __THREW__ = 0;
// Postamble:
// %__THREW__.val = __THREW__; __THREW__ = 0;
// Returns %__THREW__.val, which indicates whether an exception is thrown (or
// whether longjmp occurred), for future use.
template <typename CallOrInvoke>
Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
LLVMContext &C = CI->getModule()->getContext();
// If we are calling a function that is noreturn, we must remove that
// attribute. The code we insert here does expect it to return, after we
// catch the exception.
if (CI->doesNotReturn()) {
if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
F->removeFnAttr(Attribute::NoReturn);
CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
}
IRBuilder<> IRB(C);
IRB.SetInsertPoint(CI);
// Pre-invoke
// __THREW__ = 0;
IRB.CreateStore(IRB.getInt32(0), ThrewGV);
// Invoke function wrapper in JavaScript
SmallVector<Value *, 16> Args;
// Put the pointer to the callee as first argument, so it can be called
// within the invoke wrapper later
Args.push_back(CI->getCalledValue());
Args.append(CI->arg_begin(), CI->arg_end());
CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
NewCall->takeName(CI);
NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
NewCall->setDebugLoc(CI->getDebugLoc());
// Because we added the pointer to the callee as first argument, all
// argument attribute indices have to be incremented by one.
SmallVector<AttributeSet, 8> ArgAttributes;
const AttributeList &InvokeAL = CI->getAttributes();
// No attributes for the callee pointer.
ArgAttributes.push_back(AttributeSet());
// Copy the argument attributes from the original
for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
if (FnAttrs.contains(Attribute::AllocSize)) {
// The allocsize attribute (if any) referes to parameters by index and needs
// to be adjusted.
unsigned SizeArg;
Optional<unsigned> NEltArg;
std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
SizeArg += 1;
if (NEltArg.hasValue())
NEltArg = NEltArg.getValue() + 1;
FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
}
// Reconstruct the AttributesList based on the vector we constructed.
AttributeList NewCallAL =
AttributeList::get(C, AttributeSet::get(C, FnAttrs),
InvokeAL.getRetAttributes(), ArgAttributes);
NewCall->setAttributes(NewCallAL);
CI->replaceAllUsesWith(NewCall);
// Post-invoke
// %__THREW__.val = __THREW__; __THREW__ = 0;
Value *Threw =
IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
IRB.CreateStore(IRB.getInt32(0), ThrewGV);
return Threw;
}
// Get matching invoke wrapper based on callee signature
template <typename CallOrInvoke>
Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
Module *M = CI->getModule();
SmallVector<Type *, 16> ArgTys;
Value *Callee = CI->getCalledValue();
FunctionType *CalleeFTy;
if (auto *F = dyn_cast<Function>(Callee))
CalleeFTy = F->getFunctionType();
else {
auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
}
std::string Sig = getSignature(CalleeFTy);
if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
return InvokeWrappers[Sig];
// Put the pointer to the callee as first argument
ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
// Add argument types
ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
CalleeFTy->isVarArg());
Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
InvokePrefix + Sig, M);
InvokeWrappers[Sig] = F;
return F;
}
bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
const Value *Callee) const {
if (auto *CalleeF = dyn_cast<Function>(Callee))
if (CalleeF->isIntrinsic())
return false;
// Attempting to transform inline assembly will result in something like:
// call void @__invoke_void(void ()* asm ...)
// which is invalid because inline assembly blocks do not have addresses
// and can't be passed by pointer. The result is a crash with illegal IR.
if (isa<InlineAsm>(Callee))
return false;
// The reason we include malloc/free here is to exclude the malloc/free
// calls generated in setjmp prep / cleanup routines.
Function *SetjmpF = M.getFunction("setjmp");
Function *MallocF = M.getFunction("malloc");
Function *FreeF = M.getFunction("free");
if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
return false;
// There are functions in JS glue code
if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
Callee == TestSetjmpF)
return false;
// __cxa_find_matching_catch_N functions cannot longjmp
if (Callee->getName().startswith(FindMatchingCatchPrefix))
return false;
// Exception-catching related functions
Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
Function *EndCatchF = M.getFunction("__cxa_end_catch");
Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
Function *ThrowF = M.getFunction("__cxa_throw");
Function *TerminateF = M.getFunction("__clang_call_terminate");
if (Callee == BeginCatchF || Callee == EndCatchF ||
Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF ||
Callee == GetTempRet0Func || Callee == SetTempRet0Func)
return false;
// Otherwise we don't know
return true;
}
// Generate testSetjmp function call seqence with preamble and postamble.
