1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
Benjamin Kramer dd1243fb89 Update unittest for allocator laziness.
llvm-svn: 101131
2010-04-13 15:01:26 +00:00

280 lines
9.9 KiB
C++

//===- JITMemoryManagerTest.cpp - Unit tests for the JIT memory manager ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalValue.h"
#include "llvm/LLVMContext.h"
using namespace llvm;
namespace {
Function *makeFakeFunction() {
std::vector<const Type*> params;
const FunctionType *FTy =
FunctionType::get(Type::getVoidTy(getGlobalContext()), params, false);
return Function::Create(FTy, GlobalValue::ExternalLinkage);
}
// Allocate three simple functions that fit in the initial slab. This exercises
// the code in the case that we don't have to allocate more memory to store the
// function bodies.
TEST(JITMemoryManagerTest, NoAllocations) {
OwningPtr<JITMemoryManager> MemMgr(
JITMemoryManager::CreateDefaultMemManager());
uintptr_t size;
std::string Error;
// Allocate the functions.
OwningPtr<Function> F1(makeFakeFunction());
size = 1024;
uint8_t *FunctionBody1 = MemMgr->startFunctionBody(F1.get(), size);
memset(FunctionBody1, 0xFF, 1024);
MemMgr->endFunctionBody(F1.get(), FunctionBody1, FunctionBody1 + 1024);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
OwningPtr<Function> F2(makeFakeFunction());
size = 1024;
uint8_t *FunctionBody2 = MemMgr->startFunctionBody(F2.get(), size);
memset(FunctionBody2, 0xFF, 1024);
MemMgr->endFunctionBody(F2.get(), FunctionBody2, FunctionBody2 + 1024);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
OwningPtr<Function> F3(makeFakeFunction());
size = 1024;
uint8_t *FunctionBody3 = MemMgr->startFunctionBody(F3.get(), size);
memset(FunctionBody3, 0xFF, 1024);
MemMgr->endFunctionBody(F3.get(), FunctionBody3, FunctionBody3 + 1024);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
// Deallocate them out of order, in case that matters.
MemMgr->deallocateFunctionBody(FunctionBody2);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
MemMgr->deallocateFunctionBody(FunctionBody1);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
MemMgr->deallocateFunctionBody(FunctionBody3);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
}
// Make three large functions that take up most of the space in the slab. Then
// try allocating three smaller functions that don't require additional slabs.
TEST(JITMemoryManagerTest, TestCodeAllocation) {
OwningPtr<JITMemoryManager> MemMgr(
JITMemoryManager::CreateDefaultMemManager());
uintptr_t size;
std::string Error;
// Big functions are a little less than the largest block size.
const uintptr_t smallFuncSize = 1024;
const uintptr_t bigFuncSize = (MemMgr->GetDefaultCodeSlabSize() -
smallFuncSize * 2);
// Allocate big functions
OwningPtr<Function> F1(makeFakeFunction());
size = bigFuncSize;
uint8_t *FunctionBody1 = MemMgr->startFunctionBody(F1.get(), size);
ASSERT_LE(bigFuncSize, size);
memset(FunctionBody1, 0xFF, bigFuncSize);
MemMgr->endFunctionBody(F1.get(), FunctionBody1, FunctionBody1 + bigFuncSize);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
OwningPtr<Function> F2(makeFakeFunction());
size = bigFuncSize;
uint8_t *FunctionBody2 = MemMgr->startFunctionBody(F2.get(), size);
ASSERT_LE(bigFuncSize, size);
memset(FunctionBody2, 0xFF, bigFuncSize);
MemMgr->endFunctionBody(F2.get(), FunctionBody2, FunctionBody2 + bigFuncSize);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
OwningPtr<Function> F3(makeFakeFunction());
size = bigFuncSize;
uint8_t *FunctionBody3 = MemMgr->startFunctionBody(F3.get(), size);
ASSERT_LE(bigFuncSize, size);
memset(FunctionBody3, 0xFF, bigFuncSize);
MemMgr->endFunctionBody(F3.get(), FunctionBody3, FunctionBody3 + bigFuncSize);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
// Check that each large function took it's own slab.
