mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
2d8b3a7239
This removes all legacy layers, legacy utilities, the old Orc C bindings, OrcMCJITReplacement, and OrcMCJITReplacement regression tests. ExecutionEngine and MCJIT are not affected by this change.
671 lines
26 KiB
C++
671 lines
26 KiB
C++
//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the abstract interface that implements execution support
|
|
// for LLVM.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
|
|
#define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
|
|
|
|
#include "llvm-c/ExecutionEngine.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ExecutionEngine/JITSymbol.h"
|
|
#include "llvm/ExecutionEngine/OrcV1Deprecation.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Object/Binary.h"
|
|
#include "llvm/Support/CBindingWrapping.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Mutex.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class Constant;
|
|
class Function;
|
|
struct GenericValue;
|
|
class GlobalValue;
|
|
class GlobalVariable;
|
|
class JITEventListener;
|
|
class MCJITMemoryManager;
|
|
class ObjectCache;
|
|
class RTDyldMemoryManager;
|
|
class Triple;
|
|
class Type;
|
|
|
|
namespace object {
|
|
|
|
class Archive;
|
|
class ObjectFile;
|
|
|
|
} // end namespace object
|
|
|
|
/// Helper class for helping synchronize access to the global address map
|
|
/// table. Access to this class should be serialized under a mutex.
|
|
class ExecutionEngineState {
|
|
public:
|
|
using GlobalAddressMapTy = StringMap<uint64_t>;
|
|
|
|
private:
|
|
/// GlobalAddressMap - A mapping between LLVM global symbol names values and
|
|
/// their actualized version...
|
|
GlobalAddressMapTy GlobalAddressMap;
|
|
|
|
/// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
|
|
/// used to convert raw addresses into the LLVM global value that is emitted
|
|
/// at the address. This map is not computed unless getGlobalValueAtAddress
|
|
/// is called at some point.
|
|
std::map<uint64_t, std::string> GlobalAddressReverseMap;
|
|
|
|
public:
|
|
GlobalAddressMapTy &getGlobalAddressMap() {
|
|
return GlobalAddressMap;
|
|
}
|
|
|
|
std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
|
|
return GlobalAddressReverseMap;
|
|
}
|
|
|
|
/// Erase an entry from the mapping table.
|
|
///
|
|
/// \returns The address that \p ToUnmap was happed to.
|
|
uint64_t RemoveMapping(StringRef Name);
|
|
};
|
|
|
|
using FunctionCreator = std::function<void *(const std::string &)>;
|
|
|
|
/// Abstract interface for implementation execution of LLVM modules,
|
|
/// designed to support both interpreter and just-in-time (JIT) compiler
|
|
/// implementations.
|
|
class ExecutionEngine {
|
|
/// The state object holding the global address mapping, which must be
|
|
/// accessed synchronously.
|
|
//
|
|
// FIXME: There is no particular need the entire map needs to be
|
|
// synchronized. Wouldn't a reader-writer design be better here?
|
|
ExecutionEngineState EEState;
|
|
|
|
/// The target data for the platform for which execution is being performed.
|
|
///
|
|
/// Note: the DataLayout is LLVMContext specific because it has an
|
|
/// internal cache based on type pointers. It makes unsafe to reuse the
|
|
/// ExecutionEngine across context, we don't enforce this rule but undefined
|
|
/// behavior can occurs if the user tries to do it.
|
|
const DataLayout DL;
|
|
|
|
/// Whether lazy JIT compilation is enabled.
|
|
bool CompilingLazily;
|
|
|
|
/// Whether JIT compilation of external global variables is allowed.
|
|
bool GVCompilationDisabled;
|
|
|
|
/// Whether the JIT should perform lookups of external symbols (e.g.,
|
|
/// using dlsym).
|
|
bool SymbolSearchingDisabled;
|
|
|
|
/// Whether the JIT should verify IR modules during compilation.
