1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/Target/X86/X86FixupLEAs.cpp
Jeremy Morse ef14408d58 [DebugInstrRef] Substitute debug value numbers to handle optimizations
This patch touches two optimizations, TwoAddressInstruction and X86's
FixupLEAs pass, both of which optimize by re-creating instructions. For
LEAs, various bits of arithmetic are better represented as LEAs on X86,
while TwoAddressInstruction sometimes converts instrs into three address
instructions if it's profitable.

For debug instruction referencing, both of these require substitutions to
be created -- the old instruction number must be pointed to the new
instruction number, as illustrated in the added test. If this isn't done,
any variable locations based on the optimized instruction are
conservatively dropped.

Differential Revision: https://reviews.llvm.org/D85756
2020-10-22 13:01:03 +01:00

703 lines
25 KiB
C++

//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass that finds instructions that can be
// re-written as LEA instructions in order to reduce pipeline delays.
// It replaces LEAs with ADD/INC/DEC when that is better for size/speed.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define FIXUPLEA_DESC "X86 LEA Fixup"
#define FIXUPLEA_NAME "x86-fixup-LEAs"
#define DEBUG_TYPE FIXUPLEA_NAME
STATISTIC(NumLEAs, "Number of LEA instructions created");
namespace {
class FixupLEAPass : public MachineFunctionPass {
enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
/// Given a machine register, look for the instruction
/// which writes it in the current basic block. If found,
/// try to replace it with an equivalent LEA instruction.
/// If replacement succeeds, then also process the newly created
/// instruction.
void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB);
/// Given a memory access or LEA instruction
/// whose address mode uses a base and/or index register, look for
/// an opportunity to replace the instruction which sets the base or index
/// register with an equivalent LEA instruction.
void processInstruction(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB);
/// Given a LEA instruction which is unprofitable
/// on SlowLEA targets try to replace it with an equivalent ADD instruction.
void processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB);
/// Given a LEA instruction which is unprofitable
/// on SNB+ try to replace it with other instructions.
/// According to Intel's Optimization Reference Manual:
/// " For LEA instructions with three source operands and some specific
/// situations, instruction latency has increased to 3 cycles, and must
/// dispatch via port 1:
/// - LEA that has all three source operands: base, index, and offset
/// - LEA that uses base and index registers where the base is EBP, RBP,
/// or R13
/// - LEA that uses RIP relative addressing mode
/// - LEA that uses 16-bit addressing mode "
/// This function currently handles the first 2 cases only.
void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB, bool OptIncDec);
/// Look for LEAs that are really two address LEAs that we might be able to
/// turn into regular ADD instructions.
bool optTwoAddrLEA(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB, bool OptIncDec,
bool UseLEAForSP) const;
/// Determine if an instruction references a machine register
/// and, if so, whether it reads or writes the register.
RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
/// Step backwards through a basic block, looking
/// for an instruction which writes a register within
/// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB);
/// if an instruction can be converted to an
/// equivalent LEA, insert the new instruction into the basic block
/// and return a pointer to it. Otherwise, return zero.
MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI) const;
public:
static char ID;
StringRef getPassName() const override { return FIXUPLEA_DESC; }
FixupLEAPass() : MachineFunctionPass(ID) { }
/// Loop over all of the basic blocks,
/// replacing instructions by equivalent LEA instructions
/// if needed and when possible.
bool runOnMachineFunction(MachineFunction &MF) override;
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
TargetSchedModel TSM;
const X86InstrInfo *TII = nullptr;
const X86RegisterInfo *TRI = nullptr;
};
}
char FixupLEAPass::ID = 0;
INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
MachineInstr *
FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI) const {
MachineInstr &MI = *MBBI;
switch (MI.getOpcode()) {
case X86::MOV32rr:
case X86::MOV64rr: {
const MachineOperand &Src = MI.getOperand(1);
const MachineOperand &Dest = MI.getOperand(0);
MachineInstr *NewMI =
BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
: X86::LEA64r))
.add(Dest)
.add(Src)
.addImm(1)
.addReg(0)
.addImm(0)
.addReg(0);
return NewMI;
}
}
if (!MI.isConvertibleTo3Addr())
return nullptr;
switch (MI.getOpcode()) {
default:
// Only convert instructions that we've verified are safe.
return nullptr;
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB:
if (!MI.getOperand(2).isImm()) {
// convertToThreeAddress will call getImm()
// which requires isImm() to be true
return nullptr;
}
break;
case X86::SHL64ri:
case X86::SHL32ri:
case X86::INC64r:
case X86::INC32r:
case X86::DEC64r:
case X86::DEC32r:
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD32rr:
case X86::ADD32rr_DB:
// These instructions are all fine to convert.
