1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/unittests/IR/IRBuilderTest.cpp
David Sherwood 42a72164a2 [IR][SVE] Add new llvm.experimental.stepvector intrinsic
This patch adds a new llvm.experimental.stepvector intrinsic,
which takes no arguments and returns a linear integer sequence of
values of the form <0, 1, ...>. It is primarily intended for
scalable vectors, although it will work for fixed width vectors
too. It is intended that later patches will make use of this
new intrinsic when vectorising induction variables, currently only
supported for fixed width. I've added a new CreateStepVector
method to the IRBuilder, which will generate a call to this
intrinsic for scalable vectors and fall back on creating a
ConstantVector for fixed width.

For scalable vectors this intrinsic is lowered to a new ISD node
called STEP_VECTOR, which takes a single constant integer argument
as the step. During lowering this argument is set to a value of 1.
The reason for this additional argument at the codegen level is
because in future patches we will introduce various generic DAG
combines such as

  mul step_vector(1), 2 -> step_vector(2)
  add step_vector(1), step_vector(1) -> step_vector(2)
  shl step_vector(1), 1 -> step_vector(2)
  etc.

that encourage a canonical format for all targets. This hopefully
means all other targets supporting scalable vectors can benefit
from this too.

I've added cost model tests for both fixed width and scalable
vectors:

  llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll
  llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll

as well as codegen lowering tests for fixed width and scalable
vectors:

  llvm/test/CodeGen/AArch64/neon-stepvector.ll
  llvm/test/CodeGen/AArch64/sve-stepvector.ll

See this thread for discussion of the intrinsic:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html
2021-03-23 10:43:35 +00:00

1025 lines
36 KiB
C++

//===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Verifier.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class IRBuilderTest : public testing::Test {
protected:
void SetUp() override {
M.reset(new Module("MyModule", Ctx));
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
/*isVarArg=*/false);
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
BB = BasicBlock::Create(Ctx, "", F);
GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true,
GlobalValue::ExternalLinkage, nullptr);
}
void TearDown() override {
BB = nullptr;
M.reset();
}
LLVMContext Ctx;
std::unique_ptr<Module> M;
Function *F;
BasicBlock *BB;
GlobalVariable *GV;
};
TEST_F(IRBuilderTest, Intrinsics) {
IRBuilder<> Builder(BB);
Value *V;
Instruction *I;
CallInst *Call;
IntrinsicInst *II;
V = Builder.CreateLoad(GV->getValueType(), GV);
I = cast<Instruction>(Builder.CreateFAdd(V, V));
I->setHasNoInfs(true);
I->setHasNoNaNs(false);
Call = Builder.CreateMinNum(V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minnum);
Call = Builder.CreateMaxNum(V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maxnum);
Call = Builder.CreateMinimum(V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minimum);
Call = Builder.CreateMaximum(V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maximum);
Call = Builder.CreateIntrinsic(Intrinsic::readcyclecounter, {}, {});
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::readcyclecounter);
Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs);
EXPECT_FALSE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V, I);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs);
EXPECT_TRUE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow);
EXPECT_FALSE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V, I);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow);
EXPECT_TRUE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V});
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
EXPECT_FALSE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
EXPECT_TRUE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
EXPECT_TRUE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateUnaryIntrinsic(Intrinsic::roundeven, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::roundeven);
EXPECT_FALSE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateIntrinsic(
Intrinsic::set_rounding, {},
{Builder.getInt32(static_cast<uint32_t>(RoundingMode::TowardZero))});
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::set_rounding);
}
TEST_F(IRBuilderTest, IntrinsicsWithScalableVectors) {
IRBuilder<> Builder(BB);
CallInst *Call;
FunctionType *FTy;
// Test scalable flag isn't dropped for intrinsic that is explicitly defined
// with scalable vectors, e.g. LLVMType<nxv4i32>.
Type *SrcVecTy = VectorType::get(Builder.getHalfTy(), 8, true);
Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
Type *PredTy = VectorType::get(Builder.getInt1Ty(), 4, true);
SmallVector<Value*, 3> ArgTys;
ArgTys.push_back(UndefValue::get(DstVecTy));
ArgTys.push_back(UndefValue::get(PredTy));
ArgTys.push_back(UndefValue::get(SrcVecTy));
Call = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fcvtzs_i32f16, {},
ArgTys, nullptr, "aarch64.sve.fcvtzs.i32f16");
FTy = Call->getFunctionType();
EXPECT_EQ(FTy->getReturnType(), DstVecTy);
for (unsigned i = 0; i != ArgTys.size(); ++i)
EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType());
// Test scalable flag isn't dropped for intrinsic defined with
// LLVMScalarOrSameVectorWidth.
