1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/unittests/IR/ConstantsTest.cpp
Nick Lewycky e529b62823 Add ConstantDataVector::getRaw() to create a constant data vector from raw data.
This parallels ConstantDataArray::getRaw() and can be used with ConstantDataSequential::getRawDataValues() in the base class for both types.

Update BuildConstantData{Array,Vector} tests to test the getRaw API. Also removes its unused Module.

In passing, update some comments to include the support for half and bfloat. Update tests to include testing for bfloat.

Differential Revision: https://reviews.llvm.org/D98302
2021-03-16 11:57:53 -07:00

726 lines
28 KiB
C++

//===- llvm/unittest/IR/ConstantsTest.cpp - Constants unit tests ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Constants.h"
#include "llvm-c/Core.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
namespace llvm {
namespace {
TEST(ConstantsTest, Integer_i1) {
LLVMContext Context;
IntegerType *Int1 = IntegerType::get(Context, 1);
Constant *One = ConstantInt::get(Int1, 1, true);
Constant *Zero = ConstantInt::get(Int1, 0);
Constant *NegOne = ConstantInt::get(Int1, static_cast<uint64_t>(-1), true);
EXPECT_EQ(NegOne, ConstantInt::getSigned(Int1, -1));
Constant *Undef = UndefValue::get(Int1);
// Input: @b = constant i1 add(i1 1 , i1 1)
// Output: @b = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getAdd(One, One));
// @c = constant i1 add(i1 -1, i1 1)
// @c = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getAdd(NegOne, One));
// @d = constant i1 add(i1 -1, i1 -1)
// @d = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getAdd(NegOne, NegOne));
// @e = constant i1 sub(i1 -1, i1 1)
// @e = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getSub(NegOne, One));
// @f = constant i1 sub(i1 1 , i1 -1)
// @f = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getSub(One, NegOne));
// @g = constant i1 sub(i1 1 , i1 1)
// @g = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getSub(One, One));
// @h = constant i1 shl(i1 1 , i1 1) ; undefined
// @h = constant i1 undef
EXPECT_EQ(Undef, ConstantExpr::getShl(One, One));
// @i = constant i1 shl(i1 1 , i1 0)
// @i = constant i1 true
EXPECT_EQ(One, ConstantExpr::getShl(One, Zero));
// @j = constant i1 lshr(i1 1, i1 1) ; undefined
// @j = constant i1 undef
EXPECT_EQ(Undef, ConstantExpr::getLShr(One, One));
// @m = constant i1 ashr(i1 1, i1 1) ; undefined
// @m = constant i1 undef
EXPECT_EQ(Undef, ConstantExpr::getAShr(One, One));
// @n = constant i1 mul(i1 -1, i1 1)
// @n = constant i1 true
EXPECT_EQ(One, ConstantExpr::getMul(NegOne, One));
// @o = constant i1 sdiv(i1 -1, i1 1) ; overflow
// @o = constant i1 true
EXPECT_EQ(One, ConstantExpr::getSDiv(NegOne, One));
// @p = constant i1 sdiv(i1 1 , i1 -1); overflow
// @p = constant i1 true
EXPECT_EQ(One, ConstantExpr::getSDiv(One, NegOne));
// @q = constant i1 udiv(i1 -1, i1 1)
// @q = constant i1 true
EXPECT_EQ(One, ConstantExpr::getUDiv(NegOne, One));
// @r = constant i1 udiv(i1 1, i1 -1)
// @r = constant i1 true
EXPECT_EQ(One, ConstantExpr::getUDiv(One, NegOne));
// @s = constant i1 srem(i1 -1, i1 1) ; overflow
// @s = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getSRem(NegOne, One));
// @t = constant i1 urem(i1 -1, i1 1)
// @t = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getURem(NegOne, One));
// @u = constant i1 srem(i1 1, i1 -1) ; overflow
// @u = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getSRem(One, NegOne));
}
TEST(ConstantsTest, IntSigns) {
LLVMContext Context;
IntegerType *Int8Ty = Type::getInt8Ty(Context);
EXPECT_EQ(100, ConstantInt::get(Int8Ty, 100, false)->getSExtValue());
EXPECT_EQ(100, ConstantInt::get(Int8Ty, 100, true)->getSExtValue());
EXPECT_EQ(100, ConstantInt::getSigned(Int8Ty, 100)->getSExtValue());
EXPECT_EQ(-50, ConstantInt::get(Int8Ty, 206)->getSExtValue());
EXPECT_EQ(-50, ConstantInt::getSigned(Int8Ty, -50)->getSExtValue());
EXPECT_EQ(206U, ConstantInt::getSigned(Int8Ty, -50)->getZExtValue());
// Overflow is handled by truncation.
