mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-01 08:23:21 +01:00
0aa2f7755a
Use information computed while inferring new register classes to emit accurate, table-driven implementations of getMatchingSuperRegClass(). Delete the old manual, error-prone implementations in the targets. llvm-svn: 146873
991 lines
37 KiB
C++
991 lines
37 KiB
C++
//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines structures to encapsulate information gleaned from the
|
|
// target register and register class definitions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenRegisters.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegister
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
|
|
: TheDef(R),
|
|
EnumValue(Enum),
|
|
CostPerUse(R->getValueAsInt("CostPerUse")),
|
|
SubRegsComplete(false)
|
|
{}
|
|
|
|
const std::string &CodeGenRegister::getName() const {
|
|
return TheDef->getName();
|
|
}
|
|
|
|
namespace {
|
|
struct Orphan {
|
|
CodeGenRegister *SubReg;
|
|
Record *First, *Second;
|
|
Orphan(CodeGenRegister *r, Record *a, Record *b)
|
|
: SubReg(r), First(a), Second(b) {}
|
|
};
|
|
}
|
|
|
|
const CodeGenRegister::SubRegMap &
|
|
CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
|
|
// Only compute this map once.
|
|
if (SubRegsComplete)
|
|
return SubRegs;
|
|
SubRegsComplete = true;
|
|
|
|
std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs");
|
|
std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
|
|
if (SubList.size() != Indices.size())
|
|
throw TGError(TheDef->getLoc(), "Register " + getName() +
|
|
" SubRegIndices doesn't match SubRegs");
|
|
|
|
// First insert the direct subregs and make sure they are fully indexed.
|
|
for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = RegBank.getReg(SubList[i]);
|
|
if (!SubRegs.insert(std::make_pair(Indices[i], SR)).second)
|
|
throw TGError(TheDef->getLoc(), "SubRegIndex " + Indices[i]->getName() +
|
|
" appears twice in Register " + getName());
|
|
}
|
|
|
|
// Keep track of inherited subregs and how they can be reached.
|
|
SmallVector<Orphan, 8> Orphans;
|
|
|
|
// Clone inherited subregs and place duplicate entries on Orphans.
|
|
// Here the order is important - earlier subregs take precedence.
|
|
for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = RegBank.getReg(SubList[i]);
|
|
const SubRegMap &Map = SR->getSubRegs(RegBank);
|
|
|
|
// Add this as a super-register of SR now all sub-registers are in the list.
|
|
// This creates a topological ordering, the exact order depends on the
|
|
// order getSubRegs is called on all registers.
|
|
SR->SuperRegs.push_back(this);
|
|
|
|
for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
|
|
++SI) {
|
|
if (!SubRegs.insert(*SI).second)
|
|
Orphans.push_back(Orphan(SI->second, Indices[i], SI->first));
|
|
|
|
// Noop sub-register indexes are possible, so avoid duplicates.
|
|
if (SI->second != SR)
|
|
SI->second->SuperRegs.push_back(this);
|
|
}
|
|
}
|
|
|
|
// Process the composites.
|
|
ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices");
|
|
for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
|
|
DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
|
|
if (!Pat)
|
|
throw TGError(TheDef->getLoc(), "Invalid dag '" +
|
|
Comps->getElement(i)->getAsString() +
|
|
"' in CompositeIndices");
|
|
DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
|
|
if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
|
|
throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
|
|
Pat->getAsString());
|
|
|
|
// Resolve list of subreg indices into R2.
|
|
CodeGenRegister *R2 = this;
|
|
for (DagInit::const_arg_iterator di = Pat->arg_begin(),
|
|
de = Pat->arg_end(); di != de; ++di) {
|
|
DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
|
|
if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
|
|
throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
|
|
Pat->getAsString());
|
|
const SubRegMap &R2Subs = R2->getSubRegs(RegBank);
|
|
SubRegMap::const_iterator ni = R2Subs.find(IdxInit->getDef());
|
|
if (ni == R2Subs.end())
|
|
throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() +
|
|
" refers to bad index in " + R2->getName());
|
|
R2 = ni->second;
|
|
}
|
|
|
|
// Insert composite index. Allow overriding inherited indices etc.
|
|
SubRegs[BaseIdxInit->getDef()] = R2;
|
|
|
|
// R2 is no longer an orphan.
|
|
for (unsigned j = 0, je = Orphans.size(); j != je; ++j)
|
|
if (Orphans[j].SubReg == R2)
|
|
Orphans[j].SubReg = 0;
|
|
}
|
|
|
|
// Now Orphans contains the inherited subregisters without a direct index.
|
|
// Create inferred indexes for all missing entries.