Type *VecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
Type *PtrToVecTy = VecTy->getPointerTo();
PredTy = VectorType::get(Builder.getInt1Ty(), 4, true);
ArgTys.clear();
ArgTys.push_back(UndefValue::get(PtrToVecTy));
ArgTys.push_back(UndefValue::get(Builder.getInt32Ty()));
ArgTys.push_back(UndefValue::get(PredTy));
ArgTys.push_back(UndefValue::get(VecTy));
Call = Builder.CreateIntrinsic(Intrinsic::masked_load,
{VecTy, PtrToVecTy}, ArgTys,
nullptr, "masked.load");
FTy = Call->getFunctionType();
EXPECT_EQ(FTy->getReturnType(), VecTy);
for (unsigned i = 0; i != ArgTys.size(); ++i)
EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType());
}
TEST_F(IRBuilderTest, CreateStepVector) {
IRBuilder<> Builder(BB);
// Fixed width vectors
Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, false);
Value *StepVec = Builder.CreateStepVector(DstVecTy);
EXPECT_TRUE(isa<Constant>(StepVec));
EXPECT_EQ(StepVec->getType(), DstVecTy);
const auto *VectorValue = cast<Constant>(StepVec);
for (unsigned i = 0; i < 4; i++) {
EXPECT_TRUE(isa<ConstantInt>(VectorValue->getAggregateElement(i)));
ConstantInt *El = cast<ConstantInt>(VectorValue->getAggregateElement(i));
EXPECT_EQ(El->getValue(), i);
}
// Scalable vectors
DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
StepVec = Builder.CreateStepVector(DstVecTy);
EXPECT_TRUE(isa<CallInst>(StepVec));
CallInst *Call = cast<CallInst>(StepVec);
FunctionType *FTy = Call->getFunctionType();
EXPECT_EQ(FTy->getReturnType(), DstVecTy);
EXPECT_EQ(Call->getIntrinsicID(), Intrinsic::experimental_stepvector);
}
TEST_F(IRBuilderTest, ConstrainedFP) {
IRBuilder<> Builder(BB);
Value *V;
Value *VDouble;
Value *VInt;
CallInst *Call;
IntrinsicInst *II;
GlobalVariable *GVDouble = new GlobalVariable(*M, Type::getDoubleTy(Ctx),
true, GlobalValue::ExternalLinkage, nullptr);
V = Builder.CreateLoad(GV->getValueType(), GV);
VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble);
// See if we get constrained intrinsics instead of non-constrained
// instructions.
Builder.setIsFPConstrained(true);
auto Parent = BB->getParent();
Parent->addFnAttr(Attribute::StrictFP);
V = Builder.CreateFAdd(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fadd);
V = Builder.CreateFSub(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fsub);
V = Builder.CreateFMul(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fmul);
V = Builder.CreateFDiv(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fdiv);
V = Builder.CreateFRem(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_frem);
VInt = Builder.CreateFPToUI(VDouble, Builder.getInt32Ty());
ASSERT_TRUE(isa<IntrinsicInst>(VInt));
II = cast<IntrinsicInst>(VInt);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptoui);
VInt = Builder.CreateFPToSI(VDouble, Builder.getInt32Ty());
ASSERT_TRUE(isa<IntrinsicInst>(VInt));
II = cast<IntrinsicInst>(VInt);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptosi);
VDouble = Builder.CreateUIToFP(VInt, Builder.getDoubleTy());
ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
II = cast<IntrinsicInst>(VDouble);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_uitofp);
VDouble = Builder.CreateSIToFP(VInt, Builder.getDoubleTy());
ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
II = cast<IntrinsicInst>(VDouble);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_sitofp);
V = Builder.CreateFPTrunc(VDouble, Type::getFloatTy(Ctx));
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptrunc);
VDouble = Builder.CreateFPExt(V, Type::getDoubleTy(Ctx));
ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
II = cast<IntrinsicInst>(VDouble);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fpext);
// Verify attributes on the call are created automatically.
