1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/CodeGen/PostRASchedulerList.cpp
Evan Cheng 3c850aecf6 - Change MachineInstr::findRegisterDefOperandIdx so it can also look for defs
that are aliases of the specified register.
- Rename modifiesRegister to definesRegister since it's looking a def of the
specific register or one of its super-registers. It's not looking for def of a
sub-register or alias that could change the specified register.
- Added modifiesRegister to look for defs of aliases.

llvm-svn: 104377
2010-05-21 20:53:24 +00:00

729 lines
25 KiB
C++

//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "post-RA-sched"
#include "AntiDepBreaker.h"
#include "AggressiveAntiDepBreaker.h"
#include "CriticalAntiDepBreaker.h"
#include "ExactHazardRecognizer.h"
#include "SimpleHazardRecognizer.h"
#include "ScheduleDAGInstrs.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtarget.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;
STATISTIC(NumNoops, "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
// Post-RA scheduling is enabled with
// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
// override the target.
static cl::opt<bool>
EnablePostRAScheduler("post-RA-scheduler",
cl::desc("Enable scheduling after register allocation"),
cl::init(false), cl::Hidden);
static cl::opt<std::string>
EnableAntiDepBreaking("break-anti-dependencies",
cl::desc("Break post-RA scheduling anti-dependencies: "
"\"critical\", \"all\", or \"none\""),
cl::init("none"), cl::Hidden);
static cl::opt<bool>
EnablePostRAHazardAvoidance("avoid-hazards",
cl::desc("Enable exact hazard avoidance"),
cl::init(true), cl::Hidden);
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
static cl::opt<int>
DebugDiv("postra-sched-debugdiv",
cl::desc("Debug control MBBs that are scheduled"),
cl::init(0), cl::Hidden);
static cl::opt<int>
DebugMod("postra-sched-debugmod",
cl::desc("Debug control MBBs that are scheduled"),
cl::init(0), cl::Hidden);
AntiDepBreaker::~AntiDepBreaker() { }
namespace {
class PostRAScheduler : public MachineFunctionPass {
AliasAnalysis *AA;
CodeGenOpt::Level OptLevel;
public:
static char ID;
PostRAScheduler(CodeGenOpt::Level ol) :
MachineFunctionPass(&ID), OptLevel(ol) {}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
const char *getPassName() const {
return "Post RA top-down list latency scheduler";
}
bool runOnMachineFunction(MachineFunction &Fn);
};
char PostRAScheduler::ID = 0;
class SchedulePostRATDList : public ScheduleDAGInstrs {
/// AvailableQueue - The priority queue to use for the available SUnits.
///
LatencyPriorityQueue AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands becomes available, the instruction is
/// added to the AvailableQueue.
std::vector<SUnit*> PendingQueue;
/// Topo - A topological ordering for SUnits.
ScheduleDAGTopologicalSort Topo;
/// HazardRec - The hazard recognizer to use.
ScheduleHazardRecognizer *HazardRec;
/// AntiDepBreak - Anti-dependence breaking object, or NULL if none
AntiDepBreaker *AntiDepBreak;
/// AA - AliasAnalysis for making memory reference queries.
AliasAnalysis *AA;
/// KillIndices - The index of the most recent kill (proceding bottom-up),
/// or ~0u if the register is not live.
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
public:
SchedulePostRATDList(MachineFunction &MF,
const MachineLoopInfo &MLI,
const MachineDominatorTree &MDT,
ScheduleHazardRecognizer *HR,
AntiDepBreaker *ADB,
AliasAnalysis *aa)
: ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
HazardRec(HR), AntiDepBreak(ADB), AA(aa) {}
~SchedulePostRATDList() {
}
/// StartBlock - Initialize register live-range state for scheduling in
/// this block.
///
void StartBlock(MachineBasicBlock *BB);
/// Schedule - Schedule the instruction range using list scheduling.
///
void Schedule();
/// Observe - Update liveness information to account for the current
/// instruction, which will not be scheduled.
///
void Observe(MachineInstr *MI, unsigned Count);
/// FinishBlock - Clean up register live-range state.
