mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
4ad351ca8e
We're immediately dereferencing the casted pointer, so use cast<> which will assert instead of dyn_cast<> which can return null. Fixes static analyzer warning.
639 lines
23 KiB
C++
639 lines
23 KiB
C++
//===- MemProfiler.cpp - memory allocation and access profiler ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of MemProfiler. Memory accesses are instrumented
|
|
// to increment the access count held in a shadow memory location, or
|
|
// alternatively to call into the runtime. Memory intrinsic calls (memmove,
|
|
// memcpy, memset) are changed to call the memory profiling runtime version
|
|
// instead.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "memprof"
|
|
|
|
constexpr int LLVM_MEM_PROFILER_VERSION = 1;
|
|
|
|
// Size of memory mapped to a single shadow location.
|
|
constexpr uint64_t DefaultShadowGranularity = 64;
|
|
|
|
// Scale from granularity down to shadow size.
|
|
constexpr uint64_t DefaultShadowScale = 3;
|
|
|
|
constexpr char MemProfModuleCtorName[] = "memprof.module_ctor";
|
|
constexpr uint64_t MemProfCtorAndDtorPriority = 1;
|
|
// On Emscripten, the system needs more than one priorities for constructors.
|
|
constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50;
|
|
constexpr char MemProfInitName[] = "__memprof_init";
|
|
constexpr char MemProfVersionCheckNamePrefix[] =
|
|
"__memprof_version_mismatch_check_v";
|
|
|
|
constexpr char MemProfShadowMemoryDynamicAddress[] =
|
|
"__memprof_shadow_memory_dynamic_address";
|
|
|
|
constexpr char MemProfFilenameVar[] = "__memprof_profile_filename";
|
|
|
|
// Command-line flags.
|
|
|
|
static cl::opt<bool> ClInsertVersionCheck(
|
|
"memprof-guard-against-version-mismatch",
|
|
cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
// This flag may need to be replaced with -f[no-]memprof-reads.
|
|
static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads",
|
|
cl::desc("instrument read instructions"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
ClInstrumentWrites("memprof-instrument-writes",
|
|
cl::desc("instrument write instructions"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClInstrumentAtomics(
|
|
"memprof-instrument-atomics",
|
|
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClUseCalls(
|
|
"memprof-use-callbacks",
|
|
cl::desc("Use callbacks instead of inline instrumentation sequences."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<std::string>
|
|
ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix",
|
|
cl::desc("Prefix for memory access callbacks"),
|
|
cl::Hidden, cl::init("__memprof_"));
|
|
|
|
// These flags allow to change the shadow mapping.
|
|
// The shadow mapping looks like
|
|
// Shadow = ((Mem & mask) >> scale) + offset
|
|
|
|
static cl::opt<int> ClMappingScale("memprof-mapping-scale",
|
|
cl::desc("scale of memprof shadow mapping"),
|
|
cl::Hidden, cl::init(DefaultShadowScale));
|
|
|
|
static cl::opt<int>
|
|
ClMappingGranularity("memprof-mapping-granularity",
|
|
cl::desc("granularity of memprof shadow mapping"),
|
|
cl::Hidden, cl::init(DefaultShadowGranularity));
|
|
|
|
// Debug flags.
|
|
|
|
static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden,
|
|
cl::init(0));
|
|
|
|
static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden,
|
|
cl::desc("Debug func"));
|
|
|
|
static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
|
|
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
|
|
|
|
namespace {
|
|
|
|
/// This struct defines the shadow mapping using the rule:
|
|
/// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset.
|
|
struct ShadowMapping {
|
|
ShadowMapping() {
|
|
Scale = ClMappingScale;
|
|
Granularity = ClMappingGranularity;
|
|
Mask = ~(Granularity - 1);
|
|
}
|
|
|
|
int Scale;
|
|
int Granularity;
|
|
uint64_t Mask; // Computed as ~(Granularity-1)
|
|
};
|
|
|
|
static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) {
|
|
return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority
|
|
: MemProfCtorAndDtorPriority;
|
|
}
|
|
|
|
struct InterestingMemoryAccess {
|
|
Value *Addr = nullptr;
|
|
bool IsWrite;
|
|
unsigned Alignment;
|
|
uint64_t TypeSize;
|
|
Value *MaybeMask = nullptr;
|
|
};
|
|
|
|
/// Instrument the code in module to profile memory accesses.