AttributeSet CallAttrs = II->getAttributes().getFnAttributes();
EXPECT_EQ(CallAttrs.hasAttribute(Attribute::StrictFP), true);
// Verify attributes on the containing function are created when requested.
Builder.setConstrainedFPFunctionAttr();
AttributeList Attrs = BB->getParent()->getAttributes();
AttributeSet FnAttrs = Attrs.getFnAttributes();
EXPECT_EQ(FnAttrs.hasAttribute(Attribute::StrictFP), true);
// Verify the codepaths for setting and overriding the default metadata.
V = Builder.CreateFAdd(V, V);
ASSERT_TRUE(isa<ConstrainedFPIntrinsic>(V));
auto *CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior());
EXPECT_EQ(RoundingMode::Dynamic, CII->getRoundingMode());
Builder.setDefaultConstrainedExcept(fp::ebIgnore);
Builder.setDefaultConstrainedRounding(RoundingMode::TowardPositive);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
EXPECT_EQ(CII->getRoundingMode(), RoundingMode::TowardPositive);
Builder.setDefaultConstrainedExcept(fp::ebIgnore);
Builder.setDefaultConstrainedRounding(RoundingMode::NearestTiesToEven);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
EXPECT_EQ(RoundingMode::NearestTiesToEven, CII->getRoundingMode());
Builder.setDefaultConstrainedExcept(fp::ebMayTrap);
Builder.setDefaultConstrainedRounding(RoundingMode::TowardNegative);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior());
EXPECT_EQ(RoundingMode::TowardNegative, CII->getRoundingMode());
Builder.setDefaultConstrainedExcept(fp::ebStrict);
Builder.setDefaultConstrainedRounding(RoundingMode::TowardZero);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior());
EXPECT_EQ(RoundingMode::TowardZero, CII->getRoundingMode());
Builder.setDefaultConstrainedExcept(fp::ebIgnore);
Builder.setDefaultConstrainedRounding(RoundingMode::Dynamic);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
EXPECT_EQ(RoundingMode::Dynamic, CII->getRoundingMode());
// Now override the defaults.
Call = Builder.CreateConstrainedFPBinOp(
Intrinsic::experimental_constrained_fadd, V, V, nullptr, "", nullptr,
RoundingMode::TowardNegative, fp::ebMayTrap);
CII = cast<ConstrainedFPIntrinsic>(Call);
EXPECT_EQ(CII->getIntrinsicID(), Intrinsic::experimental_constrained_fadd);
EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior());
EXPECT_EQ(RoundingMode::TowardNegative, CII->getRoundingMode());
Builder.CreateRetVoid();
EXPECT_FALSE(verifyModule(*M));
}
TEST_F(IRBuilderTest, ConstrainedFPIntrinsics) {
IRBuilder<> Builder(BB);
Value *V;
Value *VDouble;
ConstrainedFPIntrinsic *CII;
GlobalVariable *GVDouble = new GlobalVariable(
*M, Type::getDoubleTy(Ctx), true, GlobalValue::ExternalLinkage, nullptr);
VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble);
Builder.setDefaultConstrainedExcept(fp::ebStrict);
Builder.setDefaultConstrainedRounding(RoundingMode::TowardZero);
Function *Fn = Intrinsic::getDeclaration(M.get(),
Intrinsic::experimental_constrained_roundeven, { Type::getDoubleTy(Ctx) });
V = Builder.CreateConstrainedFPCall(Fn, { VDouble });
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(Intrinsic::experimental_constrained_roundeven, CII->getIntrinsicID());
EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior());
}
TEST_F(IRBuilderTest, ConstrainedFPFunctionCall) {
IRBuilder<> Builder(BB);
// Create an empty constrained FP function.
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
/*isVarArg=*/false);
Function *Callee =
Function::Create(FTy, Function::ExternalLinkage, "", M.get());
BasicBlock *CalleeBB = BasicBlock::Create(Ctx, "", Callee);
IRBuilder<> CalleeBuilder(CalleeBB);
CalleeBuilder.setIsFPConstrained(true);
CalleeBuilder.setConstrainedFPFunctionAttr();
CalleeBuilder.CreateRetVoid();
// Now call the empty constrained FP function.