break;
}
MachineFunction::iterator MFI = MBB.getIterator();
return TII->convertToThreeAddress(MFI, MI, nullptr);
}
FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
static bool isLEA(unsigned Opcode) {
return Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
Opcode == X86::LEA64_32r;
}
bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
bool IsSlowLEA = ST.slowLEA();
bool IsSlow3OpsLEA = ST.slow3OpsLEA();
bool LEAUsesAG = ST.LEAusesAG();
bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize();
bool UseLEAForSP = ST.useLeaForSP();
TSM.init(&ST);
TII = ST.getInstrInfo();
TRI = ST.getRegisterInfo();
auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
auto *MBFI = (PSI && PSI->hasProfileSummary())
? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()
: nullptr;
LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
for (MachineBasicBlock &MBB : MF) {
// First pass. Try to remove or optimize existing LEAs.
bool OptIncDecPerBB =
OptIncDec || llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
if (!isLEA(I->getOpcode()))
continue;
if (optTwoAddrLEA(I, MBB, OptIncDecPerBB, UseLEAForSP))
continue;
if (IsSlowLEA)
processInstructionForSlowLEA(I, MBB);
else if (IsSlow3OpsLEA)
processInstrForSlow3OpLEA(I, MBB, OptIncDecPerBB);
}
// Second pass for creating LEAs. This may reverse some of the
// transformations above.
if (LEAUsesAG) {
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I)
processInstruction(I, MBB);
}
}
LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
return true;
}
FixupLEAPass::RegUsageState
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
RegUsageState RegUsage = RU_NotUsed;
MachineInstr &MI = *I;
for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
MachineOperand &opnd = MI.getOperand(i);
if (opnd.isReg() && opnd.getReg() == p.getReg()) {
if (opnd.isDef())
return RU_Write;
RegUsage = RU_Read;
}
}
return RegUsage;
}
/// getPreviousInstr - Given a reference to an instruction in a basic
/// block, return a reference to the previous instruction in the block,
/// wrapping around to the last instruction of the block if the block
/// branches to itself.
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB) {
if (I == MBB.begin()) {
if (MBB.isPredecessor(&MBB)) {
I = --MBB.end();
return true;
} else
return false;
}
--I;
return true;
}
MachineBasicBlock::iterator
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB) {
int InstrDistance = 1;
MachineBasicBlock::iterator CurInst;
static const int INSTR_DISTANCE_THRESHOLD = 5;
CurInst = I;
bool Found;
Found = getPreviousInstr(CurInst, MBB);
while (Found && I != CurInst) {
if (CurInst->isCall() || CurInst->isInlineAsm())
break;
if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
break; // too far back to make a difference
if (usesRegister(p, CurInst) == RU_Write) {
return CurInst;
}
InstrDistance += TSM.computeInstrLatency(&*CurInst);
Found = getPreviousInstr(CurInst, MBB);
}
return MachineBasicBlock::iterator();
}
static inline bool isInefficientLEAReg(unsigned Reg) {
return Reg == X86::EBP || Reg == X86::RBP ||
Reg == X86::R13D || Reg == X86::R13;
}
/// Returns true if this LEA uses base an index registers, and the base register
/// is known to be inefficient for the subtarget.
// TODO: use a variant scheduling class to model the latency profile
// of LEA instructions, and implement this logic as a scheduling predicate.
static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
const MachineOperand &Index) {
return Base.isReg() && isInefficientLEAReg(Base.getReg()) && Index.isReg() &&
Index.getReg() != X86::NoRegister;
}
static inline bool hasLEAOffset(const MachineOperand &Offset) {
return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
}
static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) {
switch (LEAOpcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA32r:
case X86::LEA64_32r:
return X86::ADD32rr;
case X86::LEA64r:
return X86::ADD64rr;
}
}
static inline unsigned getADDriFromLEA(unsigned LEAOpcode,
const MachineOperand &Offset) {
bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
switch (LEAOpcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA32r:
case X86::LEA64_32r:
return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
case X86::LEA64r:
return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
}
}
static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) {
switch (LEAOpcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA32r:
case X86::LEA64_32r:
return IsINC ? X86::INC32r : X86::DEC32r;
case X86::LEA64r:
return IsINC ? X86::INC64r : X86::DEC64r;
}
}
bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB, bool OptIncDec,
bool UseLEAForSP) const {
MachineInstr &MI = *I;
const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
const MachineOperand &Disp = MI.getOperand(1 + X86::AddrDisp);
const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
if (Segment.getReg() != 0 || !Disp.isImm() || Scale.getImm() > 1 ||
MBB.computeRegisterLiveness(TRI, X86::EFLAGS, I) !=
MachineBasicBlock::LQR_Dead)
return false;
Register DestReg = MI.getOperand(0).getReg();
Register BaseReg = Base.getReg();
Register IndexReg = Index.getReg();
// Don't change stack adjustment LEAs.