|
|
for (unsigned i = 0, e = Orphans.size(); i != e; ++i) {
|
|
Orphan &O = Orphans[i];
|
|
if (!O.SubReg)
|
|
continue;
|
|
SubRegs[RegBank.getCompositeSubRegIndex(O.First, O.Second, true)] =
|
|
O.SubReg;
|
|
}
|
|
return SubRegs;
|
|
}
|
|
|
|
void
|
|
CodeGenRegister::addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const {
|
|
assert(SubRegsComplete && "Must precompute sub-registers");
|
|
std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = SubRegs.find(Indices[i])->second;
|
|
if (OSet.insert(SR))
|
|
SR->addSubRegsPreOrder(OSet);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegisterTuples
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// A RegisterTuples def is used to generate pseudo-registers from lists of
|
|
// sub-registers. We provide a SetTheory expander class that returns the new
|
|
// registers.
|
|
namespace {
|
|
struct TupleExpander : SetTheory::Expander {
|
|
void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
|
|
std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
|
|
unsigned Dim = Indices.size();
|
|
ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
|
|
if (Dim != SubRegs->getSize())
|
|
throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
|
|
if (Dim < 2)
|
|
throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
|
|
|
|
// Evaluate the sub-register lists to be zipped.
|
|
unsigned Length = ~0u;
|
|
SmallVector<SetTheory::RecSet, 4> Lists(Dim);
|
|
for (unsigned i = 0; i != Dim; ++i) {
|
|
ST.evaluate(SubRegs->getElement(i), Lists[i]);
|
|
Length = std::min(Length, unsigned(Lists[i].size()));
|
|
}
|
|
|
|
if (Length == 0)
|
|
return;
|
|
|
|
// Precompute some types.
|
|
Record *RegisterCl = Def->getRecords().getClass("Register");
|
|
RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
|
|
StringInit *BlankName = StringInit::get("");
|
|
|
|
// Zip them up.
|
|
for (unsigned n = 0; n != Length; ++n) {
|
|
std::string Name;
|
|
Record *Proto = Lists[0][n];
|
|
std::vector<Init*> Tuple;
|
|
unsigned CostPerUse = 0;
|
|
for (unsigned i = 0; i != Dim; ++i) {
|
|
Record *Reg = Lists[i][n];
|
|
if (i) Name += '_';
|
|
Name += Reg->getName();
|
|
Tuple.push_back(DefInit::get(Reg));
|
|
CostPerUse = std::max(CostPerUse,
|
|
unsigned(Reg->getValueAsInt("CostPerUse")));
|
|
}
|
|
|
|
// Create a new Record representing the synthesized register. This record
|
|
// is only for consumption by CodeGenRegister, it is not added to the
|
|
// RecordKeeper.
|
|
Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
|
|
Elts.insert(NewReg);
|
|
|
|
// Copy Proto super-classes.
|
|
for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
|
|
NewReg->addSuperClass(Proto->getSuperClasses()[i]);
|
|
|
|
// Copy Proto fields.
|
|
for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
|
|
RecordVal RV = Proto->getValues()[i];
|
|
|
|
// Replace the sub-register list with Tuple.
|
|
if (RV.getName() == "SubRegs")
|
|
RV.setValue(ListInit::get(Tuple, RegisterRecTy));
|
|
|
|
// Provide a blank AsmName. MC hacks are required anyway.
|
|
if (RV.getName() == "AsmName")
|
|
RV.setValue(BlankName);
|
|
|
|
// CostPerUse is aggregated from all Tuple members.
|
|
if (RV.getName() == "CostPerUse")
|
|
RV.setValue(IntInit::get(CostPerUse));
|
|
|
|
// Copy fields from the RegisterTuples def.
|
|
if (RV.getName() == "SubRegIndices" ||
|
|
RV.getName() == "CompositeIndices") {
|
|
NewReg->addValue(*Def->getValue(RV.getName()));
|
|
continue;
|
|
}
|
|
|
|
// Some fields get their default uninitialized value.
|
|
if (RV.getName() == "DwarfNumbers" ||
|
|
RV.getName() == "DwarfAlias" ||
|
|
RV.getName() == "Aliases") {
|
|
if (const RecordVal *DefRV = RegisterCl->getValue(RV.getName()))
|
|
NewReg->addValue(*DefRV);
|
|
continue;
|
|
}
|
|
|
|
// Everything else is copied from Proto.
|
|
NewReg->addValue(RV);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegisterClass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
|
|
: TheDef(R), Name(R->getName()), EnumValue(-1) {
|
|
// Rename anonymous register classes.
