1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Analysis/CFLSteensAliasAnalysis.cpp
Sean Silva 11e71061b1 Consistently use FunctionAnalysisManager
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278077
2016-08-09 00:28:15 +00:00

371 lines
13 KiB
C++

//- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ---*- C++-*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a CFL-base, summary-based alias analysis algorithm. It
// does not depend on types. The algorithm is a mixture of the one described in
// "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
// algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
// Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
// graph of the uses of a variable, where each node is a memory location, and
// each edge is an action that happened on that memory location. The "actions"
// can be one of Dereference, Reference, or Assign. The precision of this
// analysis is roughly the same as that of an one level context-sensitive
// Steensgaard's algorithm.
//
// Two variables are considered as aliasing iff you can reach one value's node
// from the other value's node and the language formed by concatenating all of
// the edge labels (actions) conforms to a context-free grammar.
//
// Because this algorithm requires a graph search on each query, we execute the
// algorithm outlined in "Fast algorithms..." (mentioned above)
// in order to transform the graph into sets of variables that may alias in
// ~nlogn time (n = number of variables), which makes queries take constant
// time.
//===----------------------------------------------------------------------===//
// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
// CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
// FunctionPasses are only allowed to inspect the Function that they're being
// run on. Realistically, this likely isn't a problem until we allow
// FunctionPasses to run concurrently.
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "CFLGraph.h"
#include "StratifiedSets.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include <tuple>
using namespace llvm;
using namespace llvm::cflaa;
#define DEBUG_TYPE "cfl-steens-aa"
CFLSteensAAResult::CFLSteensAAResult(const TargetLibraryInfo &TLI)
: AAResultBase(), TLI(TLI) {}
CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
: AAResultBase(std::move(Arg)), TLI(Arg.TLI) {}
CFLSteensAAResult::~CFLSteensAAResult() {}
/// Information we have about a function and would like to keep around.
class CFLSteensAAResult::FunctionInfo {
StratifiedSets<InstantiatedValue> Sets;
AliasSummary Summary;
public:
FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
StratifiedSets<InstantiatedValue> S);
const StratifiedSets<InstantiatedValue> &getStratifiedSets() const {
return Sets;
}
const AliasSummary &getAliasSummary() const { return Summary; }
};
/// Try to go from a Value* to a Function*. Never returns nullptr.
static Optional<Function *> parentFunctionOfValue(Value *);
const StratifiedIndex StratifiedLink::SetSentinel =
std::numeric_limits<StratifiedIndex>::max();
//===----------------------------------------------------------------------===//
// Function declarations that require types defined in the namespace above
//===----------------------------------------------------------------------===//
/// Determines whether it would be pointless to add the given Value to our sets.
static bool canSkipAddingToSets(Value *Val);
static Optional<Function *> parentFunctionOfValue(Value *Val) {
if (auto *Inst = dyn_cast<Instruction>(Val)) {
auto *Bb = Inst->getParent();
return Bb->getParent();
}
if (auto *Arg = dyn_cast<Argument>(Val))
return Arg->getParent();
return None;
}
static bool canSkipAddingToSets(Value *Val) {
// Constants can share instances, which may falsely unify multiple
// sets, e.g. in
// store i32* null, i32** %ptr1
// store i32* null, i32** %ptr2
// clearly ptr1 and ptr2 should not be unified into the same set, so
// we should filter out the (potentially shared) instance to
// i32* null.
if (isa<Constant>(Val)) {
// TODO: Because all of these things are constant, we can determine whether
// the data is *actually* mutable at graph building time. This will probably
// come for free/cheap with offset awareness.
bool CanStoreMutableData = isa<GlobalValue>(Val) ||
isa<ConstantExpr>(Val) ||
isa<ConstantAggregate>(Val);
return !CanStoreMutableData;
}
return false;
}
CFLSteensAAResult::FunctionInfo::FunctionInfo(
Function &Fn, const SmallVectorImpl<Value *> &RetVals,
StratifiedSets<InstantiatedValue> S)
: Sets(std::move(S)) {
// Historically, an arbitrary upper-bound of 50 args was selected. We may want
// to remove this if it doesn't really matter in practice.
if (Fn.arg_size() > MaxSupportedArgsInSummary)
return;
DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;
// Our intention here is to record all InterfaceValues that share the same
// StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
// have its StratifiedIndex scanned here and check if the index is presented
// in InterfaceMap: if it is not, we add the correspondence to the map;
// otherwise, an aliasing relation is found and we add it to
// RetParamRelations.
auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
StratifiedIndex SetIndex) {
unsigned Level = 0;
while (true) {
InterfaceValue CurrValue{InterfaceIndex, Level};
auto Itr = InterfaceMap.find(SetIndex);
if (Itr != InterfaceMap.end()) {
if (CurrValue != Itr->second)
Summary.RetParamRelations.push_back(
ExternalRelation{CurrValue, Itr->second, UnknownOffset});
break;
}
auto &Link = Sets.getLink(SetIndex);
InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
auto ExternalAttrs = getExternallyVisibleAttrs(Link.Attrs);
if (ExternalAttrs.any())
Summary.RetParamAttributes.push_back(
ExternalAttribute{CurrValue, ExternalAttrs});
if (!Link.hasBelow())
break;
++Level;
SetIndex = Link.Below;
}
};
// Populate RetParamRelations for return values
for (auto *RetVal : RetVals) {
assert(RetVal != nullptr);
assert(RetVal->getType()->isPointerTy());
auto RetInfo = Sets.find(InstantiatedValue{RetVal, 0});
if (RetInfo.hasValue())
AddToRetParamRelations(0, RetInfo->Index);
}
// Populate RetParamRelations for parameters
unsigned I = 0;
for (auto &Param : Fn.args()) {
if (Param.getType()->isPointerTy()) {
auto ParamInfo = Sets.find(InstantiatedValue{&Param, 0});
if (ParamInfo.hasValue())
AddToRetParamRelations(I + 1, ParamInfo->Index);
}
++I;
}
}
// Builds the graph + StratifiedSets for a function.
CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
CFLGraphBuilder<CFLSteensAAResult> GraphBuilder(*this, TLI, *Fn);
StratifiedSetsBuilder<InstantiatedValue> SetBuilder;
// Add all CFLGraph nodes and all Dereference edges to StratifiedSets
auto &Graph = GraphBuilder.getCFLGraph();
for (const auto &Mapping : Graph.value_mappings()) {
auto Val = Mapping.first;
if (canSkipAddingToSets(Val))
continue;
auto &ValueInfo = Mapping.second;
assert(ValueInfo.getNumLevels() > 0);
SetBuilder.add(InstantiatedValue{Val, 0});
SetBuilder.noteAttributes(InstantiatedValue{Val, 0},
ValueInfo.getNodeInfoAtLevel(0).Attr);
for (unsigned I = 0, E = ValueInfo.getNumLevels() - 1; I < E; ++I) {
SetBuilder.add(InstantiatedValue{Val, I + 1});
SetBuilder.noteAttributes(InstantiatedValue{Val, I + 1},
ValueInfo.getNodeInfoAtLevel(I + 1).Attr);
SetBuilder.addBelow(InstantiatedValue{Val, I},
InstantiatedValue{Val, I + 1});
}
}
// Add all assign edges to StratifiedSets
for (const auto &Mapping : Graph.value_mappings()) {
auto Val = Mapping.first;
if (canSkipAddingToSets(Val))
continue;
auto &ValueInfo = Mapping.second;
for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
auto Src = InstantiatedValue{Val, I};
for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges)
SetBuilder.addWith(Src, Edge.Other);
}
}
return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
}
void CFLSteensAAResult::scan(Function *Fn) {
auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
(void)InsertPair;
assert(InsertPair.second &&
"Trying to scan a function that has already been cached");
// Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
// may get evaluated after operator[], potentially triggering a DenseMap
// resize and invalidating the reference returned by operator[]
auto FunInfo = buildSetsFrom(Fn);
Cache[Fn] = std::move(FunInfo);
Handles.push_front(FunctionHandle(Fn, this));
}
void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }
/// Ensures that the given function is available in the cache, and returns the
/// entry.
const Optional<CFLSteensAAResult::FunctionInfo> &
CFLSteensAAResult::ensureCached(Function *Fn) {
auto Iter = Cache.find(Fn);
if (Iter == Cache.end()) {
scan(Fn);
Iter = Cache.find(Fn);
assert(Iter != Cache.end());
assert(Iter->second.hasValue());
}
return Iter->second;
}
const AliasSummary *CFLSteensAAResult::getAliasSummary(Function &Fn) {
auto &FunInfo = ensureCached(&Fn);
if (FunInfo.hasValue())
return &FunInfo->getAliasSummary();
else
return nullptr;
}
AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
auto *ValA = const_cast<Value *>(LocA.Ptr);
auto *ValB = const_cast<Value *>(LocB.Ptr);
if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
return NoAlias;
Function *Fn = nullptr;
auto MaybeFnA = parentFunctionOfValue(ValA);
auto MaybeFnB = parentFunctionOfValue(ValB);
if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
// The only times this is known to happen are when globals + InlineAsm are
// involved
DEBUG(dbgs()
<< "CFLSteensAA: could not extract parent function information.\n");
return MayAlias;
}
if (MaybeFnA.hasValue()) {
Fn = *MaybeFnA;
assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
"Interprocedural queries not supported");
} else {
Fn = *MaybeFnB;
}
assert(Fn != nullptr);
auto &MaybeInfo = ensureCached(Fn);
assert(MaybeInfo.hasValue());
auto &Sets = MaybeInfo->getStratifiedSets();
auto MaybeA = Sets.find(InstantiatedValue{ValA, 0});
if (!MaybeA.hasValue())
return MayAlias;
auto MaybeB = Sets.find(InstantiatedValue{ValB, 0});
if (!MaybeB.hasValue())
return MayAlias;
auto SetA = *MaybeA;
auto SetB = *MaybeB;
auto AttrsA = Sets.getLink(SetA.Index).Attrs;
auto AttrsB = Sets.getLink(SetB.Index).Attrs;
// If both values are local (meaning the corresponding set has attribute
// AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
// they may-alias each other if and only if they are in the same set.
// If at least one value is non-local (meaning it either is global/argument or
// it comes from unknown sources like integer cast), the situation becomes a
// bit more interesting. We follow three general rules described below:
// - Non-local values may alias each other
// - AttrNone values do not alias any non-local values
// - AttrEscaped do not alias globals/arguments, but they may alias
// AttrUnknown values
if (SetA.Index == SetB.Index)
return MayAlias;
if (AttrsA.none() || AttrsB.none())
return NoAlias;
if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
return MayAlias;
if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
return MayAlias;
return NoAlias;
}
char CFLSteensAA::PassID;
CFLSteensAAResult CFLSteensAA::run(Function &F, FunctionAnalysisManager &AM) {
return CFLSteensAAResult(AM.getResult<TargetLibraryAnalysis>(F));
}
char CFLSteensAAWrapperPass::ID = 0;
INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
"Unification-Based CFL Alias Analysis", false, true)
ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
return new CFLSteensAAWrapperPass();
}
CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
void CFLSteensAAWrapperPass::initializePass() {
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
Result.reset(new CFLSteensAAResult(TLIWP.getTLI()));
}
void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}