EXPECT_EQ(0x3b, ConstantInt::get(Int8Ty, 0x13b)->getSExtValue());
}
TEST(ConstantsTest, FP128Test) {
LLVMContext Context;
Type *FP128Ty = Type::getFP128Ty(Context);
IntegerType *Int128Ty = Type::getIntNTy(Context, 128);
Constant *Zero128 = Constant::getNullValue(Int128Ty);
Constant *X = ConstantExpr::getUIToFP(Zero128, FP128Ty);
EXPECT_TRUE(isa<ConstantFP>(X));
}
TEST(ConstantsTest, PointerCast) {
LLVMContext C;
Type *Int8PtrTy = Type::getInt8PtrTy(C);
Type *Int32PtrTy = Type::getInt32PtrTy(C);
Type *Int64Ty = Type::getInt64Ty(C);
VectorType *Int8PtrVecTy = FixedVectorType::get(Int8PtrTy, 4);
VectorType *Int32PtrVecTy = FixedVectorType::get(Int32PtrTy, 4);
VectorType *Int64VecTy = FixedVectorType::get(Int64Ty, 4);
// ptrtoint i8* to i64
EXPECT_EQ(
Constant::getNullValue(Int64Ty),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrTy), Int64Ty));
// bitcast i8* to i32*
EXPECT_EQ(Constant::getNullValue(Int32PtrTy),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrTy),
Int32PtrTy));
// ptrtoint <4 x i8*> to <4 x i64>
EXPECT_EQ(Constant::getNullValue(Int64VecTy),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrVecTy),
Int64VecTy));
// bitcast <4 x i8*> to <4 x i32*>
EXPECT_EQ(Constant::getNullValue(Int32PtrVecTy),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrVecTy),
Int32PtrVecTy));
Type *Int32Ptr1Ty = Type::getInt32PtrTy(C, 1);
ConstantInt *K = ConstantInt::get(Type::getInt64Ty(C), 1234);
// Make sure that addrspacecast of inttoptr is not folded away.
EXPECT_NE(K, ConstantExpr::getAddrSpaceCast(
ConstantExpr::getIntToPtr(K, Int32PtrTy), Int32Ptr1Ty));
EXPECT_NE(K, ConstantExpr::getAddrSpaceCast(
ConstantExpr::getIntToPtr(K, Int32Ptr1Ty), Int32PtrTy));
Constant *NullInt32Ptr0 = Constant::getNullValue(Int32PtrTy);
Constant *NullInt32Ptr1 = Constant::getNullValue(Int32Ptr1Ty);
// Make sure that addrspacecast of null is not folded away.