|
|
if (R->getName().size() > 9 && R->getName()[9] == '.') {
|
|
static unsigned AnonCounter = 0;
|
|
R->setName("AnonRegClass_"+utostr(AnonCounter++));
|
|
}
|
|
|
|
std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
|
|
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
|
|
Record *Type = TypeList[i];
|
|
if (!Type->isSubClassOf("ValueType"))
|
|
throw "RegTypes list member '" + Type->getName() +
|
|
"' does not derive from the ValueType class!";
|
|
VTs.push_back(getValueType(Type));
|
|
}
|
|
assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
|
|
|
|
// Allocation order 0 is the full set. AltOrders provides others.
|
|
const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
|
|
ListInit *AltOrders = R->getValueAsListInit("AltOrders");
|
|
Orders.resize(1 + AltOrders->size());
|
|
|
|
// Default allocation order always contains all registers.
|
|
for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
|
|
Orders[0].push_back((*Elements)[i]);
|
|
Members.insert(RegBank.getReg((*Elements)[i]));
|
|
}
|
|
|
|
// Alternative allocation orders may be subsets.
|
|
SetTheory::RecSet Order;
|
|
for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
|
|
RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
|
|
Orders[1 + i].append(Order.begin(), Order.end());
|
|
// Verify that all altorder members are regclass members.
|
|
while (!Order.empty()) {
|
|
CodeGenRegister *Reg = RegBank.getReg(Order.back());
|
|
Order.pop_back();
|
|
if (!contains(Reg))
|
|
throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
|
|
" is not a class member");
|
|
}
|
|
}
|
|
|
|
// SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags.
|
|
ListInit *SRC = R->getValueAsListInit("SubRegClasses");
|
|
for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) {
|
|
DagInit *DAG = dynamic_cast<DagInit*>(*i);
|
|
if (!DAG) throw "SubRegClasses must contain DAGs";
|
|
DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator());
|
|
Record *RCRec;
|
|
if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass"))
|
|
throw "Operator '" + DAG->getOperator()->getAsString() +
|
|
"' in SubRegClasses is not a RegisterClass";
|
|
// Iterate over args, all SubRegIndex instances.
|
|
for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end();
|
|
ai != ae; ++ai) {
|
|
DefInit *Idx = dynamic_cast<DefInit*>(*ai);
|
|
Record *IdxRec;
|
|
if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex"))
|
|
throw "Argument '" + (*ai)->getAsString() +
|
|
"' in SubRegClasses is not a SubRegIndex";
|
|
if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second)
|
|
throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice";
|
|
}
|
|
}
|
|
|
|
// Allow targets to override the size in bits of the RegisterClass.
|
|
unsigned Size = R->getValueAsInt("Size");
|
|
|
|
Namespace = R->getValueAsString("Namespace");
|
|
SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
|
|
SpillAlignment = R->getValueAsInt("Alignment");
|
|
CopyCost = R->getValueAsInt("CopyCost");
|
|
Allocatable = R->getValueAsBit("isAllocatable");
|
|
AltOrderSelect = R->getValueAsCode("AltOrderSelect");
|
|
}
|
|
|
|
// Create an inferred register class that was missing from the .td files.
|
|
// Most properties will be inherited from the closest super-class after the
|
|
// class structure has been computed.
|
|
CodeGenRegisterClass::CodeGenRegisterClass(StringRef Name, Key Props)
|
|
: Members(*Props.Members),
|
|
TheDef(0),
|
|
Name(Name),
|
|
EnumValue(-1),
|
|
SpillSize(Props.SpillSize),
|
|
SpillAlignment(Props.SpillAlignment),
|
|
CopyCost(0),
|
|
Allocatable(true) {
|
|
}
|
|
|
|
// Compute inherited propertied for a synthesized register class.
|
|
void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
|
|
assert(!getDef() && "Only synthesized classes can inherit properties");
|
|
assert(!SuperClasses.empty() && "Synthesized class without super class");
|
|
|
|
// The last super-class is the smallest one.
|
|
CodeGenRegisterClass &Super = *SuperClasses.back();
|
|
|
|
// Most properties are copied directly.
|
|
// Exceptions are members, size, and alignment
|
|
Namespace = Super.Namespace;
|
|
VTs = Super.VTs;
|
|
CopyCost = Super.CopyCost;
|
|
Allocatable = Super.Allocatable;
|
|
AltOrderSelect = Super.AltOrderSelect;
|
|
|
|
// Copy all allocation orders, filter out foreign registers from the larger
|
|
// super-class.
|
|
Orders.resize(Super.Orders.size());
|
|
for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
|
|
for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
|
|
if (contains(RegBank.getReg(Super.Orders[i][j])))
|
|
Orders[i].push_back(Super.Orders[i][j]);
|
|
}
|
|
|
|
bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
|
|
return Members.count(Reg);
|
|
}
|
|
|
|
namespace llvm {
|
|
raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
|
|
OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
|
|
for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
|
|
E = K.Members->end(); I != E; ++I)
|
|
OS << ", " << (*I)->getName();
|
|
return OS << " }";
|
|
}
|
|
}
|
|
|
|
// This is a simple lexicographical order that can be used to search for sets.