|
|
class MemProfiler {
|
|
public:
|
|
MemProfiler(Module &M) {
|
|
C = &(M.getContext());
|
|
LongSize = M.getDataLayout().getPointerSizeInBits();
|
|
IntptrTy = Type::getIntNTy(*C, LongSize);
|
|
}
|
|
|
|
/// If it is an interesting memory access, populate information
|
|
/// about the access and return a InterestingMemoryAccess struct.
|
|
/// Otherwise return None.
|
|
Optional<InterestingMemoryAccess>
|
|
isInterestingMemoryAccess(Instruction *I) const;
|
|
|
|
void instrumentMop(Instruction *I, const DataLayout &DL,
|
|
InterestingMemoryAccess &Access);
|
|
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
|
|
Value *Addr, uint32_t TypeSize, bool IsWrite);
|
|
void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
|
|
Instruction *I, Value *Addr,
|
|
unsigned Alignment, uint32_t TypeSize,
|
|
bool IsWrite);
|
|
void instrumentMemIntrinsic(MemIntrinsic *MI);
|
|
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
|
|
bool instrumentFunction(Function &F);
|
|
bool maybeInsertMemProfInitAtFunctionEntry(Function &F);
|
|
bool insertDynamicShadowAtFunctionEntry(Function &F);
|
|
|
|
private:
|
|
void initializeCallbacks(Module &M);
|
|
|
|
LLVMContext *C;
|
|
int LongSize;
|
|
Type *IntptrTy;
|
|
ShadowMapping Mapping;
|
|
|
|
// These arrays is indexed by AccessIsWrite
|
|
FunctionCallee MemProfMemoryAccessCallback[2];
|
|
FunctionCallee MemProfMemoryAccessCallbackSized[2];
|
|
|
|
FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset;
|
|
Value *DynamicShadowOffset = nullptr;
|
|
};
|
|
|
|
class MemProfilerLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
explicit MemProfilerLegacyPass() : FunctionPass(ID) {
|
|
initializeMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "MemProfilerFunctionPass"; }
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
MemProfiler Profiler(*F.getParent());
|
|
return Profiler.instrumentFunction(F);
|
|
}
|
|
};
|
|
|
|
class ModuleMemProfiler {
|
|
public:
|
|
ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); }
|
|
|
|
bool instrumentModule(Module &);
|
|
|
|
private:
|
|
Triple TargetTriple;
|
|
ShadowMapping Mapping;
|
|
Function *MemProfCtorFunction = nullptr;
|
|
};
|
|
|
|
class ModuleMemProfilerLegacyPass : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
|
|
explicit ModuleMemProfilerLegacyPass() : ModulePass(ID) {
|
|
initializeModuleMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "ModuleMemProfiler"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
ModuleMemProfiler MemProfiler(M);
|
|
return MemProfiler.instrumentModule(M);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
MemProfilerPass::MemProfilerPass() {}
|
|
|
|
PreservedAnalyses MemProfilerPass::run(Function &F,
|
|
AnalysisManager<Function> &AM) {
|
|
Module &M = *F.getParent();
|
|
MemProfiler Profiler(M);
|
|
if (Profiler.instrumentFunction(F))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
ModuleMemProfilerPass::ModuleMemProfilerPass() {}
|
|
|
|
PreservedAnalyses ModuleMemProfilerPass::run(Module &M,
|
|
AnalysisManager<Module> &AM) {
|
|
ModuleMemProfiler Profiler(M);
|
|
if (Profiler.instrumentModule(M))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
char MemProfilerLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(MemProfilerLegacyPass, "memprof",
|
|
"MemProfiler: profile memory allocations and accesses.",
|
|
false, false)
|
|
INITIALIZE_PASS_END(MemProfilerLegacyPass, "memprof",
|
|
"MemProfiler: profile memory allocations and accesses.",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createMemProfilerFunctionPass() {
|
|
return new MemProfilerLegacyPass();
|
|
}
|
|
|
|
char ModuleMemProfilerLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS(ModuleMemProfilerLegacyPass, "memprof-module",
|
|
"MemProfiler: profile memory allocations and accesses."