// The code this generates is equivalent to the following JavaScript code:
// if (%__THREW__.val != 0 & threwValue != 0) {
// %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
// if (%label == 0)
// emscripten_longjmp(%__THREW__.val, threwValue);
// setTempRet0(threwValue);
// } else {
// %label = -1;
// }
// %longjmp_result = getTempRet0();
//
// As output parameters. returns %label, %longjmp_result, and the BB the last
// instruction (%longjmp_result = ...) is in.
void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
BasicBlock *&EndBB) {
Function *F = BB->getParent();
LLVMContext &C = BB->getModule()->getContext();
IRBuilder<> IRB(C);
IRB.SetInsertPoint(InsertPt);
// if (%__THREW__.val != 0 & threwValue != 0)
IRB.SetInsertPoint(BB);
BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
ThrewValueGV->getName() + ".val");
Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
// %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
// if (%label == 0)
IRB.SetInsertPoint(ThenBB1);
BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
Threw->getName() + ".i32p");
Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
ThrewInt->getName() + ".loaded");
Value *ThenLabel = IRB.CreateCall(
TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
// emscripten_longjmp(%__THREW__.val, threwValue);
IRB.SetInsertPoint(ThenBB2);
IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
IRB.CreateUnreachable();
// setTempRet0(threwValue);
IRB.SetInsertPoint(EndBB2);
IRB.CreateCall(SetTempRet0Func, ThrewValue);
IRB.CreateBr(EndBB1);
IRB.SetInsertPoint(ElseBB1);
IRB.CreateBr(EndBB1);
// longjmp_result = getTempRet0();
IRB.SetInsertPoint(EndBB1);
PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
LabelPHI->addIncoming(ThenLabel, EndBB2);
LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
// Output parameter assignment
Label = LabelPHI;
EndBB = EndBB1;
LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
}
void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
DT.recalculate(F); // CFG has been changed
SSAUpdater SSA;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
Use &U = *UI;
++UI;
SSA.Initialize(I.getType(), I.getName());
SSA.AddAvailableValue(&BB, &I);
auto *User = cast<Instruction>(U.getUser());
if (User->getParent() == &BB)
continue;
if (auto *UserPN = dyn_cast<PHINode>(User))
if (UserPN->getIncomingBlock(U) == &BB)
continue;
if (DT.dominates(&I, User))
continue;
SSA.RewriteUseAfterInsertions(U);
}
}
}
}
bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
LLVMContext &C = M.getContext();
IRBuilder<> IRB(C);
Function *SetjmpF = M.getFunction("setjmp");
Function *LongjmpF = M.getFunction("longjmp");
bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
// Declare (or get) global variables __THREW__, __threwValue, and
// getTempRet0/setTempRet0 function which are used in common for both
// exception handling and setjmp/longjmp handling
ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
GetTempRet0Func =
Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
GlobalValue::ExternalLinkage, "getTempRet0", &M);
SetTempRet0Func = Function::Create(
FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
GlobalValue::ExternalLinkage, "setTempRet0", &M);
GetTempRet0Func->setDoesNotThrow();
SetTempRet0Func->setDoesNotThrow();
bool Changed = false;
// Exception handling
if (EnableEH) {
// Register __resumeException function
FunctionType *ResumeFTy =
FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
ResumeFName, &M);
// Register llvm_eh_typeid_for function
FunctionType *EHTypeIDTy =
FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
EHTypeIDFName, &M);
for (Function &F : M) {
if (F.isDeclaration())
continue;
Changed |= runEHOnFunction(F);
}
}
// Setjmp/longjmp handling
if (DoSjLj) {
Changed = true; // We have setjmp or longjmp somewhere
if (LongjmpF) {
// Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
// defined in JS code
EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
GlobalValue::ExternalLinkage,
EmLongjmpJmpbufFName, &M);
LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
}
if (SetjmpF) {
// Register saveSetjmp function
FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
IRB.getInt32Ty(), Type::getInt32PtrTy(C),
IRB.getInt32Ty()};
FunctionType *FTy =
FunctionType::get(Type::getInt32PtrTy(C), Params, false);
SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
SaveSetjmpFName, &M);
// Register testSetjmp function
Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
TestSetjmpFName, &M);
FTy = FunctionType::get(IRB.getVoidTy(),
{IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
EmLongjmpFName, &M);
// Only traverse functions that uses setjmp in order not to insert
// unnecessary prep / cleanup code in every function
SmallPtrSet<Function *, 8> SetjmpUsers;
for (User *U : SetjmpF->users()) {
auto *UI = cast<Instruction>(U);
SetjmpUsers.insert(UI->getFunction());
}
for (Function *F : SetjmpUsers)
runSjLjOnFunction(*F);
}
}
if (!Changed) {
// Delete unused global variables and functions
if (ResumeF)
ResumeF->eraseFromParent();
if (EHTypeIDF)
EHTypeIDF->eraseFromParent();
if (EmLongjmpF)
EmLongjmpF->eraseFromParent();
if (SaveSetjmpF)
SaveSetjmpF->eraseFromParent();
if (TestSetjmpF)
TestSetjmpF->eraseFromParent();
return false;
}
return true;
}
bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
Module &M = *F.getParent();
LLVMContext &C = F.getContext();
IRBuilder<> IRB(C);
bool Changed = false;
SmallVector<Instruction *, 64> ToErase;
SmallPtrSet<LandingPadInst *, 32> LandingPads;
bool AllowExceptions =
areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
for (BasicBlock &BB : F) {
auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
if (!II)
continue;
Changed = true;
LandingPads.insert(II->getLandingPadInst());
IRB.SetInsertPoint(II);
bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
if (NeedInvoke) {
// Wrap invoke with invoke wrapper and generate preamble/postamble
Value *Threw = wrapInvoke(II);
ToErase.push_back(II);
// Insert a branch based on __THREW__ variable
Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
} else {
// This can't throw, and we don't need this invoke, just replace it with a
// call+branch
SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
CallInst *NewCall =
IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
NewCall->takeName(II);
NewCall->setCallingConv(II->getCallingConv());
NewCall->setDebugLoc(II->getDebugLoc());
NewCall->setAttributes(II->getAttributes());
II->replaceAllUsesWith(NewCall);
ToErase.push_back(II);
IRB.CreateBr(II->getNormalDest());
// Remove any PHI node entries from the exception destination
II->getUnwindDest()->removePredecessor(&BB);
}
}
// Process resume instructions
for (BasicBlock &BB : F) {
// Scan the body of the basic block for resumes
for (Instruction &I : BB) {
auto *RI = dyn_cast<ResumeInst>(&I);
if (!RI)
continue;
// Split the input into legal values
Value *Input = RI->getValue();
IRB.SetInsertPoint(RI);
Value *Low = IRB.CreateExtractValue(Input, 0, "low");
// Create a call to __resumeException function
IRB.CreateCall(ResumeF, {Low});
// Add a terminator to the block
IRB.CreateUnreachable();
ToErase.push_back(RI);
}
}
// Process llvm.eh.typeid.for intrinsics
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
auto *CI = dyn_cast<CallInst>(&I);
if (!CI)
continue;
const Function *Callee = CI->getCalledFunction();
if (!Callee)
continue;
if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
continue;
IRB.SetInsertPoint(CI);
CallInst *NewCI =
IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
CI->replaceAllUsesWith(NewCI);
ToErase.push_back(CI);
}
}
// Look for orphan landingpads, can occur in blocks with no predecessors
for (BasicBlock &BB : F) {
Instruction *I = BB.getFirstNonPHI();
if (auto *LPI = dyn_cast<LandingPadInst>(I))
LandingPads.insert(LPI);
}
// Handle all the landingpad for this function together, as multiple invokes
// may share a single lp
for (LandingPadInst *LPI : LandingPads) {
IRB.SetInsertPoint(LPI);
SmallVector<Value *, 16> FMCArgs;
for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
Constant *Clause = LPI->getClause(I);
// As a temporary workaround for the lack of aggregate varargs support
// in the interface between JS and wasm, break out filter operands into
// their component elements.