|
|
// It is not the same as the topological order provided by TopoOrderRC.
|
|
bool CodeGenRegisterClass::Key::
|
|
operator<(const CodeGenRegisterClass::Key &B) const {
|
|
assert(Members && B.Members);
|
|
if (*Members != *B.Members)
|
|
return *Members < *B.Members;
|
|
if (SpillSize != B.SpillSize)
|
|
return SpillSize < B.SpillSize;
|
|
return SpillAlignment < B.SpillAlignment;
|
|
}
|
|
|
|
// Returns true if RC is a strict subclass.
|
|
// RC is a sub-class of this class if it is a valid replacement for any
|
|
// instruction operand where a register of this classis required. It must
|
|
// satisfy these conditions:
|
|
//
|
|
// 1. All RC registers are also in this.
|
|
// 2. The RC spill size must not be smaller than our spill size.
|
|
// 3. RC spill alignment must be compatible with ours.
|
|
//
|
|
static bool testSubClass(const CodeGenRegisterClass *A,
|
|
const CodeGenRegisterClass *B) {
|
|
return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
|
|
A->SpillSize <= B->SpillSize &&
|
|
std::includes(A->getMembers().begin(), A->getMembers().end(),
|
|
B->getMembers().begin(), B->getMembers().end(),
|
|
CodeGenRegister::Less());
|
|
}
|
|
|
|
/// Sorting predicate for register classes. This provides a topological
|
|
/// ordering that arranges all register classes before their sub-classes.
|
|
///
|
|
/// Register classes with the same registers, spill size, and alignment form a
|
|
/// clique. They will be ordered alphabetically.
|
|
///
|
|
static int TopoOrderRC(const void *PA, const void *PB) {
|
|
const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
|
|
const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
|
|
if (A == B)
|
|
return 0;
|
|
|
|
// Order by descending set size. Note that the classes' allocation order may
|
|
// not have been computed yet. The Members set is always vaild.
|
|
if (A->getMembers().size() > B->getMembers().size())
|
|
return -1;
|
|
if (A->getMembers().size() < B->getMembers().size())
|
|
return 1;
|
|
|
|
// Order by ascending spill size.
|
|
if (A->SpillSize < B->SpillSize)
|
|
return -1;
|
|
if (A->SpillSize > B->SpillSize)
|
|
return 1;
|
|
|
|
// Order by ascending spill alignment.
|
|
if (A->SpillAlignment < B->SpillAlignment)
|
|
return -1;
|
|
if (A->SpillAlignment > B->SpillAlignment)
|
|
return 1;
|
|
|
|
// Finally order by name as a tie breaker.
|
|
return A->getName() < B->getName();
|
|
}
|
|
|
|
std::string CodeGenRegisterClass::getQualifiedName() const {
|
|
if (Namespace.empty())
|
|
return getName();
|
|
else
|
|
return Namespace + "::" + getName();
|
|
}
|
|
|
|
// Compute sub-classes of all register classes.
|
|
// Assume the classes are ordered topologically.
|
|
void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
|
|
ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
|
|
|
|
// Visit backwards so sub-classes are seen first.
|
|
for (unsigned rci = RegClasses.size(); rci; --rci) {
|
|
CodeGenRegisterClass &RC = *RegClasses[rci - 1];
|
|
RC.SubClasses.resize(RegClasses.size());
|
|
RC.SubClasses.set(RC.EnumValue);
|
|
|
|
// Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
|
|
for (unsigned s = rci; s != RegClasses.size(); ++s) {
|
|
if (RC.SubClasses.test(s))
|
|
continue;
|
|
CodeGenRegisterClass *SubRC = RegClasses[s];
|
|
if (!testSubClass(&RC, SubRC))
|
|
continue;
|
|
// SubRC is a sub-class. Grap all its sub-classes so we won't have to
|
|
// check them again.
|
|
RC.SubClasses |= SubRC->SubClasses;
|
|
}
|
|
|
|
// Sweep up missed clique members. They will be immediately preceeding RC.
|
|
for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
|
|
RC.SubClasses.set(s - 1);
|
|
}
|
|
|
|
// Compute the SuperClasses lists from the SubClasses vectors.
|
|
for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
|
|
const BitVector &SC = RegClasses[rci]->getSubClasses();
|
|
for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
|
|
if (unsigned(s) == rci)
|
|
continue;
|
|
RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
|
|
}
|
|
}
|
|
|
|
// With the class hierarchy in place, let synthesized register classes inherit
|
|
// properties from their closest super-class. The iteration order here can
|
|
// propagate properties down multiple levels.