///
void FinishBlock();
/// FixupKills - Fix register kill flags that have been made
/// invalid due to scheduling
///
void FixupKills(MachineBasicBlock *MBB);
private:
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
void ReleaseSuccessors(SUnit *SU);
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void ListScheduleTopDown();
void StartBlockForKills(MachineBasicBlock *BB);
// ToggleKillFlag - Toggle a register operand kill flag. Other
// adjustments may be made to the instruction if necessary. Return
// true if the operand has been deleted, false if not.
bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
};
}
/// isSchedulingBoundary - Test if the given instruction should be
/// considered a scheduling boundary. This primarily includes labels
/// and terminators.
///
static bool isSchedulingBoundary(const MachineInstr *MI,
const MachineFunction &MF) {
// Terminators and labels can't be scheduled around.
if (MI->getDesc().isTerminator() || MI->isLabel())
return true;
// Don't attempt to schedule around any instruction that defines
// a stack-oriented pointer, as it's unlikely to be profitable. This
// saves compile time, because it doesn't require every single
// stack slot reference to depend on the instruction that does the
// modification.
const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
return true;
return false;
}
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
AA = &getAnalysis<AliasAnalysis>();
// Check for explicit enable/disable of post-ra scheduling.
TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE;
SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
if (EnablePostRAScheduler.getPosition() > 0) {
if (!EnablePostRAScheduler)
return false;
} else {
// Check that post-RA scheduling is enabled for this target.
const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
return false;
}
// Check for antidep breaking override...
if (EnableAntiDepBreaking.getPosition() > 0) {
AntiDepMode = (EnableAntiDepBreaking == "all") ?
TargetSubtarget::ANTIDEP_ALL :
(EnableAntiDepBreaking == "critical")
? TargetSubtarget::ANTIDEP_CRITICAL : TargetSubtarget::ANTIDEP_NONE;
}
DEBUG(dbgs() << "PostRAScheduler\n");
const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
(ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
(ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
AntiDepBreaker *ADB =
((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ?
(AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn, CriticalPathRCs) :
((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ?
(AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL));
SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA);
// Loop over all of the basic blocks
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
#ifndef NDEBUG
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
if (DebugDiv > 0) {
static int bbcnt = 0;
if (bbcnt++ % DebugDiv != DebugMod)
continue;
dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
":BB#" << MBB->getNumber() << " ***\n";
}
#endif
// Initialize register live-range state for scheduling in this block.
Scheduler.StartBlock(MBB);
// Schedule each sequence of instructions not interrupted by a label
// or anything else that effectively needs to shut down scheduling.
MachineBasicBlock::iterator Current = MBB->end();
unsigned Count = MBB->size(), CurrentCount = Count;
for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
MachineInstr *MI = prior(I);
if (isSchedulingBoundary(MI, Fn)) {
Scheduler.Run(MBB, I, Current, CurrentCount);
Scheduler.EmitSchedule();
Current = MI;
CurrentCount = Count - 1;
Scheduler.Observe(MI, CurrentCount);
}
I = MI;
--Count;
}
assert(Count == 0 && "Instruction count mismatch!");
assert((MBB->begin() == Current || CurrentCount != 0) &&
"Instruction count mismatch!");
Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
Scheduler.EmitSchedule();
// Clean up register live-range state.
Scheduler.FinishBlock();
// Update register kills
Scheduler.FixupKills(MBB);
}
delete HR;
delete ADB;
return true;
}
/// StartBlock - Initialize register live-range state for scheduling in
/// this block.
///
void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
// Call the superclass.
ScheduleDAGInstrs::StartBlock(BB);
// Reset the hazard recognizer and anti-dep breaker.
HazardRec->Reset();
if (AntiDepBreak != NULL)
AntiDepBreak->StartBlock(BB);
}
/// Schedule - Schedule the instruction range using list scheduling.
///
void SchedulePostRATDList::Schedule() {
// Build the scheduling graph.
BuildSchedGraph(AA);
if (AntiDepBreak != NULL) {
unsigned Broken =
AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
InsertPosIndex);
if (Broken != 0) {
// We made changes. Update the dependency graph.
// Theoretically we could update the graph in place:
// When a live range is changed to use a different register, remove
// the def's anti-dependence *and* output-dependence edges due to
// that register, and add new anti-dependence and output-dependence
// edges based on the next live range of the register.