|
|
bool VerifyModules;
|
|
|
|
friend class EngineBuilder; // To allow access to JITCtor and InterpCtor.
|
|
|
|
protected:
|
|
/// The list of Modules that we are JIT'ing from. We use a SmallVector to
|
|
/// optimize for the case where there is only one module.
|
|
SmallVector<std::unique_ptr<Module>, 1> Modules;
|
|
|
|
/// getMemoryforGV - Allocate memory for a global variable.
|
|
virtual char *getMemoryForGV(const GlobalVariable *GV);
|
|
|
|
static ExecutionEngine *(*MCJITCtor)(
|
|
std::unique_ptr<Module> M, std::string *ErrorStr,
|
|
std::shared_ptr<MCJITMemoryManager> MM,
|
|
std::shared_ptr<LegacyJITSymbolResolver> SR,
|
|
std::unique_ptr<TargetMachine> TM);
|
|
|
|
static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
|
|
std::string *ErrorStr);
|
|
|
|
/// LazyFunctionCreator - If an unknown function is needed, this function
|
|
/// pointer is invoked to create it. If this returns null, the JIT will
|
|
/// abort.
|
|
FunctionCreator LazyFunctionCreator;
|
|
|
|
/// getMangledName - Get mangled name.
|
|
std::string getMangledName(const GlobalValue *GV);
|
|
|
|
std::string ErrMsg;
|
|
|
|
public:
|
|
/// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
|
|
/// be held while changing the internal state of any of those classes.
|
|
sys::Mutex lock;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// ExecutionEngine Startup
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
virtual ~ExecutionEngine();
|
|
|
|
/// Add a Module to the list of modules that we can JIT from.
|
|
virtual void addModule(std::unique_ptr<Module> M) {
|
|
Modules.push_back(std::move(M));
|
|
}
|
|
|
|
/// addObjectFile - Add an ObjectFile to the execution engine.
|
|
///
|
|
/// This method is only supported by MCJIT. MCJIT will immediately load the
|
|
/// object into memory and adds its symbols to the list used to resolve
|
|
/// external symbols while preparing other objects for execution.
|
|
///
|
|
/// Objects added using this function will not be made executable until
|
|
/// needed by another object.
|
|
///
|
|
/// MCJIT will take ownership of the ObjectFile.
|
|
virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
|
|
virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
|
|
|
|
/// addArchive - Add an Archive to the execution engine.
|
|
///
|
|
/// This method is only supported by MCJIT. MCJIT will use the archive to
|
|
/// resolve external symbols in objects it is loading. If a symbol is found
|
|
/// in the Archive the contained object file will be extracted (in memory)
|
|
/// and loaded for possible execution.
|
|
virtual void addArchive(object::OwningBinary<object::Archive> A);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
const DataLayout &getDataLayout() const { return DL; }
|
|
|
|
/// removeModule - Removes a Module from the list of modules, but does not
|
|
/// free the module's memory. Returns true if M is found, in which case the
|
|
/// caller assumes responsibility for deleting the module.
|
|
//
|
|
// FIXME: This stealth ownership transfer is horrible. This will probably be
|
|
// fixed by deleting ExecutionEngine.
|
|
virtual bool removeModule(Module *M);
|
|
|
|
/// FindFunctionNamed - Search all of the active modules to find the function that
|
|
/// defines FnName. This is very slow operation and shouldn't be used for
|
|
/// general code.
|
|
virtual Function *FindFunctionNamed(StringRef FnName);
|
|
|
|
/// FindGlobalVariableNamed - Search all of the active modules to find the global variable
|
|
/// that defines Name. This is very slow operation and shouldn't be used for
|
|
/// general code.
|
|
virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
|
|
|
|
/// runFunction - Execute the specified function with the specified arguments,
|
|
/// and return the result.