|
|
for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
|
|
if (!RegClasses[rci]->getDef())
|
|
RegClasses[rci]->inheritProperties(RegBank);
|
|
}
|
|
|
|
void
|
|
CodeGenRegisterClass::getSuperRegClasses(Record *SubIdx, BitVector &Out) const {
|
|
DenseMap<Record*, SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
|
|
FindI = SuperRegClasses.find(SubIdx);
|
|
if (FindI == SuperRegClasses.end())
|
|
return;
|
|
for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
|
|
FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
|
|
Out.set((*I)->EnumValue);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegBank
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
|
|
// Configure register Sets to understand register classes and tuples.
|
|
Sets.addFieldExpander("RegisterClass", "MemberList");
|
|
Sets.addExpander("RegisterTuples", new TupleExpander());
|
|
|
|
// Read in the user-defined (named) sub-register indices.
|
|
// More indices will be synthesized later.
|
|
SubRegIndices = Records.getAllDerivedDefinitions("SubRegIndex");
|
|
std::sort(SubRegIndices.begin(), SubRegIndices.end(), LessRecord());
|
|
NumNamedIndices = SubRegIndices.size();
|
|
|
|
// Read in the register definitions.
|
|
std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
|
|
std::sort(Regs.begin(), Regs.end(), LessRecord());
|
|
Registers.reserve(Regs.size());
|
|
// Assign the enumeration values.
|
|
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
|
|
getReg(Regs[i]);
|
|
|
|
// Expand tuples and number the new registers.
|
|
std::vector<Record*> Tups =
|
|
Records.getAllDerivedDefinitions("RegisterTuples");
|
|
for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
|
|
const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
|
|
for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
|
|
getReg((*TupRegs)[j]);
|
|
}
|
|
|
|
// Precompute all sub-register maps now all the registers are known.
|
|
// This will create Composite entries for all inferred sub-register indices.
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i)
|
|
Registers[i]->getSubRegs(*this);
|
|
|
|
// Read in register class definitions.
|
|
std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
|
|
if (RCs.empty())
|
|
throw std::string("No 'RegisterClass' subclasses defined!");
|
|
|
|
// Allocate user-defined register classes.
|
|
RegClasses.reserve(RCs.size());
|
|
for (unsigned i = 0, e = RCs.size(); i != e; ++i)
|
|
addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
|
|
|
|
// Infer missing classes to create a full algebra.
|
|
computeInferredRegisterClasses();
|
|
|
|
// Order register classes topologically and assign enum values.
|
|
array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
|
|
for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
|
|
RegClasses[i]->EnumValue = i;
|
|
CodeGenRegisterClass::computeSubClasses(*this);
|
|
}
|
|
|
|
CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
|
|
CodeGenRegister *&Reg = Def2Reg[Def];
|
|
if (Reg)
|
|
return Reg;
|
|
Reg = new CodeGenRegister(Def, Registers.size() + 1);
|
|
Registers.push_back(Reg);
|
|
return Reg;
|
|
}
|
|
|
|
void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
|
|
RegClasses.push_back(RC);
|
|
|
|
if (Record *Def = RC->getDef())
|
|
Def2RC.insert(std::make_pair(Def, RC));
|
|
|
|
// Duplicate classes are rejected by insert().
|
|
// That's OK, we only care about the properties handled by CGRC::Key.
|
|
CodeGenRegisterClass::Key K(*RC);
|
|
Key2RC.insert(std::make_pair(K, RC));
|
|
}
|
|
|
|
// Create a synthetic sub-class if it is missing.
|
|
CodeGenRegisterClass*
|
|
CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
|
|
const CodeGenRegister::Set *Members,
|
|
StringRef Name) {
|
|
// Synthetic sub-class has the same size and alignment as RC.
|
|
CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
|
|
RCKeyMap::const_iterator FoundI = Key2RC.find(K);
|
|
if (FoundI != Key2RC.end())
|
|
return FoundI->second;
|
|
|
|
// Sub-class doesn't exist, create a new one.
|
|
CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(Name, K);
|
|
addToMaps(NewRC);
|
|
return NewRC;
|
|
}
|
|
|
|
CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
|
|
if (CodeGenRegisterClass *RC = Def2RC[Def])
|
|
return RC;
|
|
|
|
throw TGError(Def->getLoc(), "Not a known RegisterClass!");
|
|
}
|
|
|
|
Record *CodeGenRegBank::getCompositeSubRegIndex(Record *A, Record *B,
|
|
bool create) {
|
|
// Look for an existing entry.
|
|
Record *&Comp = Composite[std::make_pair(A, B)];
|
|
if (Comp || !create)
|
|
return Comp;
|
|
|
|
// None exists, synthesize one.