EXPECT_NE(Constant::getNullValue(Int32PtrTy),
ConstantExpr::getAddrSpaceCast(NullInt32Ptr0, Int32Ptr1Ty));
EXPECT_NE(Constant::getNullValue(Int32Ptr1Ty),
ConstantExpr::getAddrSpaceCast(NullInt32Ptr1, Int32PtrTy));
}
#define CHECK(x, y) \
{ \
std::string __s; \
raw_string_ostream __o(__s); \
Instruction *__I = cast<ConstantExpr>(x)->getAsInstruction(); \
__I->print(__o); \
__I->deleteValue(); \
__o.flush(); \
EXPECT_EQ(std::string(" <badref> = " y), __s); \
}
TEST(ConstantsTest, AsInstructionsTest) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *Int64Ty = Type::getInt64Ty(Context);
Type *Int32Ty = Type::getInt32Ty(Context);
Type *Int16Ty = Type::getInt16Ty(Context);
Type *Int1Ty = Type::getInt1Ty(Context);
Type *FloatTy = Type::getFloatTy(Context);
Type *DoubleTy = Type::getDoubleTy(Context);
Constant *Global =
M->getOrInsertGlobal("dummy", PointerType::getUnqual(Int32Ty));
Constant *Global2 =
M->getOrInsertGlobal("dummy2", PointerType::getUnqual(Int32Ty));
Constant *P0 = ConstantExpr::getPtrToInt(Global, Int32Ty);
Constant *P1 = ConstantExpr::getUIToFP(P0, FloatTy);
Constant *P2 = ConstantExpr::getUIToFP(P0, DoubleTy);
Constant *P3 = ConstantExpr::getTrunc(P0, Int1Ty);
Constant *P4 = ConstantExpr::getPtrToInt(Global2, Int32Ty);
Constant *P5 = ConstantExpr::getUIToFP(P4, FloatTy);
Constant *P6 = ConstantExpr::getBitCast(P4, FixedVectorType::get(Int16Ty, 2));
Constant *One = ConstantInt::get(Int32Ty, 1);
Constant *Two = ConstantInt::get(Int64Ty, 2);
Constant *Big = ConstantInt::get(Context, APInt{256, uint64_t(-1), true});
Constant *Elt = ConstantInt::get(Int16Ty, 2015);
Constant *Poison16 = PoisonValue::get(Int16Ty);
Constant *Undef64 = UndefValue::get(Int64Ty);
Constant *UndefV16 = UndefValue::get(P6->getType());
Constant *PoisonV16 = PoisonValue::get(P6->getType());
#define P0STR "ptrtoint (i32** @dummy to i32)"
#define P1STR "uitofp (i32 ptrtoint (i32** @dummy to i32) to float)"
#define P2STR "uitofp (i32 ptrtoint (i32** @dummy to i32) to double)"
#define P3STR "ptrtoint (i32** @dummy to i1)"
#define P4STR "ptrtoint (i32** @dummy2 to i32)"
#define P5STR "uitofp (i32 ptrtoint (i32** @dummy2 to i32) to float)"
#define P6STR "bitcast (i32 ptrtoint (i32** @dummy2 to i32) to <2 x i16>)"
CHECK(ConstantExpr::getNeg(P0), "sub i32 0, " P0STR);
CHECK(ConstantExpr::getFNeg(P1), "fneg float " P1STR);
CHECK(ConstantExpr::getNot(P0), "xor i32 " P0STR ", -1");
CHECK(ConstantExpr::getAdd(P0, P0), "add i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAdd(P0, P0, false, true),
"add nsw i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAdd(P0, P0, true, true),
"add nuw nsw i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getFAdd(P1, P1), "fadd float " P1STR ", " P1STR);
CHECK(ConstantExpr::getSub(P0, P0), "sub i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getFSub(P1, P1), "fsub float " P1STR ", " P1STR);
CHECK(ConstantExpr::getMul(P0, P0), "mul i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getFMul(P1, P1), "fmul float " P1STR ", " P1STR);
CHECK(ConstantExpr::getUDiv(P0, P0), "udiv i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getSDiv(P0, P0), "sdiv i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getFDiv(P1, P1), "fdiv float " P1STR ", " P1STR);
CHECK(ConstantExpr::getURem(P0, P0), "urem i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getSRem(P0, P0), "srem i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getFRem(P1, P1), "frem float " P1STR ", " P1STR);
CHECK(ConstantExpr::getAnd(P0, P0), "and i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getOr(P0, P0), "or i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getXor(P0, P0), "xor i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getShl(P0, P0), "shl i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getShl(P0, P0, true), "shl nuw i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getShl(P0, P0, false, true),
"shl nsw i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getLShr(P0, P0, false), "lshr i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getLShr(P0, P0, true),
"lshr exact i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAShr(P0, P0, false), "ashr i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAShr(P0, P0, true),
"ashr exact i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getSExt(P0, Int64Ty), "sext i32 " P0STR " to i64");
CHECK(ConstantExpr::getZExt(P0, Int64Ty), "zext i32 " P0STR " to i64");
CHECK(ConstantExpr::getFPTrunc(P2, FloatTy),
"fptrunc double " P2STR " to float");
CHECK(ConstantExpr::getFPExtend(P1, DoubleTy),
"fpext float " P1STR " to double");
CHECK(ConstantExpr::getExactUDiv(P0, P0), "udiv exact i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getSelect(P3, P0, P4),
"select i1 " P3STR ", i32 " P0STR ", i32 " P4STR);
CHECK(ConstantExpr::getICmp(CmpInst::ICMP_EQ, P0, P4),
"icmp eq i32 " P0STR ", " P4STR);
CHECK(ConstantExpr::getFCmp(CmpInst::FCMP_ULT, P1, P5),
"fcmp ult float " P1STR ", " P5STR);
std::vector<Constant *> V;
V.push_back(One);
// FIXME: getGetElementPtr() actually creates an inbounds ConstantGEP,
// not a normal one!