|
|
///
|
|
/// For MCJIT execution engines, clients are encouraged to use the
|
|
/// "GetFunctionAddress" method (rather than runFunction) and cast the
|
|
/// returned uint64_t to the desired function pointer type. However, for
|
|
/// backwards compatibility MCJIT's implementation can execute 'main-like'
|
|
/// function (i.e. those returning void or int, and taking either no
|
|
/// arguments or (int, char*[])).
|
|
virtual GenericValue runFunction(Function *F,
|
|
ArrayRef<GenericValue> ArgValues) = 0;
|
|
|
|
/// getPointerToNamedFunction - This method returns the address of the
|
|
/// specified function by using the dlsym function call. As such it is only
|
|
/// useful for resolving library symbols, not code generated symbols.
|
|
///
|
|
/// If AbortOnFailure is false and no function with the given name is
|
|
/// found, this function silently returns a null pointer. Otherwise,
|
|
/// it prints a message to stderr and aborts.
|
|
///
|
|
/// This function is deprecated for the MCJIT execution engine.
|
|
virtual void *getPointerToNamedFunction(StringRef Name,
|
|
bool AbortOnFailure = true) = 0;
|
|
|
|
/// mapSectionAddress - map a section to its target address space value.
|
|
/// Map the address of a JIT section as returned from the memory manager
|
|
/// to the address in the target process as the running code will see it.
|
|
/// This is the address which will be used for relocation resolution.
|
|
virtual void mapSectionAddress(const void *LocalAddress,
|
|
uint64_t TargetAddress) {
|
|
llvm_unreachable("Re-mapping of section addresses not supported with this "
|
|
"EE!");
|
|
}
|
|
|
|
/// generateCodeForModule - Run code generation for the specified module and
|
|
/// load it into memory.
|
|
///
|
|
/// When this function has completed, all code and data for the specified
|
|
/// module, and any module on which this module depends, will be generated
|
|
/// and loaded into memory, but relocations will not yet have been applied
|
|
/// and all memory will be readable and writable but not executable.
|
|
///
|
|
/// This function is primarily useful when generating code for an external
|
|
/// target, allowing the client an opportunity to remap section addresses
|
|
/// before relocations are applied. Clients that intend to execute code
|
|
/// locally can use the getFunctionAddress call, which will generate code
|
|
/// and apply final preparations all in one step.
|
|
///
|
|
/// This method has no effect for the interpeter.
|
|
virtual void generateCodeForModule(Module *M) {}
|
|
|
|
/// finalizeObject - ensure the module is fully processed and is usable.
|
|
///
|
|
/// It is the user-level function for completing the process of making the
|
|
/// object usable for execution. It should be called after sections within an
|
|
/// object have been relocated using mapSectionAddress. When this method is
|
|
/// called the MCJIT execution engine will reapply relocations for a loaded
|
|
/// object. This method has no effect for the interpeter.
|
|
///
|
|
/// Returns true on success, false on failure. Error messages can be retrieved
|
|
/// by calling getError();
|
|
virtual void finalizeObject() {}
|
|
|
|
/// Returns true if an error has been recorded.
|
|
bool hasError() const { return !ErrMsg.empty(); }
|
|
|
|
/// Clear the error message.
|
|
void clearErrorMessage() { ErrMsg.clear(); }
|
|
|
|
/// Returns the most recent error message.
|
|
const std::string &getErrorMessage() const { return ErrMsg; }
|
|
|
|
/// runStaticConstructorsDestructors - This method is used to execute all of
|
|
/// the static constructors or destructors for a program.
|
|
///
|
|
/// \param isDtors - Run the destructors instead of constructors.
|
|
virtual void runStaticConstructorsDestructors(bool isDtors);
|
|
|
|
/// This method is used to execute all of the static constructors or
|
|
/// destructors for a particular module.
|
|
///
|
|
/// \param isDtors - Run the destructors instead of constructors.