SUnits.clear();
Sequence.clear();
EntrySU = SUnit();
ExitSU = SUnit();
BuildSchedGraph(AA);
NumFixedAnti += Broken;
}
}
DEBUG(dbgs() << "********** List Scheduling **********\n");
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
AvailableQueue.initNodes(SUnits);
ListScheduleTopDown();
AvailableQueue.releaseState();
}
/// Observe - Update liveness information to account for the current
/// instruction, which will not be scheduled.
///
void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
if (AntiDepBreak != NULL)
AntiDepBreak->Observe(MI, Count, InsertPosIndex);
}
/// FinishBlock - Clean up register live-range state.
///
void SchedulePostRATDList::FinishBlock() {
if (AntiDepBreak != NULL)
AntiDepBreak->FinishBlock();
// Call the superclass.
ScheduleDAGInstrs::FinishBlock();
}
/// StartBlockForKills - Initialize register live-range state for updating kills
///
void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
// Initialize the indices to indicate that no registers are live.
for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
KillIndices[i] = ~0u;
// Determine the live-out physregs for this block.
if (!BB->empty() && BB->back().getDesc().isReturn()) {
// In a return block, examine the function live-out regs.
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
E = MRI.liveout_end(); I != E; ++I) {
unsigned Reg = *I;
KillIndices[Reg] = BB->size();
// Repeat, for all subregs.
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
*Subreg; ++Subreg) {
KillIndices[*Subreg] = BB->size();
}
}
}
else {
// In a non-return block, examine the live-in regs of all successors.
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
SE = BB->succ_end(); SI != SE; ++SI) {
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
E = (*SI)->livein_end(); I != E; ++I) {
unsigned Reg = *I;
KillIndices[Reg] = BB->size();
// Repeat, for all subregs.
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
*Subreg; ++Subreg) {
KillIndices[*Subreg] = BB->size();
}
}
}
}
}
bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
MachineOperand &MO) {
// Setting kill flag...
if (!MO.isKill()) {
MO.setIsKill(true);
return false;
}
// If MO itself is live, clear the kill flag...
if (KillIndices[MO.getReg()] != ~0u) {
MO.setIsKill(false);
return false;
}
// If any subreg of MO is live, then create an imp-def for that
// subreg and keep MO marked as killed.
MO.setIsKill(false);
bool AllDead = true;
const unsigned SuperReg = MO.getReg();
for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
*Subreg; ++Subreg) {
if (KillIndices[*Subreg] != ~0u) {
MI->addOperand(MachineOperand::CreateReg(*Subreg,
true /*IsDef*/,
true /*IsImp*/,
false /*IsKill*/,
false /*IsDead*/));
AllDead = false;
}
}
if(AllDead)
MO.setIsKill(true);
return false;
}
/// FixupKills - Fix the register kill flags, they may have been made
/// incorrect by instruction reordering.
///
void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
std::set<unsigned> killedRegs;
BitVector ReservedRegs = TRI->getReservedRegs(MF);
StartBlockForKills(MBB);
// Examine block from end to start...
unsigned Count = MBB->size();
for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
I != E; --Count) {
MachineInstr *MI = --I;
if (MI->isDebugValue())
continue;
// Update liveness. Registers that are defed but not used in this
// instruction are now dead. Mark register and all subregs as they
// are completely defined.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (!MO.isDef()) continue;
// Ignore two-addr defs.
if (MI->isRegTiedToUseOperand(i)) continue;
KillIndices[Reg] = ~0u;
// Repeat for all subregs.
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
*Subreg; ++Subreg) {
KillIndices[*Subreg] = ~0u;
}
}
// Examine all used registers and set/clear kill flag. When a
// register is used multiple times we only set the kill flag on
// the first use.
killedRegs.clear();
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse()) continue;
unsigned Reg = MO.getReg();
if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
bool kill = false;
if (killedRegs.find(Reg) == killedRegs.end()) {
kill = true;
// A register is not killed if any subregs are live...
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
*Subreg; ++Subreg) {
if (KillIndices[*Subreg] != ~0u) {
kill = false;
break;
}
}
// If subreg is not live, then register is killed if it became
// live in this instruction
if (kill)
kill = (KillIndices[Reg] == ~0u);
}
if (MO.isKill() != kill) {
DEBUG(dbgs() << "Fixing " << MO << " in ");
// Warning: ToggleKillFlag may invalidate MO.
