1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 13:33:37 +02:00
llvm-mirror/test/Bitcode/thinlto-function-summary-refgraph.ll
Peter Collingbourne 2d3eb26eeb Bitcode: Add a string table to the bitcode format.
Add a top-level STRTAB block containing a string table blob, and start storing
strings for module codes FUNCTION, GLOBALVAR, ALIAS, IFUNC and COMDAT in
the string table.

This change allows us to share names between globals and comdats as well
as between modules, and improves the efficiency of loading bitcode files by
no longer using a bit encoding for symbol names. Once we start writing the
irsymtab to the bitcode file we will also be able to share strings between
it and the module.

On my machine, link time for Chromium for Linux with ThinLTO decreases by
about 7% for no-op incremental builds or about 1% for full builds. Total
bitcode file size decreases by about 3%.

As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2017-April/111732.html

Differential Revision: https://reviews.llvm.org/D31838

llvm-svn: 300464
2017-04-17 17:51:36 +00:00

143 lines
4.8 KiB
LLVM

; Test to check both the callgraph and refgraph in summary
; RUN: opt -module-summary %s -o %t.o
; RUN: llvm-bcanalyzer -dump %t.o | FileCheck %s
; CHECK: <SOURCE_FILENAME
; "bar"
; CHECK-NEXT: <GLOBALVAR {{.*}} op0=0 op1=3
; "globalvar"
; CHECK-NEXT: <GLOBALVAR {{.*}} op0=3 op1=9
; "func"
; CHECK-NEXT: <FUNCTION op0=12 op1=4
; "func2"
; CHECK-NEXT: <FUNCTION op0=16 op1=5
; "foo"
; CHECK-NEXT: <FUNCTION op0=21 op1=3
; "func3"
; CHECK-NEXT: <FUNCTION op0=24 op1=5
; "W"
; CHECK-NEXT: <FUNCTION op0=29 op1=1
; "X"
; CHECK-NEXT: <FUNCTION op0=30 op1=1
; "Y"
; CHECK-NEXT: <FUNCTION op0=31 op1=1
; "Z"
; CHECK-NEXT: <FUNCTION op0=32 op1=1
; "llvm.ctpop.i8"
; CHECK-NEXT: <FUNCTION op0=33 op1=13
; "main"
; CHECK-NEXT: <FUNCTION op0=46 op1=4
; See if the calls and other references are recorded properly using the
; expected value id and other information as appropriate (callsite cout
; for calls). Use different linkage types for the various test cases to
; distinguish the test cases here (op1 contains the linkage type).
; Note that op3 contains the # non-call references.
; This also ensures that we didn't include a call or reference to intrinsic
; llvm.ctpop.i8.
; CHECK: <GLOBALVAL_SUMMARY_BLOCK
; Function main contains call to func, as well as address reference to func:
; op0=main op4=func op5=func
; CHECK-DAG: <PERMODULE {{.*}} op0=11 op1=0 {{.*}} op3=1 op4=2 op5=2/>
; Function W contains a call to func3 as well as a reference to globalvar:
; op0=W op4=globalvar op5=func3
; CHECK-DAG: <PERMODULE {{.*}} op0=6 op1=5 {{.*}} op3=1 op4=1 op5=5/>
; Function X contains call to foo, as well as address reference to foo
; which is in the same instruction as the call:
; op0=X op4=foo op5=foo
; CHECK-DAG: <PERMODULE {{.*}} op0=7 op1=1 {{.*}} op3=1 op4=4 op5=4/>
; Function Y contains call to func2, and ensures we don't incorrectly add
; a reference to it when reached while earlier analyzing the phi using its
; return value:
; op0=Y op4=func2
; CHECK-DAG: <PERMODULE {{.*}} op0=8 op1=8 {{.*}} op3=0 op4=3/>
; Function Z contains call to func2, and ensures we don't incorrectly add
; a reference to it when reached while analyzing subsequent use of its return
; value:
; op0=Z op4=func2
; CHECK-DAG: <PERMODULE {{.*}} op0=9 op1=3 {{.*}} op3=0 op4=3/>
; Variable bar initialization contains address reference to func:
; op0=bar op2=func
; CHECK-DAG: <PERMODULE_GLOBALVAR_INIT_REFS {{.*}} op0=0 op1=0 op2=2/>
; CHECK: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <STRTAB_BLOCK
; CHECK-NEXT: blob data = 'barglobalvarfuncfunc2foofunc3WXYZllvm.ctpop.i8main'
; ModuleID = 'thinlto-function-summary-refgraph.ll'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
@bar = global void (...)* bitcast (void ()* @func to void (...)*), align 8
@globalvar = global i32 0, align 4
declare void @func() #0
declare i32 @func2(...) #1
declare void @foo(i8* %F) #0
declare i32 @func3(i32* dereferenceable(4)) #2
; Function Attrs: nounwind uwtable
define weak_odr void @W() #0 {
entry:
%call = tail call i32 @func3(i32* nonnull dereferenceable(4) @globalvar)
ret void
}
; Function Attrs: nounwind uwtable
define available_externally void @X() #0 {
entry:
call void @foo(i8* bitcast (void (i8*)* @foo to i8*))
ret void
}
; Function Attrs: nounwind uwtable
define private i32 @Y(i32 %i) #0 {
entry:
%cmp3 = icmp slt i32 %i, 10
br i1 %cmp3, label %while.body.preheader, label %while.end
while.body.preheader: ; preds = %entry
br label %while.body
while.body: ; preds = %while.body.preheader, %while.body
%j.05 = phi i32 [ %add, %while.body ], [ 0, %while.body.preheader ]
%i.addr.04 = phi i32 [ %inc, %while.body ], [ %i, %while.body.preheader ]
%inc = add nsw i32 %i.addr.04, 1
%call = tail call i32 (...) @func2() #2
%add = add nsw i32 %call, %j.05
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %while.end.loopexit, label %while.body
while.end.loopexit: ; preds = %while.body
%add.lcssa = phi i32 [ %add, %while.body ]
br label %while.end
while.end: ; preds = %while.end.loopexit, %entry
%j.0.lcssa = phi i32 [ 0, %entry ], [ %add.lcssa, %while.end.loopexit ]
ret i32 %j.0.lcssa
}
; Function Attrs: nounwind uwtable
define linkonce_odr i32 @Z() #0 {
entry:
%call = tail call i32 (...) @func2() #2
ret i32 %call
}
declare i8 @llvm.ctpop.i8(i8)
; Function Attrs: nounwind uwtable
define i32 @main() #0 {
entry:
%retval = alloca i32, align 4
%foo = alloca void (...)*, align 8
store i32 0, i32* %retval, align 4
store void (...)* bitcast (void ()* @func to void (...)*), void (...)** %foo, align 8
%0 = load void (...)*, void (...)** %foo, align 8
call void (...) %0()
call void @func()
call i8 @llvm.ctpop.i8( i8 10 )
ret i32 0
}