EXPECT_EQ(3U, MemMgr->GetNumCodeSlabs());
// Allocate small functions
OwningPtr<Function> F4(makeFakeFunction());
size = smallFuncSize;
uint8_t *FunctionBody4 = MemMgr->startFunctionBody(F4.get(), size);
ASSERT_LE(smallFuncSize, size);
memset(FunctionBody4, 0xFF, smallFuncSize);
MemMgr->endFunctionBody(F4.get(), FunctionBody4,
FunctionBody4 + smallFuncSize);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
OwningPtr<Function> F5(makeFakeFunction());
size = smallFuncSize;
uint8_t *FunctionBody5 = MemMgr->startFunctionBody(F5.get(), size);
ASSERT_LE(smallFuncSize, size);
memset(FunctionBody5, 0xFF, smallFuncSize);
MemMgr->endFunctionBody(F5.get(), FunctionBody5,
FunctionBody5 + smallFuncSize);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
OwningPtr<Function> F6(makeFakeFunction());
size = smallFuncSize;
uint8_t *FunctionBody6 = MemMgr->startFunctionBody(F6.get(), size);
ASSERT_LE(smallFuncSize, size);
memset(FunctionBody6, 0xFF, smallFuncSize);
MemMgr->endFunctionBody(F6.get(), FunctionBody6,
FunctionBody6 + smallFuncSize);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
// Check that the small functions didn't allocate any new slabs.
EXPECT_EQ(3U, MemMgr->GetNumCodeSlabs());
// Deallocate them out of order, in case that matters.
MemMgr->deallocateFunctionBody(FunctionBody2);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
MemMgr->deallocateFunctionBody(FunctionBody1);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
MemMgr->deallocateFunctionBody(FunctionBody4);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
MemMgr->deallocateFunctionBody(FunctionBody3);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
MemMgr->deallocateFunctionBody(FunctionBody5);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
MemMgr->deallocateFunctionBody(FunctionBody6);
EXPECT_TRUE(MemMgr->CheckInvariants(Error)) << Error;
}
// Allocate five global ints of varying widths and alignment, and check their
// alignment and overlap.
TEST(JITMemoryManagerTest, TestSmallGlobalInts) {
OwningPtr<JITMemoryManager> MemMgr(
JITMemoryManager::CreateDefaultMemManager());
uint8_t *a = (uint8_t *)MemMgr->allocateGlobal(8, 0);
uint16_t *b = (uint16_t*)MemMgr->allocateGlobal(16, 2);
uint32_t *c = (uint32_t*)MemMgr->allocateGlobal(32, 4);
uint64_t *d = (uint64_t*)MemMgr->allocateGlobal(64, 8);
// Check the alignment.
EXPECT_EQ(0U, ((uintptr_t)b) & 0x1);
EXPECT_EQ(0U, ((uintptr_t)c) & 0x3);
EXPECT_EQ(0U, ((uintptr_t)d) & 0x7);
// Initialize them each one at a time and make sure they don't overlap.
*a = 0xff;
*b = 0U;
*c = 0U;
*d = 0U;
EXPECT_EQ(0xffU, *a);
EXPECT_EQ(0U, *b);
EXPECT_EQ(0U, *c);
EXPECT_EQ(0U, *d);
*a = 0U;
*b = 0xffffU;
EXPECT_EQ(0U, *a);
EXPECT_EQ(0xffffU, *b);
EXPECT_EQ(0U, *c);
EXPECT_EQ(0U, *d);
*b = 0U;
*c = 0xffffffffU;
EXPECT_EQ(0U, *a);
EXPECT_EQ(0U, *b);
EXPECT_EQ(0xffffffffU, *c);
EXPECT_EQ(0U, *d);
*c = 0U;
*d = 0xffffffffffffffffULL;
EXPECT_EQ(0U, *a);
EXPECT_EQ(0U, *b);
EXPECT_EQ(0U, *c);
EXPECT_EQ(0xffffffffffffffffULL, *d);
// Make sure we didn't allocate any extra slabs for this tiny amount of data.
