mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
2b5e1b5263
1. Merge the 'None' result into 'Normal', making loads and stores return their dependencies on allocations as Normal. 2. Split the 'Normal' result into 'Clobber' and 'Def' to distinguish between the cases when memdep knows the value is produced from when we just know if may be changed. 3. Move some of the logic for determining whether readonly calls are CSEs into memdep instead of it being in GVN. This still leaves verification that the arguments are hte same to GVN to let it know about value equivalences in different contexts. 4. Change memdep's call/call dependency analysis to use getModRefInfo(CallSite,CallSite) instead of doing something very weak. This only really matters for things like DSA, but someday maybe we'll have some other decent context sensitive analyses :) 5. This reimplements the guts of memdep to handle the new results. 6. This simplifies GVN significantly: a) readonly call CSE is slightly simpler b) I eliminated the "getDependencyFrom" chaining for load elimination and load CSE doesn't have to worry about volatile (they are always clobbers) anymore. c) GVN no longer does any 'lastLoad' caching, leaving it to memdep. 7. The logic in DSE is simplified a bit and sped up. A potentially unsafe case was eliminated. llvm-svn: 60607
744 lines
27 KiB
C++
744 lines
27 KiB
C++
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs various transformations related to eliminating memcpy
|
|
// calls, or transforming sets of stores into memset's.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "memcpyopt"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include <list>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
|
|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
|
|
|
|
/// isBytewiseValue - If the specified value can be set by repeating the same
|
|
/// byte in memory, return the i8 value that it is represented with. This is
|
|
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
|
|
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
|
|
/// byte store (e.g. i16 0x1234), return null.
|
|
static Value *isBytewiseValue(Value *V) {
|
|
// All byte-wide stores are splatable, even of arbitrary variables.
|
|
if (V->getType() == Type::Int8Ty) return V;
|
|
|
|
// Constant float and double values can be handled as integer values if the
|
|
// corresponding integer value is "byteable". An important case is 0.0.
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
|
|
if (CFP->getType() == Type::FloatTy)
|
|
V = ConstantExpr::getBitCast(CFP, Type::Int32Ty);
|
|
if (CFP->getType() == Type::DoubleTy)
|
|
V = ConstantExpr::getBitCast(CFP, Type::Int64Ty);
|
|
// Don't handle long double formats, which have strange constraints.
|
|
}
|
|
|
|
// We can handle constant integers that are power of two in size and a
|
|
// multiple of 8 bits.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
unsigned Width = CI->getBitWidth();
|
|
if (isPowerOf2_32(Width) && Width > 8) {
|
|
// We can handle this value if the recursive binary decomposition is the
|
|
// same at all levels.
|
|
APInt Val = CI->getValue();
|
|
APInt Val2;
|
|
while (Val.getBitWidth() != 8) {
|
|
unsigned NextWidth = Val.getBitWidth()/2;
|
|
Val2 = Val.lshr(NextWidth);
|
|
Val2.trunc(Val.getBitWidth()/2);
|
|
Val.trunc(Val.getBitWidth()/2);
|
|
|
|
// If the top/bottom halves aren't the same, reject it.
|
|
if (Val != Val2)
|
|
return 0;
|
|
}
|
|
return ConstantInt::get(Val);
|
|
}
|
|
}
|
|
|
|
// Conceptually, we could handle things like:
|
|
// %a = zext i8 %X to i16
|
|
// %b = shl i16 %a, 8
|
|
// %c = or i16 %a, %b
|
|
// but until there is an example that actually needs this, it doesn't seem
|
|
// worth worrying about.
|
|
return 0;
|
|
}
|
|
|
|
static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
|
|
bool &VariableIdxFound, TargetData &TD) {
|
|
// Skip over the first indices.
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (unsigned i = 1; i != Idx; ++i, ++GTI)
|
|
/*skip along*/;
|
|
|
|
// Compute the offset implied by the rest of the indices.
|
|
int64_t Offset = 0;
|
|
for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
|
|
ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
|
|
if (OpC == 0)
|
|
return VariableIdxFound = true;
|
|
if (OpC->isZero()) continue; // No offset.
|
|
|
|
// Handle struct indices, which add their field offset to the pointer.
|
|
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a sequential type like an array or vector. Multiply
|
|
// the index by the ElementSize.