|
|
void runStaticConstructorsDestructors(Module &module, bool isDtors);
|
|
|
|
|
|
/// runFunctionAsMain - This is a helper function which wraps runFunction to
|
|
/// handle the common task of starting up main with the specified argc, argv,
|
|
/// and envp parameters.
|
|
int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
|
|
const char * const * envp);
|
|
|
|
|
|
/// addGlobalMapping - Tell the execution engine that the specified global is
|
|
/// at the specified location. This is used internally as functions are JIT'd
|
|
/// and as global variables are laid out in memory. It can and should also be
|
|
/// used by clients of the EE that want to have an LLVM global overlay
|
|
/// existing data in memory. Values to be mapped should be named, and have
|
|
/// external or weak linkage. Mappings are automatically removed when their
|
|
/// GlobalValue is destroyed.
|
|
void addGlobalMapping(const GlobalValue *GV, void *Addr);
|
|
void addGlobalMapping(StringRef Name, uint64_t Addr);
|
|
|
|
/// clearAllGlobalMappings - Clear all global mappings and start over again,
|
|
/// for use in dynamic compilation scenarios to move globals.
|
|
void clearAllGlobalMappings();
|
|
|
|
/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
|
|
/// particular module, because it has been removed from the JIT.
|
|
void clearGlobalMappingsFromModule(Module *M);
|
|
|
|
/// updateGlobalMapping - Replace an existing mapping for GV with a new
|
|
/// address. This updates both maps as required. If "Addr" is null, the
|
|
/// entry for the global is removed from the mappings. This returns the old
|
|
/// value of the pointer, or null if it was not in the map.
|
|
uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
|
|
uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
|
|
|
|
/// getAddressToGlobalIfAvailable - This returns the address of the specified
|
|
/// global symbol.
|
|
uint64_t getAddressToGlobalIfAvailable(StringRef S);
|
|
|
|
/// getPointerToGlobalIfAvailable - This returns the address of the specified
|
|
/// global value if it is has already been codegen'd, otherwise it returns
|
|
/// null.
|
|
void *getPointerToGlobalIfAvailable(StringRef S);
|
|
void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
|
|
|
|
/// getPointerToGlobal - This returns the address of the specified global
|
|
/// value. This may involve code generation if it's a function.
|
|
///
|
|
/// This function is deprecated for the MCJIT execution engine. Use
|
|
/// getGlobalValueAddress instead.
|
|
void *getPointerToGlobal(const GlobalValue *GV);
|
|
|
|
/// getPointerToFunction - The different EE's represent function bodies in
|
|
/// different ways. They should each implement this to say what a function
|
|
/// pointer should look like. When F is destroyed, the ExecutionEngine will
|
|
/// remove its global mapping and free any machine code. Be sure no threads
|
|
/// are running inside F when that happens.
|
|
///
|
|
/// This function is deprecated for the MCJIT execution engine. Use
|
|
/// getFunctionAddress instead.
|
|
virtual void *getPointerToFunction(Function *F) = 0;
|
|
|
|
/// getPointerToFunctionOrStub - If the specified function has been
|
|
/// code-gen'd, return a pointer to the function. If not, compile it, or use
|
|
/// a stub to implement lazy compilation if available. See
|
|
/// getPointerToFunction for the requirements on destroying F.
|
|
///
|
|
/// This function is deprecated for the MCJIT execution engine. Use
|
|
/// getFunctionAddress instead.
|
|
virtual void *getPointerToFunctionOrStub(Function *F) {
|
|
// Default implementation, just codegen the function.
|
|
return getPointerToFunction(F);
|
|
}
|
|
|
|
/// getGlobalValueAddress - Return the address of the specified global
|
|
/// value. This may involve code generation.
|
|
///
|
|
/// This function should not be called with the interpreter engine.
|
|
virtual uint64_t getGlobalValueAddress(const std::string &Name) {
|
|
// Default implementation for the interpreter. MCJIT will override this.