if (LPI->isFilter(I)) {
auto *ATy = cast<ArrayType>(Clause->getType());
for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
FMCArgs.push_back(EV);
}
} else
FMCArgs.push_back(Clause);
}
// Create a call to __cxa_find_matching_catch_N function
Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
Value *Undef = UndefValue::get(LPI->getType());
Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
LPI->replaceAllUsesWith(Pair1);
ToErase.push_back(LPI);
}
// Erase everything we no longer need in this function
for (Instruction *I : ToErase)
I->eraseFromParent();
return Changed;
}
bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
Module &M = *F.getParent();
LLVMContext &C = F.getContext();
IRBuilder<> IRB(C);
SmallVector<Instruction *, 64> ToErase;
// Vector of %setjmpTable values
std::vector<Instruction *> SetjmpTableInsts;
// Vector of %setjmpTableSize values
std::vector<Instruction *> SetjmpTableSizeInsts;
// Setjmp preparation
// This instruction effectively means %setjmpTableSize = 4.
// We create this as an instruction intentionally, and we don't want to fold
// this instruction to a constant 4, because this value will be used in
// SSAUpdater.AddAvailableValue(...) later.
BasicBlock &EntryBB = F.getEntryBlock();
BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
&*EntryBB.getFirstInsertionPt());
// setjmpTable = (int *) malloc(40);
Instruction *SetjmpTable = CallInst::CreateMalloc(
SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
nullptr, nullptr, "setjmpTable");
// setjmpTable[0] = 0;
IRB.SetInsertPoint(SetjmpTableSize);
IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
SetjmpTableInsts.push_back(SetjmpTable);
SetjmpTableSizeInsts.push_back(SetjmpTableSize);
// Setjmp transformation
std::vector<PHINode *> SetjmpRetPHIs;
Function *SetjmpF = M.getFunction("setjmp");
for (User *U : SetjmpF->users()) {
auto *CI = dyn_cast<CallInst>(U);
if (!CI)
report_fatal_error("Does not support indirect calls to setjmp");
BasicBlock *BB = CI->getParent();
if (BB->getParent() != &F) // in other function
continue;
// The tail is everything right after the call, and will be reached once
// when setjmp is called, and later when longjmp returns to the setjmp
BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
// Add a phi to the tail, which will be the output of setjmp, which
// indicates if this is the first call or a longjmp back. The phi directly
// uses the right value based on where we arrive from
IRB.SetInsertPoint(Tail->getFirstNonPHI());
PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
// setjmp initial call returns 0
SetjmpRet->addIncoming(IRB.getInt32(0), BB);
// The proper output is now this, not the setjmp call itself
CI->replaceAllUsesWith(SetjmpRet);
// longjmp returns to the setjmp will add themselves to this phi
SetjmpRetPHIs.push_back(SetjmpRet);
// Fix call target
// Our index in the function is our place in the array + 1 to avoid index
// 0, because index 0 means the longjmp is not ours to handle.
IRB.SetInsertPoint(CI);
Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
SetjmpTable, SetjmpTableSize};
Instruction *NewSetjmpTable =
IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
Instruction *NewSetjmpTableSize =
IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
SetjmpTableInsts.push_back(NewSetjmpTable);
SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
ToErase.push_back(CI);
}
// Update each call that can longjmp so it can return to a setjmp where
// relevant.
// Because we are creating new BBs while processing and don't want to make
// all these newly created BBs candidates again for longjmp processing, we
// first make the vector of candidate BBs.