|
|
std::string Name = A->getName() + "_then_" + B->getName();
|
|
Comp = new Record(Name, SMLoc(), Records);
|
|
SubRegIndices.push_back(Comp);
|
|
return Comp;
|
|
}
|
|
|
|
unsigned CodeGenRegBank::getSubRegIndexNo(Record *idx) {
|
|
std::vector<Record*>::const_iterator i =
|
|
std::find(SubRegIndices.begin(), SubRegIndices.end(), idx);
|
|
assert(i != SubRegIndices.end() && "Not a SubRegIndex");
|
|
return (i - SubRegIndices.begin()) + 1;
|
|
}
|
|
|
|
void CodeGenRegBank::computeComposites() {
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
|
|
CodeGenRegister *Reg1 = Registers[i];
|
|
const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
|
|
e1 = SRM1.end(); i1 != e1; ++i1) {
|
|
Record *Idx1 = i1->first;
|
|
CodeGenRegister *Reg2 = i1->second;
|
|
// Ignore identity compositions.
|
|
if (Reg1 == Reg2)
|
|
continue;
|
|
const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
|
|
// Try composing Idx1 with another SubRegIndex.
|
|
for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
|
|
e2 = SRM2.end(); i2 != e2; ++i2) {
|
|
std::pair<Record*, Record*> IdxPair(Idx1, i2->first);
|
|
CodeGenRegister *Reg3 = i2->second;
|
|
// Ignore identity compositions.
|
|
if (Reg2 == Reg3)
|
|
continue;
|
|
// OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
|
|
for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(),
|
|
e1d = SRM1.end(); i1d != e1d; ++i1d) {
|
|
if (i1d->second == Reg3) {
|
|
std::pair<CompositeMap::iterator, bool> Ins =
|
|
Composite.insert(std::make_pair(IdxPair, i1d->first));
|
|
// Conflicting composition? Emit a warning but allow it.
|
|
if (!Ins.second && Ins.first->second != i1d->first) {
|
|
errs() << "Warning: SubRegIndex " << getQualifiedName(Idx1)
|
|
<< " and " << getQualifiedName(IdxPair.second)
|
|
<< " compose ambiguously as "
|
|
<< getQualifiedName(Ins.first->second) << " or "
|
|
<< getQualifiedName(i1d->first) << "\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
|
|
// compositions, so remove any mappings of that form.
|
|
for (CompositeMap::iterator i = Composite.begin(), e = Composite.end();
|
|
i != e;) {
|
|
CompositeMap::iterator j = i;
|
|
++i;
|
|
if (j->first.second == j->second)
|
|
Composite.erase(j);
|
|
}
|
|
}
|
|
|
|
// Compute sets of overlapping registers.
|
|
//
|
|
// The standard set is all super-registers and all sub-registers, but the
|
|
// target description can add arbitrary overlapping registers via the 'Aliases'
|
|
// field. This complicates things, but we can compute overlapping sets using
|
|
// the following rules:
|
|
//
|
|
// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
|
|
//
|
|
// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
|
|
//
|
|
// Alternatively:
|
|
//
|
|
// overlap(A, B) iff there exists:
|
|
// A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
|
|
// A' = B' or A' in aliases(B') or B' in aliases(A').
|
|
//
|
|
// Here subregs(A) is the full flattened sub-register set returned by
|
|
// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
|
|
// description of register A.
|
|
//
|
|
// This also implies that registers with a common sub-register are considered
|
|
// overlapping. This can happen when forming register pairs:
|
|
//
|
|
// P0 = (R0, R1)
|
|
// P1 = (R1, R2)
|
|
// P2 = (R2, R3)
|
|
//
|
|
// In this case, we will infer an overlap between P0 and P1 because of the
|
|
// shared sub-register R1. There is no overlap between P0 and P2.
|
|
//
|
|
void CodeGenRegBank::
|
|
computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) {
|
|
assert(Map.empty());
|
|
|
|
// Collect overlaps that don't follow from rule 2.
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
|
|
CodeGenRegister *Reg = Registers[i];
|
|
CodeGenRegister::Set &Overlaps = Map[Reg];
|
|
|
|
// Reg overlaps itself.
|
|
Overlaps.insert(Reg);
|
|
|
|
// All super-registers overlap.
|
|
const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs();
|
|
Overlaps.insert(Supers.begin(), Supers.end());
|
|
|
|
// Form symmetrical relations from the special Aliases[] lists.
|
|
std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases");
|
|
for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) {
|
|
CodeGenRegister *Reg2 = getReg(RegList[i2]);
|
|
CodeGenRegister::Set &Overlaps2 = Map[Reg2];
|
|
const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs();
|
|
// Reg overlaps Reg2 which implies it overlaps supers(Reg2).
|
|
Overlaps.insert(Reg2);
|
|
Overlaps.insert(Supers2.begin(), Supers2.end());
|
|
Overlaps2.insert(Reg);
|
|
Overlaps2.insert(Supers.begin(), Supers.end());
|
|
}
|
|
}
|
|
|
|
// Apply rule 2. and inherit all sub-register overlaps.