// CHECK(ConstantExpr::getGetElementPtr(Global, V, false),
// "getelementptr i32*, i32** @dummy, i32 1");
CHECK(ConstantExpr::getInBoundsGetElementPtr(PointerType::getUnqual(Int32Ty),
Global, V),
"getelementptr inbounds i32*, i32** @dummy, i32 1");
CHECK(ConstantExpr::getExtractElement(P6, One),
"extractelement <2 x i16> " P6STR ", i32 1");
EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Two));
EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Big));
EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Undef64));
EXPECT_EQ(Elt, ConstantExpr::getExtractElement(
ConstantExpr::getInsertElement(P6, Elt, One), One));
EXPECT_EQ(UndefV16, ConstantExpr::getInsertElement(P6, Elt, Two));
EXPECT_EQ(UndefV16, ConstantExpr::getInsertElement(P6, Elt, Big));
EXPECT_EQ(PoisonV16, ConstantExpr::getInsertElement(P6, Elt, Undef64));
}
#ifdef GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
TEST(ConstantsTest, ReplaceWithConstantTest) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *Int32Ty = Type::getInt32Ty(Context);
Constant *One = ConstantInt::get(Int32Ty, 1);
Constant *Global =
M->getOrInsertGlobal("dummy", PointerType::getUnqual(Int32Ty));
Constant *GEP = ConstantExpr::getGetElementPtr(
PointerType::getUnqual(Int32Ty), Global, One);
EXPECT_DEATH(Global->replaceAllUsesWith(GEP),
"this->replaceAllUsesWith\\(expr\\(this\\)\\) is NOT valid!");
}
#endif
#endif
#undef CHECK
TEST(ConstantsTest, ConstantArrayReplaceWithConstant) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *IntTy = Type::getInt8Ty(Context);
ArrayType *ArrayTy = ArrayType::get(IntTy, 2);
Constant *A01Vals[2] = {ConstantInt::get(IntTy, 0),
ConstantInt::get(IntTy, 1)};
Constant *A01 = ConstantArray::get(ArrayTy, A01Vals);
Constant *Global = new GlobalVariable(*M, IntTy, false,
GlobalValue::ExternalLinkage, nullptr);
Constant *GlobalInt = ConstantExpr::getPtrToInt(Global, IntTy);
Constant *A0GVals[2] = {ConstantInt::get(IntTy, 0), GlobalInt};
Constant *A0G = ConstantArray::get(ArrayTy, A0GVals);
ASSERT_NE(A01, A0G);
GlobalVariable *RefArray =
new GlobalVariable(*M, ArrayTy, false, GlobalValue::ExternalLinkage, A0G);
ASSERT_EQ(A0G, RefArray->getInitializer());
GlobalInt->replaceAllUsesWith(ConstantInt::get(IntTy, 1));
ASSERT_EQ(A01, RefArray->getInitializer());
}
TEST(ConstantsTest, ConstantExprReplaceWithConstant) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *IntTy = Type::getInt8Ty(Context);
Constant *G1 = new GlobalVariable(*M, IntTy, false,
GlobalValue::ExternalLinkage, nullptr);
Constant *G2 = new GlobalVariable(*M, IntTy, false,
GlobalValue::ExternalLinkage, nullptr);
ASSERT_NE(G1, G2);
Constant *Int1 = ConstantExpr::getPtrToInt(G1, IntTy);
Constant *Int2 = ConstantExpr::getPtrToInt(G2, IntTy);
ASSERT_NE(Int1, Int2);
GlobalVariable *Ref =