if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP))
return false;
// LEA64_32 has 64-bit operands but 32-bit result.
if (MI.getOpcode() == X86::LEA64_32r) {
if (BaseReg != 0)
BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
if (IndexReg != 0)
IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
}
MachineInstr *NewMI = nullptr;
// Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1
// which can be turned into add %reg2, %reg1
if (BaseReg != 0 && IndexReg != 0 && Disp.getImm() == 0 &&
(DestReg == BaseReg || DestReg == IndexReg)) {
unsigned NewOpcode = getADDrrFromLEA(MI.getOpcode());
if (DestReg != BaseReg)
std::swap(BaseReg, IndexReg);
if (MI.getOpcode() == X86::LEA64_32r) {
// TODO: Do we need the super register implicit use?
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
.addReg(BaseReg).addReg(IndexReg)
.addReg(Base.getReg(), RegState::Implicit)
.addReg(Index.getReg(), RegState::Implicit);
} else {
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
.addReg(BaseReg).addReg(IndexReg);
}
} else if (DestReg == BaseReg && IndexReg == 0) {
// This is an LEA with only a base register and a displacement,
// We can use ADDri or INC/DEC.
// Does this LEA have one these forms:
// lea %reg, 1(%reg)
// lea %reg, -1(%reg)
if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) {
bool IsINC = Disp.getImm() == 1;
unsigned NewOpcode = getINCDECFromLEA(MI.getOpcode(), IsINC);
if (MI.getOpcode() == X86::LEA64_32r) {
// TODO: Do we need the super register implicit use?
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
.addReg(BaseReg).addReg(Base.getReg(), RegState::Implicit);
} else {
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
.addReg(BaseReg);
}
} else {
unsigned NewOpcode = getADDriFromLEA(MI.getOpcode(), Disp);
if (MI.getOpcode() == X86::LEA64_32r) {
// TODO: Do we need the super register implicit use?
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
.addReg(BaseReg).addImm(Disp.getImm())
.addReg(Base.getReg(), RegState::Implicit);
} else {
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
.addReg(BaseReg).addImm(Disp.getImm());
}
}
} else
return false;
MBB.getParent()->substituteDebugValuesForInst(*I, *NewMI, 1);
MBB.erase(I);
I = NewMI;
return true;
}
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB) {
// Process a load, store, or LEA instruction.
MachineInstr &MI = *I;
const MCInstrDesc &Desc = MI.getDesc();
int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
if (AddrOffset >= 0) {
AddrOffset += X86II::getOperandBias(Desc);
MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
if (p.isReg() && p.getReg() != X86::ESP) {
seekLEAFixup(p, I, MBB);
}
MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
if (q.isReg() && q.getReg() != X86::ESP) {
seekLEAFixup(q, I, MBB);
}
}
}
void FixupLEAPass::seekLEAFixup(MachineOperand &p,
MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB) {
MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB);
if (MBI != MachineBasicBlock::iterator()) {
MachineInstr *NewMI = postRAConvertToLEA(MBB, MBI);
if (NewMI) {
++NumLEAs;
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
// now to replace with an equivalent LEA...
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
MBB.getParent()->substituteDebugValuesForInst(*MBI, *NewMI, 1);
MBB.erase(MBI);
MachineBasicBlock::iterator J =
static_cast<MachineBasicBlock::iterator>(NewMI);
processInstruction(J, MBB);
}
}
}
void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB) {
MachineInstr &MI = *I;
const unsigned Opcode = MI.getOpcode();
const MachineOperand &Dst = MI.getOperand(0);
const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
const MachineOperand &Offset = MI.getOperand(1 + X86::AddrDisp);
const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
if (Segment.getReg() != 0 || !Offset.isImm() ||
MBB.computeRegisterLiveness(TRI, X86::EFLAGS, I, 4) !=
MachineBasicBlock::LQR_Dead)
return;
const Register DstR = Dst.getReg();
const Register SrcR1 = Base.getReg();
const Register SrcR2 = Index.getReg();
if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
return;
if (Scale.getImm() > 1)
return;
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
MachineInstr *NewMI = nullptr;
// Make ADD instruction for two registers writing to LEA's destination
if (SrcR1 != 0 && SrcR2 != 0) {
const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
const MachineOperand &Src = SrcR1 == DstR ? Index : Base;
NewMI =
BuildMI(MBB, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
LLVM_DEBUG(NewMI->dump(););
}
// Make ADD instruction for immediate
if (Offset.getImm() != 0) {
const MCInstrDesc &ADDri =
TII->get(getADDriFromLEA(Opcode, Offset));
const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index;
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), ADDri, DstR)
.add(SrcR)
.addImm(Offset.getImm());
LLVM_DEBUG(NewMI->dump(););
}
if (NewMI) {
MBB.getParent()->substituteDebugValuesForInst(*I, *NewMI, 1);
MBB.erase(I);
I = NewMI;
}
}
void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
MachineBasicBlock &MBB,
bool OptIncDec) {
MachineInstr &MI = *I;
const unsigned LEAOpcode = MI.getOpcode();
const MachineOperand &Dest = MI.getOperand(0);
const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
const MachineOperand &Offset = MI.getOperand(1 + X86::AddrDisp);
const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) ||
MBB.computeRegisterLiveness(TRI, X86::EFLAGS, I, 4) !=
MachineBasicBlock::LQR_Dead ||
Segment.getReg() != X86::NoRegister)
return;
Register DestReg = Dest.getReg();
Register BaseReg = Base.getReg();
Register IndexReg = Index.getReg();
if (MI.getOpcode() == X86::LEA64_32r) {
if (BaseReg != 0)
BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
if (IndexReg != 0)
IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
}
bool IsScale1 = Scale.getImm() == 1;
bool IsInefficientBase = isInefficientLEAReg(BaseReg);
bool IsInefficientIndex = isInefficientLEAReg(IndexReg);
// Skip these cases since it takes more than 2 instructions
// to replace the LEA instruction.