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
|
|
CodeGenRegister *Reg = Registers[i];
|
|
CodeGenRegister::Set &Overlaps = Map[Reg];
|
|
const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(),
|
|
e2 = SRM.end(); i2 != e2; ++i2) {
|
|
CodeGenRegister::Set &Overlaps2 = Map[i2->second];
|
|
Overlaps.insert(Overlaps2.begin(), Overlaps2.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenRegBank::computeDerivedInfo() {
|
|
computeComposites();
|
|
}
|
|
|
|
//
|
|
// Synthesize missing register class intersections.
|
|
//
|
|
// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
|
|
// returns a maximal register class for all X.
|
|
//
|
|
void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
|
|
for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
|
|
CodeGenRegisterClass *RC1 = RC;
|
|
CodeGenRegisterClass *RC2 = RegClasses[rci];
|
|
if (RC1 == RC2)
|
|
continue;
|
|
|
|
// Compute the set intersection of RC1 and RC2.
|
|
const CodeGenRegister::Set &Memb1 = RC1->getMembers();
|
|
const CodeGenRegister::Set &Memb2 = RC2->getMembers();
|
|
CodeGenRegister::Set Intersection;
|
|
std::set_intersection(Memb1.begin(), Memb1.end(),
|
|
Memb2.begin(), Memb2.end(),
|
|
std::inserter(Intersection, Intersection.begin()),
|
|
CodeGenRegister::Less());
|
|
|
|
// Skip disjoint class pairs.
|
|
if (Intersection.empty())
|
|
continue;
|
|
|
|
// If RC1 and RC2 have different spill sizes or alignments, use the
|
|
// larger size for sub-classing. If they are equal, prefer RC1.
|
|
if (RC2->SpillSize > RC1->SpillSize ||
|
|
(RC2->SpillSize == RC1->SpillSize &&
|
|
RC2->SpillAlignment > RC1->SpillAlignment))
|
|
std::swap(RC1, RC2);
|
|
|
|
getOrCreateSubClass(RC1, &Intersection,
|
|
RC1->getName() + "_and_" + RC2->getName());
|
|
}
|
|
}
|
|
|
|
//
|
|
// Synthesize missing sub-classes for getSubClassWithSubReg().
|
|
//
|
|
// Make sure that the set of registers in RC with a given SubIdx sub-register
|
|
// form a register class. Update RC->SubClassWithSubReg.
|
|
//
|
|
void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
|
|
// Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
|
|
typedef std::map<Record*, CodeGenRegister::Set, LessRecord> SubReg2SetMap;
|
|
|
|
// Compute the set of registers supporting each SubRegIndex.
|
|
SubReg2SetMap SRSets;
|
|
for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
|
|
RE = RC->getMembers().end(); RI != RE; ++RI) {
|
|
const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
|
|
E = SRM.end(); I != E; ++I)
|
|
SRSets[I->first].insert(*RI);
|
|
}
|
|
|
|
// Find matching classes for all SRSets entries. Iterate in SubRegIndex
|
|
// numerical order to visit synthetic indices last.
|
|
for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
|
|
Record *SubIdx = SubRegIndices[sri];
|
|
SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
|
|
// Unsupported SubRegIndex. Skip it.
|
|
if (I == SRSets.end())
|
|
continue;
|
|
// In most cases, all RC registers support the SubRegIndex.
|
|
if (I->second.size() == RC->getMembers().size()) {
|
|
RC->setSubClassWithSubReg(SubIdx, RC);
|
|
continue;
|
|
}
|
|
// This is a real subset. See if we have a matching class.
|
|
CodeGenRegisterClass *SubRC =
|
|
getOrCreateSubClass(RC, &I->second,
|
|
RC->getName() + "_with_" + I->first->getName());
|
|
RC->setSubClassWithSubReg(SubIdx, SubRC);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
|
|
//
|
|
// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
|
|
// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
|
|
//
|
|
|
|
void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
|
|
unsigned FirstSubRegRC) {
|
|
SmallVector<std::pair<const CodeGenRegister*,
|
|
const CodeGenRegister*>, 16> SSPairs;
|
|
|
|
// Iterate in SubRegIndex numerical order to visit synthetic indices last.
|
|
for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
|
|
Record *SubIdx = SubRegIndices[sri];
|
|
// Skip indexes that aren't fully supported by RC's registers. This was
|
|
// computed by inferSubClassWithSubReg() above which should have been
|
|
// called first.