EXPECT_EQ(1U, MemMgr->GetNumDataSlabs());
}
// Allocate a small global, a big global, and a third global, and make sure we
// only use two slabs for that.
TEST(JITMemoryManagerTest, TestLargeGlobalArray) {
OwningPtr<JITMemoryManager> MemMgr(
JITMemoryManager::CreateDefaultMemManager());
size_t Size = 4 * MemMgr->GetDefaultDataSlabSize();
uint64_t *a = (uint64_t*)MemMgr->allocateGlobal(64, 8);
uint8_t *g = MemMgr->allocateGlobal(Size, 8);
uint64_t *b = (uint64_t*)MemMgr->allocateGlobal(64, 8);
// Check the alignment.
EXPECT_EQ(0U, ((uintptr_t)a) & 0x7);
EXPECT_EQ(0U, ((uintptr_t)g) & 0x7);
EXPECT_EQ(0U, ((uintptr_t)b) & 0x7);
// Initialize them to make sure we don't segfault and make sure they don't
// overlap.
memset(a, 0x1, 8);
memset(g, 0x2, Size);
memset(b, 0x3, 8);
EXPECT_EQ(0x0101010101010101ULL, *a);
// Just check the edges.
EXPECT_EQ(0x02U, g[0]);
EXPECT_EQ(0x02U, g[Size - 1]);
EXPECT_EQ(0x0303030303030303ULL, *b);
// Check the number of slabs.
EXPECT_EQ(2U, MemMgr->GetNumDataSlabs());
}
// Allocate lots of medium globals so that we can test moving the bump allocator
// to a new slab.
TEST(JITMemoryManagerTest, TestManyGlobals) {
OwningPtr<JITMemoryManager> MemMgr(
JITMemoryManager::CreateDefaultMemManager());
size_t SlabSize = MemMgr->GetDefaultDataSlabSize();
size_t Size = 128;
int Iters = (SlabSize / Size) + 1;
// We should start with no slabs.
EXPECT_EQ(0U, MemMgr->GetNumDataSlabs());
// After allocating a bunch of globals, we should have two.
for (int I = 0; I < Iters; ++I)
MemMgr->allocateGlobal(Size, 8);
EXPECT_EQ(2U, MemMgr->GetNumDataSlabs());
// And after much more, we should have three.
for (int I = 0; I < Iters; ++I)
MemMgr->allocateGlobal(Size, 8);
EXPECT_EQ(3U, MemMgr->GetNumDataSlabs());
}
// Allocate lots of function stubs so that we can test moving the stub bump
// allocator to a new slab.
TEST(JITMemoryManagerTest, TestManyStubs) {
OwningPtr<JITMemoryManager> MemMgr(
JITMemoryManager::CreateDefaultMemManager());
size_t SlabSize = MemMgr->GetDefaultStubSlabSize();
size_t Size = 128;
int Iters = (SlabSize / Size) + 1;
// We should start with no slabs.
EXPECT_EQ(0U, MemMgr->GetNumDataSlabs());
// After allocating a bunch of stubs, we should have two.
for (int I = 0; I < Iters; ++I)
MemMgr->allocateStub(NULL, Size, 8);
EXPECT_EQ(2U, MemMgr->GetNumStubSlabs());
// And after much more, we should have three.
for (int I = 0; I < Iters; ++I)
MemMgr->allocateStub(NULL, Size, 8);
EXPECT_EQ(3U, MemMgr->GetNumStubSlabs());
}
}