Builder.setIsFPConstrained(true);
Builder.setConstrainedFPFunctionAttr();
CallInst *FCall = Builder.CreateCall(Callee, None);
// Check the attributes to verify the strictfp attribute is on the call.
EXPECT_TRUE(FCall->getAttributes().getFnAttributes().hasAttribute(
Attribute::StrictFP));
Builder.CreateRetVoid();
EXPECT_FALSE(verifyModule(*M));
}
TEST_F(IRBuilderTest, Lifetime) {
IRBuilder<> Builder(BB);
AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty());
AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty());
AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(),
Builder.getInt32(123));
CallInst *Start1 = Builder.CreateLifetimeStart(Var1);
CallInst *Start2 = Builder.CreateLifetimeStart(Var2);
CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100));
EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1));
EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1));
EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100));
EXPECT_EQ(Start1->getArgOperand(1), Var1);
EXPECT_NE(Start2->getArgOperand(1), Var2);
EXPECT_EQ(Start3->getArgOperand(1), Var3);
Value *End1 = Builder.CreateLifetimeEnd(Var1);
Builder.CreateLifetimeEnd(Var2);
Builder.CreateLifetimeEnd(Var3);
IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1);
IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1);
ASSERT_TRUE(II_Start1 != nullptr);
EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start);
ASSERT_TRUE(II_End1 != nullptr);
EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end);
}
TEST_F(IRBuilderTest, CreateCondBr) {
IRBuilder<> Builder(BB);
BasicBlock *TBB = BasicBlock::Create(Ctx, "", F);
BasicBlock *FBB = BasicBlock::Create(Ctx, "", F);
BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB);
Instruction *TI = BB->getTerminator();
EXPECT_EQ(BI, TI);
EXPECT_EQ(2u, TI->getNumSuccessors());
EXPECT_EQ(TBB, TI->getSuccessor(0));
EXPECT_EQ(FBB, TI->getSuccessor(1));
BI->eraseFromParent();
MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13);
BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights);
TI = BB->getTerminator();
EXPECT_EQ(BI, TI);
EXPECT_EQ(2u, TI->getNumSuccessors());
EXPECT_EQ(TBB, TI->getSuccessor(0));
EXPECT_EQ(FBB, TI->getSuccessor(1));
EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof));
}
TEST_F(IRBuilderTest, LandingPadName) {
IRBuilder<> Builder(BB);
LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP");
EXPECT_EQ(LP->getName(), "LP");
}
TEST_F(IRBuilderTest, DataLayout) {
std::unique_ptr<Module> M(new Module("test", Ctx));
M->setDataLayout("e-n32");
EXPECT_TRUE(M->getDataLayout().isLegalInteger(32));
M->setDataLayout("e");
EXPECT_FALSE(M->getDataLayout().isLegalInteger(32));
}
TEST_F(IRBuilderTest, GetIntTy) {
IRBuilder<> Builder(BB);
IntegerType *Ty1 = Builder.getInt1Ty();
EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1));
DataLayout* DL = new DataLayout(M.get());
IntegerType *IntPtrTy = Builder.getIntPtrTy(*DL);
unsigned IntPtrBitSize = DL->getPointerSizeInBits(0);
EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize));
delete DL;
}
TEST_F(IRBuilderTest, UnaryOperators) {
IRBuilder<NoFolder> Builder(BB);
Value *V = Builder.CreateLoad(GV->getValueType(), GV);
// Test CreateUnOp(X)
Value *U = Builder.CreateUnOp(Instruction::FNeg, V);
ASSERT_TRUE(isa<Instruction>(U));
ASSERT_TRUE(isa<FPMathOperator>(U));
ASSERT_TRUE(isa<UnaryOperator>(U));
ASSERT_FALSE(isa<BinaryOperator>(U));
// Test CreateFNegFMF(X)
Instruction *I = cast<Instruction>(U);
I->setHasNoSignedZeros(true);
I->setHasNoNaNs(true);
Value *VFMF = Builder.CreateFNegFMF(V, I);
Instruction *IFMF = cast<Instruction>(VFMF);
EXPECT_TRUE(IFMF->hasNoSignedZeros());
EXPECT_TRUE(IFMF->hasNoNaNs());
EXPECT_FALSE(IFMF->hasAllowReassoc());
}
TEST_F(IRBuilderTest, FastMathFlags) {
IRBuilder<> Builder(BB);
Value *F, *FC;
Instruction *FDiv, *FAdd, *FCmp, *FCall;
F = Builder.CreateLoad(GV->getValueType(), GV);
F = Builder.CreateFAdd(F, F);
EXPECT_FALSE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_FALSE(FAdd->hasNoNaNs());
FastMathFlags FMF;
Builder.setFastMathFlags(FMF);
// By default, no flags are set.