new GlobalVariable(*M, IntTy, false, GlobalValue::ExternalLinkage, Int1);
ASSERT_EQ(Int1, Ref->getInitializer());
G1->replaceAllUsesWith(G2);
ASSERT_EQ(Int2, Ref->getInitializer());
}
TEST(ConstantsTest, GEPReplaceWithConstant) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *IntTy = Type::getInt32Ty(Context);
Type *PtrTy = PointerType::get(IntTy, 0);
auto *C1 = ConstantInt::get(IntTy, 1);
auto *Placeholder = new GlobalVariable(
*M, IntTy, false, GlobalValue::ExternalWeakLinkage, nullptr);
auto *GEP = ConstantExpr::getGetElementPtr(IntTy, Placeholder, C1);
ASSERT_EQ(GEP->getOperand(0), Placeholder);
auto *Ref =
new GlobalVariable(*M, PtrTy, false, GlobalValue::ExternalLinkage, GEP);
ASSERT_EQ(GEP, Ref->getInitializer());
auto *Global = new GlobalVariable(*M, PtrTy, false,
GlobalValue::ExternalLinkage, nullptr);
auto *Alias = GlobalAlias::create(IntTy, 0, GlobalValue::ExternalLinkage,
"alias", Global, M.get());
Placeholder->replaceAllUsesWith(Alias);
ASSERT_EQ(GEP, Ref->getInitializer());
ASSERT_EQ(GEP->getOperand(0), Alias);
}
TEST(ConstantsTest, AliasCAPI) {
LLVMContext Context;
SMDiagnostic Error;
std::unique_ptr<Module> M =
parseAssemblyString("@g = global i32 42", Error, Context);
GlobalVariable *G = M->getGlobalVariable("g");
Type *I16Ty = Type::getInt16Ty(Context);
Type *I16PTy = PointerType::get(I16Ty, 0);
Constant *Aliasee = ConstantExpr::getBitCast(G, I16PTy);
LLVMValueRef AliasRef =
LLVMAddAlias(wrap(M.get()), wrap(I16PTy), wrap(Aliasee), "a");
ASSERT_EQ(unwrap<GlobalAlias>(AliasRef)->getAliasee(), Aliasee);
}
static std::string getNameOfType(Type *T) {
std::string S;
raw_string_ostream RSOS(S);
T->print(RSOS);
return S;
}
TEST(ConstantsTest, BuildConstantDataArrays) {
LLVMContext Context;
for (Type *T : {Type::getInt8Ty(Context), Type::getInt16Ty(Context),
Type::getInt32Ty(Context), Type::getInt64Ty(Context)}) {
ArrayType *ArrayTy = ArrayType::get(T, 2);
Constant *Vals[] = {ConstantInt::get(T, 0), ConstantInt::get(T, 1)};
Constant *CA = ConstantArray::get(ArrayTy, Vals);
ASSERT_TRUE(isa<ConstantDataArray>(CA)) << " T = " << getNameOfType(T);
auto *CDA = cast<ConstantDataArray>(CA);
Constant *CA2 = ConstantDataArray::getRaw(
CDA->getRawDataValues(), CDA->getNumElements(), CDA->getElementType());
ASSERT_TRUE(CA == CA2) << " T = " << getNameOfType(T);
}
for (Type *T : {Type::getHalfTy(Context), Type::getBFloatTy(Context),
Type::getFloatTy(Context), Type::getDoubleTy(Context)}) {
ArrayType *ArrayTy = ArrayType::get(T, 2);
Constant *Vals[] = {ConstantFP::get(T, 0), ConstantFP::get(T, 1)};
Constant *CA = ConstantArray::get(ArrayTy, Vals);
ASSERT_TRUE(isa<ConstantDataArray>(CA)) << " T = " << getNameOfType(T);
auto *CDA = cast<ConstantDataArray>(CA);
Constant *CA2 = ConstantDataArray::getRaw(
CDA->getRawDataValues(), CDA->getNumElements(), CDA->getElementType());