if (IsInefficientBase && DestReg == BaseReg && !IsScale1)
return;
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
MachineInstr *NewMI = nullptr;
// First try to replace LEA with one or two (for the 3-op LEA case)
// add instructions:
// 1.lea (%base,%index,1), %base => add %index,%base
// 2.lea (%base,%index,1), %index => add %base,%index
if (IsScale1 && (DestReg == BaseReg || DestReg == IndexReg)) {
unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
if (DestReg != BaseReg)
std::swap(BaseReg, IndexReg);
if (MI.getOpcode() == X86::LEA64_32r) {
// TODO: Do we need the super register implicit use?
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
.addReg(BaseReg)
.addReg(IndexReg)
.addReg(Base.getReg(), RegState::Implicit)
.addReg(Index.getReg(), RegState::Implicit);
} else {
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
.addReg(BaseReg)
.addReg(IndexReg);
}
} else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
// If the base is inefficient try switching the index and base operands,
// otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
// lea offset(%base,%index,scale),%dst =>
// lea (%base,%index,scale); add offset,%dst
NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
.add(Dest)
.add(IsInefficientBase ? Index : Base)
.add(Scale)
.add(IsInefficientBase ? Base : Index)
.addImm(0)
.add(Segment);
LLVM_DEBUG(NewMI->dump(););
}
// If either replacement succeeded above, add the offset if needed, then
// replace the instruction.
if (NewMI) {
// Create ADD instruction for the Offset in case of 3-Ops LEA.
if (hasLEAOffset(Offset)) {
if (OptIncDec && Offset.isImm() &&
(Offset.getImm() == 1 || Offset.getImm() == -1)) {
unsigned NewOpc =
getINCDECFromLEA(MI.getOpcode(), Offset.getImm() == 1);
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
.addReg(DestReg);
LLVM_DEBUG(NewMI->dump(););
} else {
unsigned NewOpc = getADDriFromLEA(MI.getOpcode(), Offset);
NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
.addReg(DestReg)
.add(Offset);
LLVM_DEBUG(NewMI->dump(););
}
}
MBB.getParent()->substituteDebugValuesForInst(*I, *NewMI, 1);
MBB.erase(I);
I = NewMI;
return;
}
// Handle the rest of the cases with inefficient base register:
assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!");
assert(IsInefficientBase && "efficient base should be handled already!");
// FIXME: Handle LEA64_32r.
if (LEAOpcode == X86::LEA64_32r)
return;
// lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
if (IsScale1 && !hasLEAOffset(Offset)) {
bool BIK = Base.isKill() && BaseReg != IndexReg;
TII->copyPhysReg(MBB, MI, MI.getDebugLoc(), DestReg, BaseReg, BIK);
LLVM_DEBUG(MI.getPrevNode()->dump(););
unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
.addReg(DestReg)
.add(Index);
LLVM_DEBUG(NewMI->dump(););
MBB.getParent()->substituteDebugValuesForInst(*I, *NewMI, 1);
MBB.erase(I);
I = NewMI;
return;
}
// lea offset(%base,%index,scale), %dst =>
// lea offset( ,%index,scale), %dst; add %base,%dst
NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
.add(Dest)
.addReg(0)
.add(Scale)
.add(Index)
.add(Offset)
.add(Segment);
LLVM_DEBUG(NewMI->dump(););
unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
.addReg(DestReg)
.add(Base);
LLVM_DEBUG(NewMI->dump(););
MBB.getParent()->substituteDebugValuesForInst(*I, *NewMI, 1);
MBB.erase(I);
I = NewMI;
}