F = Builder.CreateFAdd(F, F);
EXPECT_FALSE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_FALSE(FAdd->hasNoNaNs());
EXPECT_FALSE(FAdd->hasNoInfs());
EXPECT_FALSE(FAdd->hasNoSignedZeros());
EXPECT_FALSE(FAdd->hasAllowReciprocal());
EXPECT_FALSE(FAdd->hasAllowContract());
EXPECT_FALSE(FAdd->hasAllowReassoc());
EXPECT_FALSE(FAdd->hasApproxFunc());
// Set all flags in the instruction.
FAdd->setFast(true);
EXPECT_TRUE(FAdd->hasNoNaNs());
EXPECT_TRUE(FAdd->hasNoInfs());
EXPECT_TRUE(FAdd->hasNoSignedZeros());
EXPECT_TRUE(FAdd->hasAllowReciprocal());
EXPECT_TRUE(FAdd->hasAllowContract());
EXPECT_TRUE(FAdd->hasAllowReassoc());
EXPECT_TRUE(FAdd->hasApproxFunc());
// All flags are set in the builder.
FMF.setFast();
Builder.setFastMathFlags(FMF);
F = Builder.CreateFAdd(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().all());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasNoNaNs());
EXPECT_TRUE(FAdd->isFast());
// Now, try it with CreateBinOp
F = Builder.CreateBinOp(Instruction::FAdd, F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasNoNaNs());
EXPECT_TRUE(FAdd->isFast());
F = Builder.CreateFDiv(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().all());
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_TRUE(FDiv->hasAllowReciprocal());
// Clear all FMF in the builder.
Builder.clearFastMathFlags();
F = Builder.CreateFDiv(F, F);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_FALSE(FDiv->hasAllowReciprocal());
// Try individual flags.
FMF.clear();
FMF.setAllowReciprocal();
Builder.setFastMathFlags(FMF);
F = Builder.CreateFDiv(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_TRUE(FDiv->hasAllowReciprocal());
Builder.clearFastMathFlags();
FC = Builder.CreateFCmpOEQ(F, F);
ASSERT_TRUE(isa<Instruction>(FC));
FCmp = cast<Instruction>(FC);
EXPECT_FALSE(FCmp->hasAllowReciprocal());
FMF.clear();
FMF.setAllowReciprocal();
Builder.setFastMathFlags(FMF);
FC = Builder.CreateFCmpOEQ(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
ASSERT_TRUE(isa<Instruction>(FC));
FCmp = cast<Instruction>(FC);
EXPECT_TRUE(FCmp->hasAllowReciprocal());
Builder.clearFastMathFlags();
// Test FP-contract
FC = Builder.CreateFAdd(F, F);
ASSERT_TRUE(isa<Instruction>(FC));
FAdd = cast<Instruction>(FC);
EXPECT_FALSE(FAdd->hasAllowContract());
FMF.clear();
FMF.setAllowContract(true);
Builder.setFastMathFlags(FMF);
FC = Builder.CreateFAdd(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().AllowContract);
ASSERT_TRUE(isa<Instruction>(FC));
FAdd = cast<Instruction>(FC);
EXPECT_TRUE(FAdd->hasAllowContract());
FMF.setApproxFunc();
Builder.clearFastMathFlags();
Builder.setFastMathFlags(FMF);
// Now 'aml' and 'contract' are set.
F = Builder.CreateFMul(F, F);
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasApproxFunc());
EXPECT_TRUE(FAdd->hasAllowContract());
EXPECT_FALSE(FAdd->hasAllowReassoc());
FMF.setAllowReassoc();
Builder.clearFastMathFlags();
Builder.setFastMathFlags(FMF);
// Now 'aml' and 'contract' and 'reassoc' are set.