|
|
uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
|
|
Offset += Size*OpC->getSExtValue();
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
|
|
/// constant offset, and return that constant offset. For example, Ptr1 might
|
|
/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
|
|
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
|
|
TargetData &TD) {
|
|
// Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
|
|
// base. After that base, they may have some number of common (and
|
|
// potentially variable) indices. After that they handle some constant
|
|
// offset, which determines their offset from each other. At this point, we
|
|
// handle no other case.
|
|
GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
|
|
GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
|
|
if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
|
|
return false;
|
|
|
|
// Skip any common indices and track the GEP types.
|
|
unsigned Idx = 1;
|
|
for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
|
|
if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
|
|
break;
|
|
|
|
bool VariableIdxFound = false;
|
|
int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
|
|
int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
|
|
if (VariableIdxFound) return false;
|
|
|
|
Offset = Offset2-Offset1;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
|
|
/// This allows us to analyze stores like:
|
|
/// store 0 -> P+1
|
|
/// store 0 -> P+0
|
|
/// store 0 -> P+3
|
|
/// store 0 -> P+2
|
|
/// which sometimes happens with stores to arrays of structs etc. When we see
|
|
/// the first store, we make a range [1, 2). The second store extends the range
|
|
/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
|
|
/// two ranges into [0, 3) which is memset'able.
|
|
namespace {
|
|
struct MemsetRange {
|
|
// Start/End - A semi range that describes the span that this range covers.
|
|
// The range is closed at the start and open at the end: [Start, End).
|
|
int64_t Start, End;
|
|
|
|
/// StartPtr - The getelementptr instruction that points to the start of the
|
|
/// range.
|
|
Value *StartPtr;
|
|
|
|
/// Alignment - The known alignment of the first store.
|
|
unsigned Alignment;
|
|
|
|
/// TheStores - The actual stores that make up this range.
|
|
SmallVector<StoreInst*, 16> TheStores;
|
|
|
|
bool isProfitableToUseMemset(const TargetData &TD) const;
|
|
|
|
};
|
|
} // end anon namespace
|
|
|
|
bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
|
|
// If we found more than 8 stores to merge or 64 bytes, use memset.
|
|
if (TheStores.size() >= 8 || End-Start >= 64) return true;
|
|
|
|
// Assume that the code generator is capable of merging pairs of stores
|
|
// together if it wants to.
|
|
if (TheStores.size() <= 2) return false;
|
|
|
|
// If we have fewer than 8 stores, it can still be worthwhile to do this.
|
|
// For example, merging 4 i8 stores into an i32 store is useful almost always.
|
|
// However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
|
|
// memset will be split into 2 32-bit stores anyway) and doing so can
|
|
// pessimize the llvm optimizer.
|
|
//
|
|
// Since we don't have perfect knowledge here, make some assumptions: assume
|
|
// the maximum GPR width is the same size as the pointer size and assume that
|
|
// this width can be stored. If so, check to see whether we will end up
|
|
// actually reducing the number of stores used.
|
|
unsigned Bytes = unsigned(End-Start);
|
|
unsigned NumPointerStores = Bytes/TD.getPointerSize();
|
|
|
|
// Assume the remaining bytes if any are done a byte at a time.
|
|
unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
|
|
|
|
// If we will reduce the # stores (according to this heuristic), do the
|
|
// transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
|
|
// etc.
|
|
return TheStores.size() > NumPointerStores+NumByteStores;
|
|
}
|
|
|
|
|
|
namespace {
|
|
class MemsetRanges {
|
|
/// Ranges - A sorted list of the memset ranges. We use std::list here
|
|
/// because each element is relatively large and expensive to copy.
|
|
std::list<MemsetRange> Ranges;
|
|
typedef std::list<MemsetRange>::iterator range_iterator;
|
|
TargetData &TD;
|
|
public:
|
|
MemsetRanges(TargetData &td) : TD(td) {}
|
|
|
|
typedef std::list<MemsetRange>::const_iterator const_iterator;
|
|
const_iterator begin() const { return Ranges.begin(); }
|
|
const_iterator end() const { return Ranges.end(); }
|
|
bool empty() const { return Ranges.empty(); }
|
|
|
|
void addStore(int64_t OffsetFromFirst, StoreInst *SI);
|
|
};
|
|
|
|
} // end anon namespace
|
|
|
|
|
|
/// addStore - Add a new store to the MemsetRanges data structure. This adds a
|
|
/// new range for the specified store at the specified offset, merging into
|
|
/// existing ranges as appropriate.