ASSERT_TRUE(CA == CA2) << " T = " << getNameOfType(T);
}
}
TEST(ConstantsTest, BuildConstantDataVectors) {
LLVMContext Context;
for (Type *T : {Type::getInt8Ty(Context), Type::getInt16Ty(Context),
Type::getInt32Ty(Context), Type::getInt64Ty(Context)}) {
Constant *Vals[] = {ConstantInt::get(T, 0), ConstantInt::get(T, 1)};
Constant *CV = ConstantVector::get(Vals);
ASSERT_TRUE(isa<ConstantDataVector>(CV)) << " T = " << getNameOfType(T);
auto *CDV = cast<ConstantDataVector>(CV);
Constant *CV2 = ConstantDataVector::getRaw(
CDV->getRawDataValues(), CDV->getNumElements(), CDV->getElementType());
ASSERT_TRUE(CV == CV2) << " T = " << getNameOfType(T);
}
for (Type *T : {Type::getHalfTy(Context), Type::getBFloatTy(Context),
Type::getFloatTy(Context), Type::getDoubleTy(Context)}) {
Constant *Vals[] = {ConstantFP::get(T, 0), ConstantFP::get(T, 1)};
Constant *CV = ConstantVector::get(Vals);
ASSERT_TRUE(isa<ConstantDataVector>(CV)) << " T = " << getNameOfType(T);
auto *CDV = cast<ConstantDataVector>(CV);
Constant *CV2 = ConstantDataVector::getRaw(
CDV->getRawDataValues(), CDV->getNumElements(), CDV->getElementType());
ASSERT_TRUE(CV == CV2) << " T = " << getNameOfType(T);
}
}
TEST(ConstantsTest, BitcastToGEP) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
auto *i32 = Type::getInt32Ty(Context);
auto *U = StructType::create(Context, "Unsized");
Type *EltTys[] = {i32, U};
auto *S = StructType::create(EltTys);
auto *G =
new GlobalVariable(*M, S, false, GlobalValue::ExternalLinkage, nullptr);
auto *PtrTy = PointerType::get(i32, 0);
auto *C = ConstantExpr::getBitCast(G, PtrTy);
ASSERT_EQ(cast<ConstantExpr>(C)->getOpcode(), Instruction::BitCast);
}
bool foldFuncPtrAndConstToNull(LLVMContext &Context, Module *TheModule,
uint64_t AndValue,
MaybeAlign FunctionAlign = llvm::None) {
Type *VoidType(Type::getVoidTy(Context));
FunctionType *FuncType(FunctionType::get(VoidType, false));
Function *Func(
Function::Create(FuncType, GlobalValue::ExternalLinkage, "", TheModule));
if (FunctionAlign)
Func->setAlignment(*FunctionAlign);
IntegerType *ConstantIntType(Type::getInt32Ty(Context));
ConstantInt *TheConstant(ConstantInt::get(ConstantIntType, AndValue));
Constant *TheConstantExpr(ConstantExpr::getPtrToInt(Func, ConstantIntType));
bool Result =
ConstantExpr::get(Instruction::And, TheConstantExpr, TheConstant)
->isNullValue();
if (!TheModule) {
// If the Module exists then it will delete the Function.
delete Func;
}
return Result;
}
TEST(ConstantsTest, FoldFunctionPtrAlignUnknownAnd2) {
LLVMContext Context;
Module TheModule("TestModule", Context);
// When the DataLayout doesn't specify a function pointer alignment we
// assume in this case that it is 4 byte aligned. This is a bug but we can't
// fix it directly because it causes a code size regression on X86.