F = Builder.CreateFMul(F, F);
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasApproxFunc());
EXPECT_TRUE(FAdd->hasAllowContract());
EXPECT_TRUE(FAdd->hasAllowReassoc());
// Test a call with FMF.
auto CalleeTy = FunctionType::get(Type::getFloatTy(Ctx),
/*isVarArg=*/false);
auto Callee =
Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
FCall = Builder.CreateCall(Callee, None);
EXPECT_FALSE(FCall->hasNoNaNs());
Function *V =
Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
FCall = Builder.CreateCall(V, None);
EXPECT_FALSE(FCall->hasNoNaNs());
FMF.clear();
FMF.setNoNaNs();
Builder.setFastMathFlags(FMF);
FCall = Builder.CreateCall(Callee, None);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs);
EXPECT_TRUE(FCall->hasNoNaNs());
FCall = Builder.CreateCall(V, None);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs);
EXPECT_TRUE(FCall->hasNoNaNs());
Builder.clearFastMathFlags();
// To test a copy, make sure that a '0' and a '1' change state.
F = Builder.CreateFDiv(F, F);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_FALSE(FDiv->getFastMathFlags().any());
FDiv->setHasAllowReciprocal(true);
FAdd->setHasAllowReciprocal(false);
FAdd->setHasNoNaNs(true);
FDiv->copyFastMathFlags(FAdd);
EXPECT_TRUE(FDiv->hasNoNaNs());
EXPECT_FALSE(FDiv->hasAllowReciprocal());
}
TEST_F(IRBuilderTest, WrapFlags) {
IRBuilder<NoFolder> Builder(BB);
// Test instructions.
GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true,
GlobalValue::ExternalLinkage, nullptr);
Value *V = Builder.CreateLoad(G->getValueType(), G);
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap());
EXPECT_TRUE(cast<BinaryOperator>(
Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true))
->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(cast<BinaryOperator>(
Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false))
->hasNoUnsignedWrap());
// Test operators created with constants.
Constant *C = Builder.getInt32(42);
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(
Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(
Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false))
->hasNoUnsignedWrap());
}
TEST_F(IRBuilderTest, RAIIHelpersTest) {
IRBuilder<> Builder(BB);
EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
MDBuilder MDB(M->getContext());
MDNode *FPMathA = MDB.createFPMath(0.01f);
MDNode *FPMathB = MDB.createFPMath(0.1f);
Builder.setDefaultFPMathTag(FPMathA);
{
IRBuilder<>::FastMathFlagGuard Guard(Builder);
FastMathFlags FMF;
FMF.setAllowReciprocal();
Builder.setFastMathFlags(FMF);
Builder.setDefaultFPMathTag(FPMathB);
EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal());
EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag());
}
EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag());
Value *F = Builder.CreateLoad(GV->getValueType(), GV);
{
IRBuilder<>::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(cast<Instruction>(F));
EXPECT_EQ(F, &*Builder.GetInsertPoint());
}
EXPECT_EQ(BB->end(), Builder.GetInsertPoint());
EXPECT_EQ(BB, Builder.GetInsertBlock());
}
TEST_F(IRBuilderTest, createFunction) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto File = DIB.createFile("error.swift", "/");
auto CU =
DIB.createCompileUnit(dwarf::DW_LANG_Swift, File, "swiftc", true, "", 0);
auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto NoErr = DIB.createFunction(
CU, "noerr", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
EXPECT_TRUE(!NoErr->getThrownTypes());
auto Int = DIB.createBasicType("Int", 64, dwarf::DW_ATE_signed);
auto Error = DIB.getOrCreateArray({Int});
auto Err = DIB.createFunction(
CU, "err", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized, nullptr,
nullptr, Error.get());
EXPECT_TRUE(Err->getThrownTypes().get() == Error.get());
DIB.finalize();
}
TEST_F(IRBuilderTest, DIBuilder) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto File = DIB.createFile("F.CBL", "/");
auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74,
DIB.createFile("F.CBL", "/"), "llvm-cobol74",
true, "", 0);
auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto SP = DIB.createFunction(
CU, "foo", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
F->setSubprogram(SP);
AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
auto BarSP = DIB.createFunction(
CU, "bar", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
auto BadScope = DIB.createLexicalBlockFile(BarSP, File, 0);
I->setDebugLoc(DILocation::get(Ctx, 2, 0, BadScope));
DIB.finalize();
EXPECT_TRUE(verifyModule(*M));
}
TEST_F(IRBuilderTest, createArtificialSubprogram) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto File = DIB.createFile("main.c", "/");
auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang",
/*isOptimized=*/true, /*Flags=*/"",
/*Runtime Version=*/0);
auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto SP = DIB.createFunction(
CU, "foo", /*LinkageName=*/"", File,
/*LineNo=*/1, Type, /*ScopeLine=*/2, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
EXPECT_TRUE(SP->isDistinct());
F->setSubprogram(SP);
AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
ReturnInst *R = Builder.CreateRetVoid();
I->setDebugLoc(DILocation::get(Ctx, 3, 2, SP));
R->setDebugLoc(DILocation::get(Ctx, 4, 2, SP));
DIB.finalize();
EXPECT_FALSE(verifyModule(*M));
Function *G = Function::Create(F->getFunctionType(),
Function::ExternalLinkage, "", M.get());
BasicBlock *GBB = BasicBlock::Create(Ctx, "", G);
Builder.SetInsertPoint(GBB);
I->removeFromParent();
Builder.Insert(I);
Builder.CreateRetVoid();
EXPECT_FALSE(verifyModule(*M));
DISubprogram *GSP = DIBuilder::createArtificialSubprogram(F->getSubprogram());
EXPECT_EQ(SP->getFile(), GSP->getFile());
EXPECT_EQ(SP->getType(), GSP->getType());
EXPECT_EQ(SP->getLine(), GSP->getLine());
EXPECT_EQ(SP->getScopeLine(), GSP->getScopeLine());
EXPECT_TRUE(GSP->isDistinct());
G->setSubprogram(GSP);
EXPECT_TRUE(verifyModule(*M));
auto *InlinedAtNode =
DILocation::getDistinct(Ctx, GSP->getScopeLine(), 0, GSP);
DebugLoc DL = I->getDebugLoc();
DenseMap<const MDNode *, MDNode *> IANodes;
auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, Ctx, IANodes);
auto NewDL =
DILocation::get(Ctx, DL.getLine(), DL.getCol(), DL.getScope(), IA);
I->setDebugLoc(NewDL);
EXPECT_FALSE(verifyModule(*M));
EXPECT_EQ("foo", SP->getName());
EXPECT_EQ("foo", GSP->getName());
EXPECT_FALSE(SP->isArtificial());
EXPECT_TRUE(GSP->isArtificial());
}
TEST_F(IRBuilderTest, InsertExtractElement) {
IRBuilder<> Builder(BB);
auto VecTy = FixedVectorType::get(Builder.getInt64Ty(), 4);
auto Elt1 = Builder.getInt64(-1);
auto Elt2 = Builder.getInt64(-2);
Value *Vec = UndefValue::get(VecTy);
Vec = Builder.CreateInsertElement(Vec, Elt1, Builder.getInt8(1));
Vec = Builder.CreateInsertElement(Vec, Elt2, 2);
auto X1 = Builder.CreateExtractElement(Vec, 1);
auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2));
EXPECT_EQ(Elt1, X1);
EXPECT_EQ(Elt2, X2);
}
TEST_F(IRBuilderTest, CreateGlobalStringPtr) {
IRBuilder<> Builder(BB);
auto String1a = Builder.CreateGlobalStringPtr("TestString", "String1a");
auto String1b = Builder.CreateGlobalStringPtr("TestString", "String1b", 0);
auto String2 = Builder.CreateGlobalStringPtr("TestString", "String2", 1);
auto String3 = Builder.CreateGlobalString("TestString", "String3", 2);
EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0);
EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0);
EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1);
EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2);
}
TEST_F(IRBuilderTest, DebugLoc) {
auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx),
/*isVarArg=*/false);
auto Callee =
Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
DIBuilder DIB(*M);
auto File = DIB.createFile("tmp.cpp", "/");
auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11,
DIB.createFile("tmp.cpp", "/"), "", true, "",