|
|
void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
|
|
int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
|
|
|
|
// Do a linear search of the ranges to see if this can be joined and/or to
|
|
// find the insertion point in the list. We keep the ranges sorted for
|
|
// simplicity here. This is a linear search of a linked list, which is ugly,
|
|
// however the number of ranges is limited, so this won't get crazy slow.
|
|
range_iterator I = Ranges.begin(), E = Ranges.end();
|
|
|
|
while (I != E && Start > I->End)
|
|
++I;
|
|
|
|
// We now know that I == E, in which case we didn't find anything to merge
|
|
// with, or that Start <= I->End. If End < I->Start or I == E, then we need
|
|
// to insert a new range. Handle this now.
|
|
if (I == E || End < I->Start) {
|
|
MemsetRange &R = *Ranges.insert(I, MemsetRange());
|
|
R.Start = Start;
|
|
R.End = End;
|
|
R.StartPtr = SI->getPointerOperand();
|
|
R.Alignment = SI->getAlignment();
|
|
R.TheStores.push_back(SI);
|
|
return;
|
|
}
|
|
|
|
// This store overlaps with I, add it.
|
|
I->TheStores.push_back(SI);
|
|
|
|
// At this point, we may have an interval that completely contains our store.
|
|
// If so, just add it to the interval and return.
|
|
if (I->Start <= Start && I->End >= End)
|
|
return;
|
|
|
|
// Now we know that Start <= I->End and End >= I->Start so the range overlaps
|
|
// but is not entirely contained within the range.
|
|
|
|
// See if the range extends the start of the range. In this case, it couldn't
|
|
// possibly cause it to join the prior range, because otherwise we would have
|
|
// stopped on *it*.
|
|
if (Start < I->Start) {
|
|
I->Start = Start;
|
|
I->StartPtr = SI->getPointerOperand();
|
|
}
|
|
|
|
// Now we know that Start <= I->End and Start >= I->Start (so the startpoint
|
|
// is in or right at the end of I), and that End >= I->Start. Extend I out to
|
|
// End.
|
|
if (End > I->End) {
|
|
I->End = End;
|
|
range_iterator NextI = I;;
|
|
while (++NextI != E && End >= NextI->Start) {
|
|
// Merge the range in.
|
|
I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
|
|
if (NextI->End > I->End)
|
|
I->End = NextI->End;
|
|
Ranges.erase(NextI);
|
|
NextI = I;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MemCpyOpt Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass {
|
|
bool runOnFunction(Function &F);
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MemCpyOpt() : FunctionPass(&ID) {}
|
|
|
|
private:
|
|
// This transformation requires dominator postdominator info
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<MemoryDependenceAnalysis>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<TargetData>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addPreserved<MemoryDependenceAnalysis>();
|
|
AU.addPreserved<TargetData>();
|
|
}
|
|
|
|
// Helper fuctions
|
|
bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
|
|
bool processMemCpy(MemCpyInst* M);
|
|
bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
|
|
bool iterateOnFunction(Function &F);
|
|
};
|
|
|
|
char MemCpyOpt::ID = 0;
|
|
}
|
|
|
|
// createMemCpyOptPass - The public interface to this file...
|
|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
|
|
|
|
static RegisterPass<MemCpyOpt> X("memcpyopt",
|
|
"MemCpy Optimization");
|
|
|
|
|
|
|
|
/// processStore - When GVN is scanning forward over instructions, we look for
|
|
/// some other patterns to fold away. In particular, this looks for stores to
|
|
/// neighboring locations of memory. If it sees enough consequtive ones
|
|
/// (currently 4) it attempts to merge them together into a memcpy/memset.
|
|
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
|
|
if (SI->isVolatile()) return false;
|
|
|
|
// There are two cases that are interesting for this code to handle: memcpy
|
|
// and memset. Right now we only handle memset.
|
|
|
|
// Ensure that the value being stored is something that can be memset'able a
|
|
// byte at a time like "0" or "-1" or any width, as well as things like
|
|
// 0xA0A0A0A0 and 0.0.
|
|
Value *ByteVal = isBytewiseValue(SI->getOperand(0));
|
|
if (!ByteVal)
|
|
return false;
|
|
|
|
TargetData &TD = getAnalysis<TargetData>();
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
|
|
// Okay, so we now have a single store that can be splatable. Scan to find
|
|
// all subsequent stores of the same value to offset from the same pointer.
|
|
// Join these together into ranges, so we can decide whether contiguous blocks
|
|
// are stored.