|
|
if (RC->getSubClassWithSubReg(SubIdx) != RC)
|
|
continue;
|
|
|
|
// Build list of (Super, Sub) pairs for this SubIdx.
|
|
SSPairs.clear();
|
|
for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
|
|
RE = RC->getMembers().end(); RI != RE; ++RI) {
|
|
const CodeGenRegister *Super = *RI;
|
|
const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
|
|
assert(Sub && "Missing sub-register");
|
|
SSPairs.push_back(std::make_pair(Super, Sub));
|
|
}
|
|
|
|
// Iterate over sub-register class candidates. Ignore classes created by
|
|
// this loop. They will never be useful.
|
|
for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
|
|
++rci) {
|
|
CodeGenRegisterClass *SubRC = RegClasses[rci];
|
|
// Compute the subset of RC that maps into SubRC.
|
|
CodeGenRegister::Set SubSet;
|
|
for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
|
|
if (SubRC->contains(SSPairs[i].second))
|
|
SubSet.insert(SSPairs[i].first);
|
|
if (SubSet.empty())
|
|
continue;
|
|
// RC injects completely into SubRC.
|
|
if (SubSet.size() == SSPairs.size()) {
|
|
SubRC->addSuperRegClass(SubIdx, RC);
|
|
continue;
|
|
}
|
|
// Only a subset of RC maps into SubRC. Make sure it is represented by a
|
|
// class.
|
|
getOrCreateSubClass(RC, &SubSet, RC->getName() +
|
|
"_with_" + SubIdx->getName() +
|
|
"_in_" + SubRC->getName());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Infer missing register classes.
|
|
//
|
|
void CodeGenRegBank::computeInferredRegisterClasses() {
|
|
// When this function is called, the register classes have not been sorted
|
|
// and assigned EnumValues yet. That means getSubClasses(),
|
|
// getSuperClasses(), and hasSubClass() functions are defunct.
|
|
unsigned FirstNewRC = RegClasses.size();
|
|
|
|
// Visit all register classes, including the ones being added by the loop.
|
|
for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
|
|
CodeGenRegisterClass *RC = RegClasses[rci];
|
|
|
|
// Synthesize answers for getSubClassWithSubReg().
|
|
inferSubClassWithSubReg(RC);
|
|
|
|
// Synthesize answers for getCommonSubClass().
|
|
inferCommonSubClass(RC);
|
|
|
|
// Synthesize answers for getMatchingSuperRegClass().
|
|
inferMatchingSuperRegClass(RC);
|
|
|
|
// New register classes are created while this loop is running, and we need
|
|
// to visit all of them. I particular, inferMatchingSuperRegClass needs
|
|
// to match old super-register classes with sub-register classes created
|
|
// after inferMatchingSuperRegClass was called. At this point,
|
|
// inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
|
|
// [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
|
|
if (rci + 1 == FirstNewRC) {
|
|
unsigned NextNewRC = RegClasses.size();
|
|
for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
|
|
inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
|
|
FirstNewRC = NextNewRC;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getRegisterClassForRegister - Find the register class that contains the
|
|
/// specified physical register. If the register is not in a register class,
|
|
/// return null. If the register is in multiple classes, and the classes have a
|
|
/// superset-subset relationship and the same set of types, return the
|
|
/// superclass. Otherwise return null.
|
|
const CodeGenRegisterClass*
|
|
CodeGenRegBank::getRegClassForRegister(Record *R) {
|
|
const CodeGenRegister *Reg = getReg(R);
|
|
ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
|
|
const CodeGenRegisterClass *FoundRC = 0;
|
|
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
|
|
const CodeGenRegisterClass &RC = *RCs[i];
|
|
if (!RC.contains(Reg))
|
|
continue;
|
|
|
|
// If this is the first class that contains the register,
|
|
// make a note of it and go on to the next class.
|
|
if (!FoundRC) {
|
|
FoundRC = &RC;
|
|
continue;
|
|
}
|
|
|
|
// If a register's classes have different types, return null.
|
|
if (RC.getValueTypes() != FoundRC->getValueTypes())
|
|
return 0;
|
|
|
|
// Check to see if the previously found class that contains
|
|
// the register is a subclass of the current class. If so,
|
|
// prefer the superclass.
|
|
if (RC.hasSubClass(FoundRC)) {
|
|
FoundRC = &RC;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if the previously found class that contains
|
|
// the register is a superclass of the current class. If so,
|
|
// prefer the superclass.
|
|
if (FoundRC->hasSubClass(&RC))
|
|
continue;
|
|
|
|
// Multiple classes, and neither is a superclass of the other.
|
|
// Return null.
|
|
return 0;
|
|
}
|
|
return FoundRC;
|
|
}
|