ToggleKillFlag(MI, MO);
DEBUG(MI->dump());
}
killedRegs.insert(Reg);
}
// Mark any used register (that is not using undef) and subregs as
// now live...
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
unsigned Reg = MO.getReg();
if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
KillIndices[Reg] = Count;
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
*Subreg; ++Subreg) {
KillIndices[*Subreg] = Count;
}
}
}
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
--SuccSU->NumPredsLeft;
// Compute how many cycles it will be before this actually becomes
// available. This is the max of the start time of all predecessors plus
// their latencies.
SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
// If all the node's predecessors are scheduled, this node is ready
// to be scheduled. Ignore the special ExitSU node.
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
PendingQueue.push_back(SuccSU);
}
/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
ReleaseSucc(SU, &*I);
}
}
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
Sequence.push_back(SU);
assert(CurCycle >= SU->getDepth() &&
"Node scheduled above its depth!");
SU->setDepthToAtLeast(CurCycle);
ReleaseSuccessors(SU);
SU->isScheduled = true;
AvailableQueue.ScheduledNode(SU);
}
/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void SchedulePostRATDList::ListScheduleTopDown() {
unsigned CurCycle = 0;
// We're scheduling top-down but we're visiting the regions in
// bottom-up order, so we don't know the hazards at the start of a
// region. So assume no hazards (this should usually be ok as most
// blocks are a single region).
HazardRec->Reset();
// Release any successors of the special Entry node.
ReleaseSuccessors(&EntrySU);
// Add all leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
bool available = SUnits[i].Preds.empty();
if (available) {
AvailableQueue.push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// In any cycle where we can't schedule any instructions, we must
// stall or emit a noop, depending on the target.
bool CycleHasInsts = false;
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady;
Sequence.reserve(SUnits.size());
while (!AvailableQueue.empty() || !PendingQueue.empty()) {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
unsigned MinDepth = ~0u;
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
if (PendingQueue[i]->getDepth() <= CurCycle) {
AvailableQueue.push(PendingQueue[i]);
PendingQueue[i]->isAvailable = true;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
} else if (PendingQueue[i]->getDepth() < MinDepth)
MinDepth = PendingQueue[i]->getDepth();
}
DEBUG(dbgs() << "\n*** Examining Available\n";
LatencyPriorityQueue q = AvailableQueue;
while (!q.empty()) {
SUnit *su = q.pop();
dbgs() << "Height " << su->getHeight() << ": ";
su->dump(this);
});
SUnit *FoundSUnit = 0;
bool HasNoopHazards = false;
while (!AvailableQueue.empty()) {
SUnit *CurSUnit = AvailableQueue.pop();
ScheduleHazardRecognizer::HazardType HT =
HazardRec->getHazardType(CurSUnit);
if (HT == ScheduleHazardRecognizer::NoHazard) {
FoundSUnit = CurSUnit;
break;
}
// Remember if this is a noop hazard.
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
NotReady.push_back(CurSUnit);
}
// Add the nodes that aren't ready back onto the available list.
if (!NotReady.empty()) {
AvailableQueue.push_all(NotReady);
NotReady.clear();
}
// If we found a node to schedule...
if (FoundSUnit) {
// ... schedule the node...
ScheduleNodeTopDown(FoundSUnit, CurCycle);
HazardRec->EmitInstruction(FoundSUnit);
CycleHasInsts = true;
// If we are using the target-specific hazards, then don't
// advance the cycle time just because we schedule a node. If
// the target allows it we can schedule multiple nodes in the
// same cycle.
if (!EnablePostRAHazardAvoidance) {
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
++CurCycle;
}
} else {
if (CycleHasInsts) {
DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
HazardRec->AdvanceCycle();
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem,
// just advance the current cycle and try again.
DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
HazardRec->AdvanceCycle();
++NumStalls;
} else {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
HazardRec->EmitNoop();
Sequence.push_back(0); // NULL here means noop
++NumNoops;
}
++CurCycle;
CycleHasInsts = false;
}
}
#ifndef NDEBUG
VerifySchedule(/*isBottomUp=*/false);
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
return new PostRAScheduler(OptLevel);
}