|
|
MemsetRanges Ranges(TD);
|
|
|
|
Value *StartPtr = SI->getPointerOperand();
|
|
|
|
BasicBlock::iterator BI = SI;
|
|
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
|
|
if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
|
|
// If the call is readnone, ignore it, otherwise bail out. We don't even
|
|
// allow readonly here because we don't want something like:
|
|
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
|
|
if (AA.getModRefBehavior(CallSite::get(BI)) ==
|
|
AliasAnalysis::DoesNotAccessMemory)
|
|
continue;
|
|
|
|
// TODO: If this is a memset, try to join it in.
|
|
|
|
break;
|
|
} else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
|
|
break;
|
|
|
|
// If this is a non-store instruction it is fine, ignore it.
|
|
StoreInst *NextStore = dyn_cast<StoreInst>(BI);
|
|
if (NextStore == 0) continue;
|
|
|
|
// If this is a store, see if we can merge it in.
|
|
if (NextStore->isVolatile()) break;
|
|
|
|
// Check to see if this stored value is of the same byte-splattable value.
|
|
if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
|
|
break;
|
|
|
|
// Check to see if this store is to a constant offset from the start ptr.
|
|
int64_t Offset;
|
|
if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD))
|
|
break;
|
|
|
|
Ranges.addStore(Offset, NextStore);
|
|
}
|
|
|
|
// If we have no ranges, then we just had a single store with nothing that
|
|
// could be merged in. This is a very common case of course.
|
|
if (Ranges.empty())
|
|
return false;
|
|
|
|
// If we had at least one store that could be merged in, add the starting
|
|
// store as well. We try to avoid this unless there is at least something
|
|
// interesting as a small compile-time optimization.
|
|
Ranges.addStore(0, SI);
|
|
|
|
|
|
Function *MemSetF = 0;
|
|
|
|
// Now that we have full information about ranges, loop over the ranges and
|
|
// emit memset's for anything big enough to be worthwhile.
|
|
bool MadeChange = false;
|
|
for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
|
|
I != E; ++I) {
|
|
const MemsetRange &Range = *I;
|
|
|
|
if (Range.TheStores.size() == 1) continue;
|
|
|
|
// If it is profitable to lower this range to memset, do so now.
|
|
if (!Range.isProfitableToUseMemset(TD))
|
|
continue;
|
|
|
|
// Otherwise, we do want to transform this! Create a new memset. We put
|
|
// the memset right before the first instruction that isn't part of this
|
|
// memset block. This ensure that the memset is dominated by any addressing
|
|
// instruction needed by the start of the block.
|
|
BasicBlock::iterator InsertPt = BI;
|
|
|
|
if (MemSetF == 0) {
|
|
const Type *Tys[] = {Type::Int64Ty};
|
|
MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent()
|
|
->getParent(), Intrinsic::memset,
|
|
Tys, 1);
|
|
}
|
|
|
|
// Get the starting pointer of the block.
|
|
StartPtr = Range.StartPtr;
|
|
|
|
// Cast the start ptr to be i8* as memset requires.
|
|
const Type *i8Ptr = PointerType::getUnqual(Type::Int8Ty);
|
|
if (StartPtr->getType() != i8Ptr)
|
|
StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(),
|
|
InsertPt);
|
|
|
|
Value *Ops[] = {
|
|
StartPtr, ByteVal, // Start, value
|
|
ConstantInt::get(Type::Int64Ty, Range.End-Range.Start), // size
|
|
ConstantInt::get(Type::Int32Ty, Range.Alignment) // align
|
|
};
|
|
Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
|
|
DEBUG(cerr << "Replace stores:\n";
|
|
for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
|
|
cerr << *Range.TheStores[i];
|
|
cerr << "With: " << *C); C=C;
|
|
|
|
// Don't invalidate the iterator
|
|
BBI = BI;
|
|
|
|
// Zap all the stores.
|
|
for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
|
|
SE = Range.TheStores.end(); SI != SE; ++SI)
|
|
(*SI)->eraseFromParent();
|
|
++NumMemSetInfer;
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
|
|
/// and checks for the possibility of a call slot optimization by having
|
|
/// the call write its result directly into the destination of the memcpy.
|
|
bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
|
// The general transformation to keep in mind is
|
|
//
|
|
// call @func(..., src, ...)
|
|
// memcpy(dest, src, ...)