|
|
"ModulePass",
|
|
false, false)
|
|
|
|
ModulePass *llvm::createModuleMemProfilerLegacyPassPass() {
|
|
return new ModuleMemProfilerLegacyPass();
|
|
}
|
|
|
|
Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
|
|
// (Shadow & mask) >> scale
|
|
Shadow = IRB.CreateAnd(Shadow, Mapping.Mask);
|
|
Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
|
|
// (Shadow >> scale) | offset
|
|
assert(DynamicShadowOffset);
|
|
return IRB.CreateAdd(Shadow, DynamicShadowOffset);
|
|
}
|
|
|
|
// Instrument memset/memmove/memcpy
|
|
void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) {
|
|
IRBuilder<> IRB(MI);
|
|
if (isa<MemTransferInst>(MI)) {
|
|
IRB.CreateCall(
|
|
isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy,
|
|
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
|
|
} else if (isa<MemSetInst>(MI)) {
|
|
IRB.CreateCall(
|
|
MemProfMemset,
|
|
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
|
|
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
|
|
}
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
Optional<InterestingMemoryAccess>
|
|
MemProfiler::isInterestingMemoryAccess(Instruction *I) const {
|
|
// Do not instrument the load fetching the dynamic shadow address.
|
|
if (DynamicShadowOffset == I)
|
|
return None;
|
|
|
|
InterestingMemoryAccess Access;
|
|
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (!ClInstrumentReads)
|
|
return None;
|
|
Access.IsWrite = false;
|
|
Access.TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
|
|
Access.Alignment = LI->getAlignment();
|
|
Access.Addr = LI->getPointerOperand();
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
if (!ClInstrumentWrites)
|
|
return None;
|
|
Access.IsWrite = true;
|
|
Access.TypeSize =
|
|
DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
|
|
Access.Alignment = SI->getAlignment();
|
|
Access.Addr = SI->getPointerOperand();
|
|
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
|
|
if (!ClInstrumentAtomics)
|
|
return None;
|
|
Access.IsWrite = true;
|
|
Access.TypeSize =
|
|
DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
|
|
Access.Alignment = 0;
|
|
Access.Addr = RMW->getPointerOperand();
|
|
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
|
|
if (!ClInstrumentAtomics)
|
|
return None;
|
|
Access.IsWrite = true;
|
|
Access.TypeSize =
|
|
DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
|
|
Access.Alignment = 0;
|
|
Access.Addr = XCHG->getPointerOperand();
|
|
} else if (auto *CI = dyn_cast<CallInst>(I)) {
|
|
auto *F = CI->getCalledFunction();
|
|
if (F && (F->getIntrinsicID() == Intrinsic::masked_load ||
|
|
F->getIntrinsicID() == Intrinsic::masked_store)) {
|
|
unsigned OpOffset = 0;
|
|
if (F->getIntrinsicID() == Intrinsic::masked_store) {
|
|
if (!ClInstrumentWrites)
|
|
return None;
|
|
// Masked store has an initial operand for the value.
|
|
OpOffset = 1;
|
|
Access.IsWrite = true;
|
|
} else {
|
|
if (!ClInstrumentReads)
|
|
return None;
|
|
Access.IsWrite = false;
|
|
}
|
|
|
|
auto *BasePtr = CI->getOperand(0 + OpOffset);
|
|
auto *Ty = cast<PointerType>(BasePtr->getType())->getElementType();
|
|
Access.TypeSize = DL.getTypeStoreSizeInBits(Ty);
|
|
if (auto *AlignmentConstant =
|
|
dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
|
|
Access.Alignment = (unsigned)AlignmentConstant->getZExtValue();
|
|
else
|
|
Access.Alignment = 1; // No alignment guarantees. We probably got Undef
|
|
Access.MaybeMask = CI->getOperand(2 + OpOffset);
|
|
Access.Addr = BasePtr;
|
|
}
|
|
}
|
|
|
|
if (!Access.Addr)
|
|
return None;
|
|
|
|
// Do not instrument acesses from different address spaces; we cannot deal
|
|
// with them.
|
|
Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType());
|
|
if (PtrTy->getPointerAddressSpace() != 0)
|
|
return None;
|
|
|
|
// Ignore swifterror addresses.
|
|
// swifterror memory addresses are mem2reg promoted by instruction
|
|
// selection. As such they cannot have regular uses like an instrumentation
|
|
// function and it makes no sense to track them as memory.