|
|
// JIT and interpreter clients should use getPointerToGlobal instead.
|
|
return 0;
|
|
}
|
|
|
|
/// getFunctionAddress - Return the address of the specified function.
|
|
/// This may involve code generation.
|
|
virtual uint64_t getFunctionAddress(const std::string &Name) {
|
|
// Default implementation for the interpreter. MCJIT will override this.
|
|
// Interpreter clients should use getPointerToFunction instead.
|
|
return 0;
|
|
}
|
|
|
|
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
|
|
/// at the specified address.
|
|
///
|
|
const GlobalValue *getGlobalValueAtAddress(void *Addr);
|
|
|
|
/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
|
|
/// Ptr is the address of the memory at which to store Val, cast to
|
|
/// GenericValue *. It is not a pointer to a GenericValue containing the
|
|
/// address at which to store Val.
|
|
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
|
|
Type *Ty);
|
|
|
|
void InitializeMemory(const Constant *Init, void *Addr);
|
|
|
|
/// getOrEmitGlobalVariable - Return the address of the specified global
|
|
/// variable, possibly emitting it to memory if needed. This is used by the
|
|
/// Emitter.
|
|
///
|
|
/// This function is deprecated for the MCJIT execution engine. Use
|
|
/// getGlobalValueAddress instead.
|
|
virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
|
|
return getPointerToGlobal((const GlobalValue *)GV);
|
|
}
|
|
|
|
/// Registers a listener to be called back on various events within
|
|
/// the JIT. See JITEventListener.h for more details. Does not
|
|
/// take ownership of the argument. The argument may be NULL, in
|
|
/// which case these functions do nothing.
|
|
virtual void RegisterJITEventListener(JITEventListener *) {}
|
|
virtual void UnregisterJITEventListener(JITEventListener *) {}
|
|
|
|
/// Sets the pre-compiled object cache. The ownership of the ObjectCache is
|
|
/// not changed. Supported by MCJIT but not the interpreter.
|
|
virtual void setObjectCache(ObjectCache *) {
|
|
llvm_unreachable("No support for an object cache");
|
|
}
|
|
|
|
/// setProcessAllSections (MCJIT Only): By default, only sections that are
|
|
/// "required for execution" are passed to the RTDyldMemoryManager, and other
|
|
/// sections are discarded. Passing 'true' to this method will cause
|
|
/// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
|
|
/// of whether they are "required to execute" in the usual sense.
|
|
///
|
|
/// Rationale: Some MCJIT clients want to be able to inspect metadata
|
|
/// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
|
|
/// performance. Passing these sections to the memory manager allows the
|
|
/// client to make policy about the relevant sections, rather than having
|
|
/// MCJIT do it.
|
|
virtual void setProcessAllSections(bool ProcessAllSections) {
|
|
llvm_unreachable("No support for ProcessAllSections option");
|
|
}
|
|
|
|
/// Return the target machine (if available).
|
|
virtual TargetMachine *getTargetMachine() { return nullptr; }
|
|
|
|
/// DisableLazyCompilation - When lazy compilation is off (the default), the
|
|
/// JIT will eagerly compile every function reachable from the argument to
|
|
/// getPointerToFunction. If lazy compilation is turned on, the JIT will only
|
|
/// compile the one function and emit stubs to compile the rest when they're
|
|
/// first called. If lazy compilation is turned off again while some lazy
|
|
/// stubs are still around, and one of those stubs is called, the program will
|
|
/// abort.
|
|
///
|
|
/// In order to safely compile lazily in a threaded program, the user must
|
|
/// ensure that 1) only one thread at a time can call any particular lazy
|
|
/// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
|
|
/// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
|
|
/// lazy stub. See http://llvm.org/PR5184 for details.