|
|
//
|
|
// ->
|
|
//
|
|
// memcpy(dest, src, ...)
|
|
// call @func(..., dest, ...)
|
|
//
|
|
// Since moving the memcpy is technically awkward, we additionally check that
|
|
// src only holds uninitialized values at the moment of the call, meaning that
|
|
// the memcpy can be discarded rather than moved.
|
|
|
|
// Deliberately get the source and destination with bitcasts stripped away,
|
|
// because we'll need to do type comparisons based on the underlying type.
|
|
Value* cpyDest = cpy->getDest();
|
|
Value* cpySrc = cpy->getSource();
|
|
CallSite CS = CallSite::get(C);
|
|
|
|
// We need to be able to reason about the size of the memcpy, so we require
|
|
// that it be a constant.
|
|
ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
|
|
if (!cpyLength)
|
|
return false;
|
|
|
|
// Require that src be an alloca. This simplifies the reasoning considerably.
|
|
AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
|
|
if (!srcAlloca)
|
|
return false;
|
|
|
|
// Check that all of src is copied to dest.
|
|
TargetData& TD = getAnalysis<TargetData>();
|
|
|
|
ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
|
|
if (!srcArraySize)
|
|
return false;
|
|
|
|
uint64_t srcSize = TD.getABITypeSize(srcAlloca->getAllocatedType()) *
|
|
srcArraySize->getZExtValue();
|
|
|
|
if (cpyLength->getZExtValue() < srcSize)
|
|
return false;
|
|
|
|
// Check that accessing the first srcSize bytes of dest will not cause a
|
|
// trap. Otherwise the transform is invalid since it might cause a trap
|
|
// to occur earlier than it otherwise would.
|
|
if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
|
|
// The destination is an alloca. Check it is larger than srcSize.
|
|
ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
|
|
if (!destArraySize)
|
|
return false;
|
|
|
|
uint64_t destSize = TD.getABITypeSize(A->getAllocatedType()) *
|
|
destArraySize->getZExtValue();
|
|
|
|
if (destSize < srcSize)
|
|
return false;
|
|
} else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
|
|
// If the destination is an sret parameter then only accesses that are
|
|
// outside of the returned struct type can trap.
|
|
if (!A->hasStructRetAttr())
|
|
return false;
|
|
|
|
const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
|
|
uint64_t destSize = TD.getABITypeSize(StructTy);
|
|
|
|
if (destSize < srcSize)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Check that src is not accessed except via the call and the memcpy. This
|
|
// guarantees that it holds only undefined values when passed in (so the final
|
|
// memcpy can be dropped), that it is not read or written between the call and
|
|
// the memcpy, and that writing beyond the end of it is undefined.
|
|
SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
|
|
srcAlloca->use_end());
|
|
while (!srcUseList.empty()) {
|
|
User* UI = srcUseList.back();
|
|
srcUseList.pop_back();
|
|
|
|
if (isa<BitCastInst>(UI)) {
|
|
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
|
|
I != E; ++I)
|
|
srcUseList.push_back(*I);
|
|
} else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) {
|
|
if (G->hasAllZeroIndices())
|
|
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
|
|
I != E; ++I)
|
|
srcUseList.push_back(*I);
|
|
else
|
|
return false;
|
|
} else if (UI != C && UI != cpy) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Since we're changing the parameter to the callsite, we need to make sure
|
|
// that what would be the new parameter dominates the callsite.
|
|
DominatorTree& DT = getAnalysis<DominatorTree>();
|
|
if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
|
|
if (!DT.dominates(cpyDestInst, C))
|
|
return false;
|
|
|
|
// In addition to knowing that the call does not access src in some
|
|
// unexpected manner, for example via a global, which we deduce from
|
|
// the use analysis, we also need to know that it does not sneakily
|
|
// access dest. We rely on AA to figure this out for us.
|
|
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
|
|
if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
|
|
AliasAnalysis::NoModRef)
|
|
return false;
|
|
|
|
// All the checks have passed, so do the transformation.
|
|
bool changedArgument = false;
|
|
for (unsigned i = 0; i < CS.arg_size(); ++i)
|
|
if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
|
|
if (cpySrc->getType() != cpyDest->getType())
|
|
cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
|
|
cpyDest->getName(), C);
|
|
changedArgument = true;
|
|
if (CS.getArgument(i)->getType() != cpyDest->getType())
|
|
CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
|
|
CS.getArgument(i)->getType(), cpyDest->getName(), C));
|
|
else
|
|
CS.setArgument(i, cpyDest);
|
|
}
|
|
|
|
if (!changedArgument)
|
|
return false;
|
|
|
|
// Drop any cached information about the call, because we may have changed
|
|
// its dependence information by changing its parameter.