// FIXME: This test should be changed once existing targets have
// appropriate defaults. See associated FIXME in ConstantFoldBinaryInstruction
ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, 2));
}
TEST(ConstantsTest, DontFoldFunctionPtrAlignUnknownAnd4) {
LLVMContext Context;
Module TheModule("TestModule", Context);
ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 4));
}
TEST(ConstantsTest, FoldFunctionPtrAlign4) {
LLVMContext Context;
Module TheModule("TestModule", Context);
const char *AlignmentStrings[] = {"Fi32", "Fn32"};
for (unsigned AndValue = 1; AndValue <= 2; ++AndValue) {
for (const char *AlignmentString : AlignmentStrings) {
TheModule.setDataLayout(AlignmentString);
ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, AndValue));
}
}
}
TEST(ConstantsTest, DontFoldFunctionPtrAlign1) {
LLVMContext Context;
Module TheModule("TestModule", Context);
const char *AlignmentStrings[] = {"Fi8", "Fn8"};
for (const char *AlignmentString : AlignmentStrings) {
TheModule.setDataLayout(AlignmentString);
ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 2));
}
}
TEST(ConstantsTest, FoldFunctionAlign4PtrAlignMultiple) {
LLVMContext Context;
Module TheModule("TestModule", Context);
TheModule.setDataLayout("Fn8");
ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, 2, Align(4)));
}
TEST(ConstantsTest, DontFoldFunctionAlign4PtrAlignIndependent) {
LLVMContext Context;
Module TheModule("TestModule", Context);
TheModule.setDataLayout("Fi8");
ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 2, Align(4)));
}
TEST(ConstantsTest, DontFoldFunctionPtrIfNoModule) {
LLVMContext Context;
// Even though the function is explicitly 4 byte aligned, in the absence of a
// DataLayout we can't assume that the function pointer is aligned.
ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, nullptr, 2, Align(4)));
}
TEST(ConstantsTest, FoldGlobalVariablePtr) {
LLVMContext Context;
IntegerType *IntType(Type::getInt32Ty(Context));
std::unique_ptr<GlobalVariable> Global(
new GlobalVariable(IntType, true, GlobalValue::ExternalLinkage));
Global->setAlignment(Align(4));
ConstantInt *TheConstant(ConstantInt::get(IntType, 2));
Constant *TheConstantExpr(ConstantExpr::getPtrToInt(Global.get(), IntType));
ASSERT_TRUE(ConstantExpr::get(Instruction::And, TheConstantExpr, TheConstant)
->isNullValue());
}
// Check that containsUndefOrPoisonElement and containsPoisonElement is working
// great
TEST(ConstantsTest, containsUndefElemTest) {
LLVMContext Context;
Type *Int32Ty = Type::getInt32Ty(Context);
Constant *CU = UndefValue::get(Int32Ty);
Constant *CP = PoisonValue::get(Int32Ty);
Constant *C1 = ConstantInt::get(Int32Ty, 1);
Constant *C2 = ConstantInt::get(Int32Ty, 2);
{
Constant *V1 = ConstantVector::get({C1, C2});
EXPECT_FALSE(V1->containsUndefOrPoisonElement());
EXPECT_FALSE(V1->containsPoisonElement());
}
{
Constant *V2 = ConstantVector::get({C1, CU});
EXPECT_TRUE(V2->containsUndefOrPoisonElement());
EXPECT_FALSE(V2->containsPoisonElement());
}
{
Constant *V3 = ConstantVector::get({C1, CP});
EXPECT_TRUE(V3->containsUndefOrPoisonElement());
EXPECT_TRUE(V3->containsPoisonElement());
}
{
Constant *V4 = ConstantVector::get({CU, CP});
EXPECT_TRUE(V4->containsUndefOrPoisonElement());
EXPECT_TRUE(V4->containsPoisonElement());
}
}
// Check that undefined elements in vector constants are matched
// correctly for both integer and floating-point types. Just don't
// crash on vectors of pointers (could be handled?).