|
|
void DisableLazyCompilation(bool Disabled = true) {
|
|
CompilingLazily = !Disabled;
|
|
}
|
|
bool isCompilingLazily() const {
|
|
return CompilingLazily;
|
|
}
|
|
|
|
/// DisableGVCompilation - If called, the JIT will abort if it's asked to
|
|
/// allocate space and populate a GlobalVariable that is not internal to
|
|
/// the module.
|
|
void DisableGVCompilation(bool Disabled = true) {
|
|
GVCompilationDisabled = Disabled;
|
|
}
|
|
bool isGVCompilationDisabled() const {
|
|
return GVCompilationDisabled;
|
|
}
|
|
|
|
/// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
|
|
/// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
|
|
/// resolve symbols in a custom way.
|
|
void DisableSymbolSearching(bool Disabled = true) {
|
|
SymbolSearchingDisabled = Disabled;
|
|
}
|
|
bool isSymbolSearchingDisabled() const {
|
|
return SymbolSearchingDisabled;
|
|
}
|
|
|
|
/// Enable/Disable IR module verification.
|
|
///
|
|
/// Note: Module verification is enabled by default in Debug builds, and
|
|
/// disabled by default in Release. Use this method to override the default.
|
|
void setVerifyModules(bool Verify) {
|
|
VerifyModules = Verify;
|
|
}
|
|
bool getVerifyModules() const {
|
|
return VerifyModules;
|
|
}
|
|
|
|
/// InstallLazyFunctionCreator - If an unknown function is needed, the
|
|
/// specified function pointer is invoked to create it. If it returns null,
|
|
/// the JIT will abort.
|
|
void InstallLazyFunctionCreator(FunctionCreator C) {
|
|
LazyFunctionCreator = std::move(C);
|
|
}
|
|
|
|
protected:
|
|
ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
|
|
explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
|
|
explicit ExecutionEngine(std::unique_ptr<Module> M);
|
|
|
|
void emitGlobals();
|
|
|
|
void emitGlobalVariable(const GlobalVariable *GV);
|
|
|
|
GenericValue getConstantValue(const Constant *C);
|
|
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
|
|
Type *Ty);
|
|
|
|
private:
|
|
void Init(std::unique_ptr<Module> M);
|
|
};
|
|
|
|
namespace EngineKind {
|
|
|
|
// These are actually bitmasks that get or-ed together.
|
|
enum Kind {
|
|
JIT = 0x1,
|
|
Interpreter = 0x2
|
|
};
|
|
const static Kind Either = (Kind)(JIT | Interpreter);
|
|
|
|
} // end namespace EngineKind
|
|
|
|
/// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
|
|
/// chaining the various set* methods, and terminating it with a .create()
|
|
/// call.
|
|
class EngineBuilder {
|
|
private:
|
|
std::unique_ptr<Module> M;
|
|
EngineKind::Kind WhichEngine;
|
|
std::string *ErrorStr;
|
|
CodeGenOpt::Level OptLevel;
|
|
std::shared_ptr<MCJITMemoryManager> MemMgr;
|
|
std::shared_ptr<LegacyJITSymbolResolver> Resolver;
|
|
TargetOptions Options;
|
|
Optional<Reloc::Model> RelocModel;
|
|
Optional<CodeModel::Model> CMModel;
|
|
std::string MArch;
|
|
std::string MCPU;
|
|
SmallVector<std::string, 4> MAttrs;
|
|
bool VerifyModules;
|
|
bool EmulatedTLS = true;
|
|
|
|
public:
|
|
/// Default constructor for EngineBuilder.
|
|
EngineBuilder();
|
|
|
|
/// Constructor for EngineBuilder.
|
|
EngineBuilder(std::unique_ptr<Module> M);
|
|
|
|
// Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
|
|
~EngineBuilder();
|
|
|
|
/// setEngineKind - Controls whether the user wants the interpreter, the JIT,
|
|
/// or whichever engine works. This option defaults to EngineKind::Either.