|
|
if (Access.Addr->isSwiftError())
|
|
return None;
|
|
|
|
return Access;
|
|
}
|
|
|
|
void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
|
|
Instruction *I, Value *Addr,
|
|
unsigned Alignment,
|
|
uint32_t TypeSize, bool IsWrite) {
|
|
auto *VTy = cast<FixedVectorType>(
|
|
cast<PointerType>(Addr->getType())->getElementType());
|
|
uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
|
|
unsigned Num = VTy->getNumElements();
|
|
auto *Zero = ConstantInt::get(IntptrTy, 0);
|
|
for (unsigned Idx = 0; Idx < Num; ++Idx) {
|
|
Value *InstrumentedAddress = nullptr;
|
|
Instruction *InsertBefore = I;
|
|
if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
|
|
// dyn_cast as we might get UndefValue
|
|
if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
|
|
if (Masked->isZero())
|
|
// Mask is constant false, so no instrumentation needed.
|
|
continue;
|
|
// If we have a true or undef value, fall through to instrumentAddress.
|
|
// with InsertBefore == I
|
|
}
|
|
} else {
|
|
IRBuilder<> IRB(I);
|
|
Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
|
|
Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
|
|
InsertBefore = ThenTerm;
|
|
}
|
|
|
|
IRBuilder<> IRB(InsertBefore);
|
|
InstrumentedAddress =
|
|
IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
|
|
instrumentAddress(I, InsertBefore, InstrumentedAddress, ElemTypeSize,
|
|
IsWrite);
|
|
}
|
|
}
|
|
|
|
void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL,
|
|
InterestingMemoryAccess &Access) {
|
|
if (Access.IsWrite)
|
|
NumInstrumentedWrites++;
|
|
else
|
|
NumInstrumentedReads++;
|
|
|
|
if (Access.MaybeMask) {
|
|
instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr,
|
|
Access.Alignment, Access.TypeSize,
|
|
Access.IsWrite);
|
|
} else {
|
|
// Since the access counts will be accumulated across the entire allocation,
|
|
// we only update the shadow access count for the first location and thus
|
|
// don't need to worry about alignment and type size.
|
|
instrumentAddress(I, I, Access.Addr, Access.TypeSize, Access.IsWrite);
|
|
}
|
|
}
|
|
|
|
void MemProfiler::instrumentAddress(Instruction *OrigIns,
|
|
Instruction *InsertBefore, Value *Addr,
|
|
uint32_t TypeSize, bool IsWrite) {
|
|
IRBuilder<> IRB(InsertBefore);
|
|
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
|
|
|
|
if (ClUseCalls) {
|
|
IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong);
|
|
return;
|
|
}
|
|
|
|
// Create an inline sequence to compute shadow location, and increment the
|
|
// value by one.
|
|
Type *ShadowTy = Type::getInt64Ty(*C);
|
|
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
|
|
Value *ShadowPtr = memToShadow(AddrLong, IRB);
|
|
Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy);
|
|
Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr);
|
|
Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1);
|
|
ShadowValue = IRB.CreateAdd(ShadowValue, Inc);
|
|
IRB.CreateStore(ShadowValue, ShadowAddr);
|
|
}
|
|
|
|
// Create the variable for the profile file name.
|
|
void createProfileFileNameVar(Module &M) {
|
|
const MDString *MemProfFilename =
|
|
dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename"));
|
|
if (!MemProfFilename)
|
|
return;
|
|
assert(!MemProfFilename->getString().empty() &&
|
|
"Unexpected MemProfProfileFilename metadata with empty string");
|
|
Constant *ProfileNameConst = ConstantDataArray::getString(
|
|
M.getContext(), MemProfFilename->getString(), true);
|
|
GlobalVariable *ProfileNameVar = new GlobalVariable(
|
|
M, ProfileNameConst->getType(), /*isConstant=*/true,
|
|
GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar);
|
|
Triple TT(M.getTargetTriple());
|
|
if (TT.supportsCOMDAT()) {
|
|
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
|
|
ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar));
|
|
}
|
|
}
|
|
|
|
bool ModuleMemProfiler::instrumentModule(Module &M) {
|
|
// Create a module constructor.