std::vector<BasicBlock *> BBs;
for (BasicBlock &BB : F)
BBs.push_back(&BB);
// BBs.size() will change within the loop, so we query it every time
for (unsigned I = 0; I < BBs.size(); I++) {
BasicBlock *BB = BBs[I];
for (Instruction &I : *BB) {
assert(!isa<InvokeInst>(&I));
auto *CI = dyn_cast<CallInst>(&I);
if (!CI)
continue;
const Value *Callee = CI->getCalledValue();
if (!canLongjmp(M, Callee))
continue;
Value *Threw = nullptr;
BasicBlock *Tail;
if (Callee->getName().startswith(InvokePrefix)) {
// If invoke wrapper has already been generated for this call in
// previous EH phase, search for the load instruction
// %__THREW__.val = __THREW__;
// in postamble after the invoke wrapper call
LoadInst *ThrewLI = nullptr;
StoreInst *ThrewResetSI = nullptr;
for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
I != IE; ++I) {
if (auto *LI = dyn_cast<LoadInst>(I))
if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
if (GV == ThrewGV) {
Threw = ThrewLI = LI;
break;
}
}
// Search for the store instruction after the load above
// __THREW__ = 0;
for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
I != IE; ++I) {
if (auto *SI = dyn_cast<StoreInst>(I))
if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
ThrewResetSI = SI;
break;
}
}
assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
} else {
// Wrap call with invoke wrapper and generate preamble/postamble
Threw = wrapInvoke(CI);
ToErase.push_back(CI);
Tail = SplitBlock(BB, CI->getNextNode());
}
// We need to replace the terminator in Tail - SplitBlock makes BB go
// straight to Tail, we need to check if a longjmp occurred, and go to the
// right setjmp-tail if so
ToErase.push_back(BB->getTerminator());
// Generate a function call to testSetjmp function and preamble/postamble
// code to figure out (1) whether longjmp occurred (2) if longjmp
// occurred, which setjmp it corresponds to
Value *Label = nullptr;
Value *LongjmpResult = nullptr;
BasicBlock *EndBB = nullptr;
wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
LongjmpResult, EndBB);
assert(Label && LongjmpResult && EndBB);
// Create switch instruction
IRB.SetInsertPoint(EndBB);
SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
// -1 means no longjmp happened, continue normally (will hit the default
// switch case). 0 means a longjmp that is not ours to handle, needs a
// rethrow. Otherwise the index is the same as the index in P+1 (to avoid
// 0).
for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
}
// We are splitting the block here, and must continue to find other calls
// in the block - which is now split. so continue to traverse in the Tail
BBs.push_back(Tail);
}
}
// Erase everything we no longer need in this function
for (Instruction *I : ToErase)
I->eraseFromParent();
// Free setjmpTable buffer before each return instruction
for (BasicBlock &BB : F) {
Instruction *TI = BB.getTerminator();
if (isa<ReturnInst>(TI))
CallInst::CreateFree(SetjmpTable, TI);
}
// Every call to saveSetjmp can change setjmpTable and setjmpTableSize
// (when buffer reallocation occurs)
// entry:
// setjmpTableSize = 4;
// setjmpTable = (int *) malloc(40);
// setjmpTable[0] = 0;
// ...
// somebb:
// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
// setjmpTableSize = getTempRet0();
// So we need to make sure the SSA for these variables is valid so that every
// saveSetjmp and testSetjmp calls have the correct arguments.
SSAUpdater SetjmpTableSSA;
SSAUpdater SetjmpTableSizeSSA;
SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
for (Instruction *I : SetjmpTableInsts)
SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
for (Instruction *I : SetjmpTableSizeInsts)
SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
UI != UE;) {
// Grab the use before incrementing the iterator.
Use &U = *UI;
// Increment the iterator before removing the use from the list.
++UI;
if (auto *I = dyn_cast<Instruction>(U.getUser()))
if (I->getParent() != &EntryBB)
SetjmpTableSSA.RewriteUse(U);
}
for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
UI != UE;) {
Use &U = *UI;
++UI;
if (auto *I = dyn_cast<Instruction>(U.getUser()))
if (I->getParent() != &EntryBB)
SetjmpTableSizeSSA.RewriteUse(U);
}
// Finally, our modifications to the cfg can break dominance of SSA variables.
// For example, in this code,
// if (x()) { .. setjmp() .. }
// if (y()) { .. longjmp() .. }
// We must split the longjmp block, and it can jump into the block splitted
// from setjmp one. But that means that when we split the setjmp block, it's
// first part no longer dominates its second part - there is a theoretically
// possible control flow path where x() is false, then y() is true and we
// reach the second part of the setjmp block, without ever reaching the first
// part. So, we rebuild SSA form here.
rebuildSSA(F);
return true;
}