TEST(ConstantsTest, isElementWiseEqual) {
LLVMContext Context;
Type *Int32Ty = Type::getInt32Ty(Context);
Constant *CU = UndefValue::get(Int32Ty);
Constant *CP = PoisonValue::get(Int32Ty);
Constant *C1 = ConstantInt::get(Int32Ty, 1);
Constant *C2 = ConstantInt::get(Int32Ty, 2);
Constant *CUU = ConstantVector::get({CU, CU});
Constant *CPP = ConstantVector::get({CP, CP});
Constant *CUP = ConstantVector::get({CU, CP});
EXPECT_EQ(CUU, UndefValue::get(CUU->getType()));
EXPECT_EQ(CPP, PoisonValue::get(CPP->getType()));
EXPECT_NE(CUP, UndefValue::get(CUP->getType()));
Constant *C1211 = ConstantVector::get({C1, C2, C1, C1});
Constant *C12U1 = ConstantVector::get({C1, C2, CU, C1});
Constant *C12U2 = ConstantVector::get({C1, C2, CU, C2});
Constant *C12U21 = ConstantVector::get({C1, C2, CU, C2, C1});
EXPECT_TRUE(C1211->isElementWiseEqual(C12U1));
EXPECT_TRUE(C12U1->isElementWiseEqual(C1211));
EXPECT_FALSE(C12U2->isElementWiseEqual(C12U1));
EXPECT_FALSE(C12U1->isElementWiseEqual(C12U2));
EXPECT_FALSE(C12U21->isElementWiseEqual(C12U2));
Type *FltTy = Type::getFloatTy(Context);
Constant *CFU = UndefValue::get(FltTy);
Constant *CF1 = ConstantFP::get(FltTy, 1.0);
Constant *CF2 = ConstantFP::get(FltTy, 2.0);
Constant *CF1211 = ConstantVector::get({CF1, CF2, CF1, CF1});
Constant *CF12U1 = ConstantVector::get({CF1, CF2, CFU, CF1});
Constant *CF12U2 = ConstantVector::get({CF1, CF2, CFU, CF2});
Constant *CFUU1U = ConstantVector::get({CFU, CFU, CF1, CFU});
EXPECT_TRUE(CF1211->isElementWiseEqual(CF12U1));
EXPECT_TRUE(CF12U1->isElementWiseEqual(CF1211));
EXPECT_TRUE(CFUU1U->isElementWiseEqual(CF12U1));
EXPECT_FALSE(CF12U2->isElementWiseEqual(CF12U1));
EXPECT_FALSE(CF12U1->isElementWiseEqual(CF12U2));
PointerType *PtrTy = Type::getInt8PtrTy(Context);
Constant *CPU = UndefValue::get(PtrTy);
Constant *CP0 = ConstantPointerNull::get(PtrTy);
Constant *CP0000 = ConstantVector::get({CP0, CP0, CP0, CP0});
Constant *CP00U0 = ConstantVector::get({CP0, CP0, CPU, CP0});
Constant *CP00U = ConstantVector::get({CP0, CP0, CPU});
EXPECT_FALSE(CP0000->isElementWiseEqual(CP00U0));
EXPECT_FALSE(CP00U0->isElementWiseEqual(CP0000));
EXPECT_FALSE(CP0000->isElementWiseEqual(CP00U));
EXPECT_FALSE(CP00U->isElementWiseEqual(CP00U0));
}
TEST(ConstantsTest, GetSplatValueRoundTrip) {
LLVMContext Context;
Type *FloatTy = Type::getFloatTy(Context);
Type *Int32Ty = Type::getInt32Ty(Context);
Type *Int8Ty = Type::getInt8Ty(Context);
for (unsigned Min : {1, 2, 8}) {
auto ScalableEC = ElementCount::getScalable(Min);
auto FixedEC = ElementCount::getFixed(Min);
for (auto EC : {ScalableEC, FixedEC}) {
for (auto *Ty : {FloatTy, Int32Ty, Int8Ty}) {
Constant *Zero = Constant::getNullValue(Ty);
Constant *One = Constant::getAllOnesValue(Ty);
for (auto *C : {Zero, One}) {
Constant *Splat = ConstantVector::getSplat(EC, C);
ASSERT_NE(nullptr, Splat);
Constant *SplatVal = Splat->getSplatValue();
EXPECT_NE(nullptr, SplatVal);
EXPECT_EQ(SplatVal, C);
}
}
}
}
}
} // end anonymous namespace
} // end namespace llvm