|
|
EngineBuilder &setEngineKind(EngineKind::Kind w) {
|
|
WhichEngine = w;
|
|
return *this;
|
|
}
|
|
|
|
/// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
|
|
/// clients to customize their memory allocation policies for the MCJIT. This
|
|
/// is only appropriate for the MCJIT; setting this and configuring the builder
|
|
/// to create anything other than MCJIT will cause a runtime error. If create()
|
|
/// is called and is successful, the created engine takes ownership of the
|
|
/// memory manager. This option defaults to NULL.
|
|
EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
|
|
|
|
EngineBuilder&
|
|
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
|
|
|
|
EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
|
|
|
|
/// setErrorStr - Set the error string to write to on error. This option
|
|
/// defaults to NULL.
|
|
EngineBuilder &setErrorStr(std::string *e) {
|
|
ErrorStr = e;
|
|
return *this;
|
|
}
|
|
|
|
/// setOptLevel - Set the optimization level for the JIT. This option
|
|
/// defaults to CodeGenOpt::Default.
|
|
EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
|
|
OptLevel = l;
|
|
return *this;
|
|
}
|
|
|
|
/// setTargetOptions - Set the target options that the ExecutionEngine
|
|
/// target is using. Defaults to TargetOptions().
|
|
EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
|
|
Options = Opts;
|
|
return *this;
|
|
}
|
|
|
|
/// setRelocationModel - Set the relocation model that the ExecutionEngine
|
|
/// target is using. Defaults to target specific default "Reloc::Default".
|
|
EngineBuilder &setRelocationModel(Reloc::Model RM) {
|
|
RelocModel = RM;
|
|
return *this;
|
|
}
|
|
|
|
/// setCodeModel - Set the CodeModel that the ExecutionEngine target
|
|
/// data is using. Defaults to target specific default
|
|
/// "CodeModel::JITDefault".
|
|
EngineBuilder &setCodeModel(CodeModel::Model M) {
|
|
CMModel = M;
|
|
return *this;
|
|
}
|
|
|
|
/// setMArch - Override the architecture set by the Module's triple.
|
|
EngineBuilder &setMArch(StringRef march) {
|
|
MArch.assign(march.begin(), march.end());
|
|
return *this;
|
|
}
|
|
|
|
/// setMCPU - Target a specific cpu type.
|
|
EngineBuilder &setMCPU(StringRef mcpu) {
|
|
MCPU.assign(mcpu.begin(), mcpu.end());
|
|
return *this;
|
|
}
|
|
|
|
/// setVerifyModules - Set whether the JIT implementation should verify
|
|
/// IR modules during compilation.
|
|
EngineBuilder &setVerifyModules(bool Verify) {
|
|
VerifyModules = Verify;
|
|
return *this;
|
|
}
|
|
|
|
/// setMAttrs - Set cpu-specific attributes.
|
|
template<typename StringSequence>
|
|
EngineBuilder &setMAttrs(const StringSequence &mattrs) {
|
|
MAttrs.clear();
|
|
MAttrs.append(mattrs.begin(), mattrs.end());
|
|
return *this;
|
|
}
|
|
|
|
void setEmulatedTLS(bool EmulatedTLS) {
|
|
this->EmulatedTLS = EmulatedTLS;
|
|
}
|
|
|
|
TargetMachine *selectTarget();
|
|
|
|
/// selectTarget - Pick a target either via -march or by guessing the native
|
|
/// arch. Add any CPU features specified via -mcpu or -mattr.
|
|
TargetMachine *selectTarget(const Triple &TargetTriple,
|
|
StringRef MArch,
|
|
StringRef MCPU,
|
|
const SmallVectorImpl<std::string>& MAttrs);
|
|
|
|
ExecutionEngine *create() {
|
|
return create(selectTarget());
|
|
}
|
|
|
|
ExecutionEngine *create(TargetMachine *TM);
|
|
};
|
|
|
|
// Create wrappers for C Binding types (see CBindingWrapping.h).
|
|
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
|