0);
auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto SP =
DIB.createFunction(CU, "foo", "foo", File, 1, SPType, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition);
DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP);
DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP);
auto BB2 = BasicBlock::Create(Ctx, "bb2", F);
auto Br = BranchInst::Create(BB2, BB);
Br->setDebugLoc(DL1);
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(Br);
EXPECT_EQ(DL1, Builder.getCurrentDebugLocation());
auto Call1 = Builder.CreateCall(Callee, None);
EXPECT_EQ(DL1, Call1->getDebugLoc());
Call1->setDebugLoc(DL2);
Builder.SetInsertPoint(Call1->getParent(), Call1->getIterator());
EXPECT_EQ(DL2, Builder.getCurrentDebugLocation());
auto Call2 = Builder.CreateCall(Callee, None);
EXPECT_EQ(DL2, Call2->getDebugLoc());
DIB.finalize();
}
TEST_F(IRBuilderTest, DIImportedEntity) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto F = DIB.createFile("F.CBL", "/");
auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74,
F, "llvm-cobol74",
true, "", 0);
DIB.createImportedDeclaration(CU, nullptr, F, 1);
DIB.createImportedDeclaration(CU, nullptr, F, 1);
DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2);
DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2);
DIB.finalize();
EXPECT_TRUE(verifyModule(*M));
EXPECT_TRUE(CU->getImportedEntities().size() == 2);
}
// 0: #define M0 V0 <-- command line definition
// 0: main.c <-- main file
// 3: #define M1 V1 <-- M1 definition in main.c
// 5: #include "file.h" <-- inclusion of file.h from main.c
// 1: #define M2 <-- M2 definition in file.h with no value
// 7: #undef M1 V1 <-- M1 un-definition in main.c
TEST_F(IRBuilderTest, DIBuilderMacro) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto File1 = DIB.createFile("main.c", "/");
auto File2 = DIB.createFile("file.h", "/");
auto CU = DIB.createCompileUnit(
dwarf::DW_LANG_C, DIB.createFile("main.c", "/"), "llvm-c", true, "", 0);
auto MDef0 =
DIB.createMacro(nullptr, 0, dwarf::DW_MACINFO_define, "M0", "V0");
auto TMF1 = DIB.createTempMacroFile(nullptr, 0, File1);
auto MDef1 = DIB.createMacro(TMF1, 3, dwarf::DW_MACINFO_define, "M1", "V1");
auto TMF2 = DIB.createTempMacroFile(TMF1, 5, File2);
auto MDef2 = DIB.createMacro(TMF2, 1, dwarf::DW_MACINFO_define, "M2");
auto MUndef1 = DIB.createMacro(TMF1, 7, dwarf::DW_MACINFO_undef, "M1");
EXPECT_EQ(dwarf::DW_MACINFO_define, MDef1->getMacinfoType());
EXPECT_EQ(3u, MDef1->getLine());
EXPECT_EQ("M1", MDef1->getName());
EXPECT_EQ("V1", MDef1->getValue());
EXPECT_EQ(dwarf::DW_MACINFO_undef, MUndef1->getMacinfoType());
EXPECT_EQ(7u, MUndef1->getLine());
EXPECT_EQ("M1", MUndef1->getName());
EXPECT_EQ("", MUndef1->getValue());
EXPECT_EQ(dwarf::DW_MACINFO_start_file, TMF2->getMacinfoType());
EXPECT_EQ(5u, TMF2->getLine());
EXPECT_EQ(File2, TMF2->getFile());
DIB.finalize();
SmallVector<Metadata *, 4> Elements;
Elements.push_back(MDef2);
auto MF2 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 5, File2,
DIB.getOrCreateMacroArray(Elements));
Elements.clear();
Elements.push_back(MDef1);
Elements.push_back(MF2);
Elements.push_back(MUndef1);
auto MF1 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 0, File1,
DIB.getOrCreateMacroArray(Elements));
Elements.clear();
Elements.push_back(MDef0);
Elements.push_back(MF1);
auto MN0 = MDTuple::get(Ctx, Elements);
EXPECT_EQ(MN0, CU->getRawMacros());
Elements.clear();
Elements.push_back(MDef1);
Elements.push_back(MF2);
Elements.push_back(MUndef1);
auto MN1 = MDTuple::get(Ctx, Elements);
EXPECT_EQ(MN1, MF1->getRawElements());
Elements.clear();
Elements.push_back(MDef2);
auto MN2 = MDTuple::get(Ctx, Elements);
EXPECT_EQ(MN2, MF2->getRawElements());
EXPECT_TRUE(verifyModule(*M));
}
TEST_F(IRBuilderTest, NoFolderNames) {
IRBuilder<NoFolder> Builder(BB);
auto *Add =
Builder.CreateAdd(Builder.getInt32(1), Builder.getInt32(2), "add");
EXPECT_EQ(Add->getName(), "add");
}
}