1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/test/CodeGen/Thumb2/thumb2-jtb.ll
James Molloy 5538ea11d7 [Thumb-1] Synthesize TBB/TBH instructions to make use of compressed jump tables
[Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment]

The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.

It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.

TBB example:
Before: lsls r0, r0, #2    After: add  r0, pc
        adr  r1, .LJTI0_0         ldrb r0, [r0, #6]
        ldr  r0, [r0, r1]         lsls r0, r0, #1
        mov  pc, r0               add  pc, r0
  => No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.

The only case that can increase dynamic instruction count is the TBH case:

Before: lsls r0, r4, #2    After: lsls r4, r4, #1
        adr  r1, .LJTI0_0         add  r4, pc
        ldr  r0, [r0, r1]         ldrh r4, [r4, #6]
        mov  pc, r0               lsls r4, r4, #1
                                  add  pc, r4
  => 1 more instruction in prologue. Jump table shrunk by a factor of 2.

So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)

llvm-svn: 285690
2016-11-01 13:37:41 +00:00

136 lines
3.8 KiB
LLVM

; RUN: llc -mtriple=thumb-eabi -mcpu=arm1156t2-s -mattr=+thumb2 -arm-adjust-jump-tables=0 %s -o - | FileCheck %s
; RUN: llc -mtriple=thumbv6-eabi -mcpu=cortex-m0 -arm-adjust-jump-tables=0 %s -o - | FileCheck %s
; Do not use tbb / tbh if any destination is before the jumptable.
; rdar://7102917
define i16 @main__getopt_internal_2E_exit_2E_ce(i32, i1 %b) nounwind {
; CHECK: main__getopt_internal_2E_exit_2E_ce
; CHECK-NOT: tbb
; CHECK-NOT: tbh
; 32-bit jump tables use explicit branches, not data regions, so make sure
; we don't annotate this region.
; CHECK-NOT: data_region
entry:
br i1 %b, label %codeRepl127.exitStub, label %newFuncRoot
newFuncRoot:
br label %_getopt_internal.exit.ce
codeRepl127.exitStub: ; preds = %_getopt_internal.exit.ce
; Add an explicit edge back to before the jump table to ensure this block
; is placed first.
br i1 %b, label %newFuncRoot, label %codeRepl127.exitStub.exit
codeRepl127.exitStub.exit:
ret i16 0
parse_options.exit.loopexit.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 1
bb1.i.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 2
bb90.i.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 3
codeRepl104.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 4
codeRepl113.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 5
codeRepl51.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 6
codeRepl70.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 7
codeRepl119.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 8
codeRepl93.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 9
codeRepl101.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 10
codeRepl120.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 11
codeRepl89.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 12
codeRepl45.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 13
codeRepl58.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 14
codeRepl46.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 15
codeRepl50.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 16
codeRepl52.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 17
codeRepl53.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 18
codeRepl61.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 19
codeRepl85.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 20
codeRepl97.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 21
codeRepl79.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 22
codeRepl102.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 23
codeRepl54.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 24
codeRepl57.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 25
codeRepl103.exitStub: ; preds = %_getopt_internal.exit.ce
ret i16 26
_getopt_internal.exit.ce: ; preds = %newFuncRoot
switch i32 %0, label %codeRepl127.exitStub [
i32 -1, label %parse_options.exit.loopexit.exitStub
i32 0, label %bb1.i.exitStub
i32 63, label %bb90.i.exitStub
i32 66, label %codeRepl104.exitStub
i32 67, label %codeRepl113.exitStub
i32 71, label %codeRepl51.exitStub
i32 77, label %codeRepl70.exitStub
i32 78, label %codeRepl119.exitStub
i32 80, label %codeRepl93.exitStub
i32 81, label %codeRepl101.exitStub
i32 82, label %codeRepl120.exitStub
i32 88, label %codeRepl89.exitStub
i32 97, label %codeRepl45.exitStub
i32 98, label %codeRepl58.exitStub
i32 99, label %codeRepl46.exitStub
i32 100, label %codeRepl50.exitStub
i32 104, label %codeRepl52.exitStub
i32 108, label %codeRepl53.exitStub
i32 109, label %codeRepl61.exitStub
i32 110, label %codeRepl85.exitStub
i32 111, label %codeRepl97.exitStub
i32 113, label %codeRepl79.exitStub
i32 114, label %codeRepl102.exitStub
i32 115, label %codeRepl54.exitStub
i32 116, label %codeRepl57.exitStub
i32 118, label %codeRepl103.exitStub
]
}