|
|
std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION);
|
|
std::string VersionCheckName =
|
|
ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion)
|
|
: "";
|
|
std::tie(MemProfCtorFunction, std::ignore) =
|
|
createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName,
|
|
MemProfInitName, /*InitArgTypes=*/{},
|
|
/*InitArgs=*/{}, VersionCheckName);
|
|
|
|
const uint64_t Priority = getCtorAndDtorPriority(TargetTriple);
|
|
appendToGlobalCtors(M, MemProfCtorFunction, Priority);
|
|
|
|
createProfileFileNameVar(M);
|
|
|
|
return true;
|
|
}
|
|
|
|
void MemProfiler::initializeCallbacks(Module &M) {
|
|
IRBuilder<> IRB(*C);
|
|
|
|
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
|
|
const std::string TypeStr = AccessIsWrite ? "store" : "load";
|
|
|
|
SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
|
|
SmallVector<Type *, 2> Args1{1, IntptrTy};
|
|
MemProfMemoryAccessCallbackSized[AccessIsWrite] =
|
|
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr + "N",
|
|
FunctionType::get(IRB.getVoidTy(), Args2, false));
|
|
|
|
MemProfMemoryAccessCallback[AccessIsWrite] =
|
|
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr,
|
|
FunctionType::get(IRB.getVoidTy(), Args1, false));
|
|
}
|
|
MemProfMemmove = M.getOrInsertFunction(
|
|
ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
|
|
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
|
|
MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy",
|
|
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy);
|
|
MemProfMemset = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset",
|
|
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IRB.getInt32Ty(), IntptrTy);
|
|
}
|
|
|
|
bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) {
|
|
// For each NSObject descendant having a +load method, this method is invoked
|
|
// by the ObjC runtime before any of the static constructors is called.
|
|
// Therefore we need to instrument such methods with a call to __memprof_init
|
|
// at the beginning in order to initialize our runtime before any access to
|
|
// the shadow memory.
|
|
// We cannot just ignore these methods, because they may call other
|
|
// instrumented functions.
|
|
if (F.getName().find(" load]") != std::string::npos) {
|
|
FunctionCallee MemProfInitFunction =
|
|
declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {});
|
|
IRBuilder<> IRB(&F.front(), F.front().begin());
|
|
IRB.CreateCall(MemProfInitFunction, {});
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) {
|
|
IRBuilder<> IRB(&F.front().front());
|
|
Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
|
|
MemProfShadowMemoryDynamicAddress, IntptrTy);
|
|
if (F.getParent()->getPICLevel() == PICLevel::NotPIC)
|
|
cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true);
|
|
DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
|
|
return true;
|
|
}
|
|
|
|
bool MemProfiler::instrumentFunction(Function &F) {
|
|
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
|
|
return false;
|
|
if (ClDebugFunc == F.getName())
|
|
return false;
|
|
if (F.getName().startswith("__memprof_"))
|
|
return false;
|
|
|
|
bool FunctionModified = false;
|
|
|
|
// If needed, insert __memprof_init.
|
|
// This function needs to be called even if the function body is not
|
|
// instrumented.
|
|
if (maybeInsertMemProfInitAtFunctionEntry(F))
|
|
FunctionModified = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n");
|
|
|
|
initializeCallbacks(*F.getParent());
|
|
|
|
FunctionModified |= insertDynamicShadowAtFunctionEntry(F);
|
|
|
|
SmallVector<Instruction *, 16> ToInstrument;
|
|
|
|
// Fill the set of memory operations to instrument.
|
|
for (auto &BB : F) {
|
|
for (auto &Inst : BB) {
|
|
if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst))
|
|
ToInstrument.push_back(&Inst);
|
|
}
|
|
}
|
|
|
|
int NumInstrumented = 0;
|
|
for (auto *Inst : ToInstrument) {
|
|
if (ClDebugMin < 0 || ClDebugMax < 0 ||
|
|
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
|
|
Optional<InterestingMemoryAccess> Access =
|
|
isInterestingMemoryAccess(Inst);
|
|
if (Access)
|
|
instrumentMop(Inst, F.getParent()->getDataLayout(), *Access);
|
|
else
|
|
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
|
|
}
|
|
NumInstrumented++;
|
|
}
|
|
|
|
if (NumInstrumented > 0)
|
|
FunctionModified = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " "
|
|
<< F << "\n");
|
|
|
|
return FunctionModified;
|
|
}
|