|
|
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
|
|
MD.removeInstruction(C);
|
|
|
|
// Remove the memcpy
|
|
MD.removeInstruction(cpy);
|
|
cpy->eraseFromParent();
|
|
NumMemCpyInstr++;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// processMemCpy - perform simplication of memcpy's. If we have memcpy A which
|
|
/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
|
|
/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
|
|
/// This allows later passes to remove the first memcpy altogether.
|
|
bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
|
|
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
|
|
|
|
// The are two possible optimizations we can do for memcpy:
|
|
// a) memcpy-memcpy xform which exposes redundance for DSE
|
|
// b) call-memcpy xform for return slot optimization
|
|
MemDepResult dep = MD.getDependency(M);
|
|
if (!dep.isClobber())
|
|
return false;
|
|
if (!isa<MemCpyInst>(dep.getInst())) {
|
|
if (CallInst* C = dyn_cast<CallInst>(dep.getInst()))
|
|
return performCallSlotOptzn(M, C);
|
|
return false;
|
|
}
|
|
|
|
MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst());
|
|
|
|
// We can only transforms memcpy's where the dest of one is the source of the
|
|
// other
|
|
if (M->getSource() != MDep->getDest())
|
|
return false;
|
|
|
|
// Second, the length of the memcpy's must be the same, or the preceeding one
|
|
// must be larger than the following one.
|
|
ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
|
|
ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
|
|
if (!C1 || !C2)
|
|
return false;
|
|
|
|
uint64_t DepSize = C1->getValue().getZExtValue();
|
|
uint64_t CpySize = C2->getValue().getZExtValue();
|
|
|
|
if (DepSize < CpySize)
|
|
return false;
|
|
|
|
// Finally, we have to make sure that the dest of the second does not
|
|
// alias the source of the first
|
|
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
|
|
if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
|
|
AliasAnalysis::NoAlias)
|
|
return false;
|
|
else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
|
|
AliasAnalysis::NoAlias)
|
|
return false;
|
|
else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
|
|
!= AliasAnalysis::NoAlias)
|
|
return false;
|
|
|
|
// If all checks passed, then we can transform these memcpy's
|
|
const Type *Tys[1];
|
|
Tys[0] = M->getLength()->getType();
|
|
Function* MemCpyFun = Intrinsic::getDeclaration(
|
|
M->getParent()->getParent()->getParent(),
|
|
M->getIntrinsicID(), Tys, 1);
|
|
|
|
std::vector<Value*> args;
|
|
args.push_back(M->getRawDest());
|
|
args.push_back(MDep->getRawSource());
|
|
args.push_back(M->getLength());
|
|
args.push_back(M->getAlignment());
|
|
|
|
CallInst* C = CallInst::Create(MemCpyFun, args.begin(), args.end(), "", M);
|
|
|
|
|
|
// If C and M don't interfere, then this is a valid transformation. If they
|
|
// did, this would mean that the two sources overlap, which would be bad.
|
|
if (MD.getDependency(C) == dep) {
|
|
MD.removeInstruction(M);
|
|
M->eraseFromParent();
|
|
NumMemCpyInstr++;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, there was no point in doing this, so we remove the call we
|
|
// inserted and act like nothing happened.
|
|
MD.removeInstruction(C);
|
|
C->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
|
|
// function.
|
|
//
|
|
bool MemCpyOpt::runOnFunction(Function& F) {
|
|
|
|
bool changed = false;
|
|
bool shouldContinue = true;
|
|
|
|
while (shouldContinue) {
|
|
shouldContinue = iterateOnFunction(F);
|
|
changed |= shouldContinue;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
|
|
// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
|
|
bool MemCpyOpt::iterateOnFunction(Function &F) {
|
|
bool changed_function = false;
|
|
|
|
// Walk all instruction in the function
|
|
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
|
|
BI != BE;) {
|
|
// Avoid invalidating the iterator
|
|
Instruction* I = BI++;
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
changed_function |= processStore(SI, BI);
|
|
else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
|
|
changed_function |= processMemCpy(M);
|
|
}
|
|
}
|
|
}
|
|
|
|
return changed_function;
|
|
}
|