mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
644ad23b21
that does not dominate all of its users, but is in the same basic block as its users. This class of error is what caused the mysterious CBE only failures last night. llvm-svn: 12979
733 lines
29 KiB
C++
733 lines
29 KiB
C++
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the function verifier interface, that can be used for some
|
|
// sanity checking of input to the system.
|
|
//
|
|
// Note that this does not provide full 'java style' security and verifications,
|
|
// instead it just tries to ensure that code is well formed.
|
|
//
|
|
// * Both of a binary operator's parameters are the same type
|
|
// * Verify that the indices of mem access instructions match other operands
|
|
// * Verify that arithmetic and other things are only performed on first class
|
|
// types. Verify that shifts & logicals only happen on integrals f.e.
|
|
// . All of the constants in a switch statement are of the correct type
|
|
// * The code is in valid SSA form
|
|
// . It should be illegal to put a label into any other type (like a structure)
|
|
// or to return one. [except constant arrays!]
|
|
// * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
|
|
// * PHI nodes must have an entry for each predecessor, with no extras.
|
|
// * PHI nodes must be the first thing in a basic block, all grouped together
|
|
// * PHI nodes must have at least one entry
|
|
// * All basic blocks should only end with terminator insts, not contain them
|
|
// * The entry node to a function must not have predecessors
|
|
// * All Instructions must be embedded into a basic block
|
|
// . Function's cannot take a void typed parameter
|
|
// * Verify that a function's argument list agrees with it's declared type.
|
|
// * It is illegal to specify a name for a void value.
|
|
// * It is illegal to have a internal global value with no initializer
|
|
// * It is illegal to have a ret instruction that returns a value that does not
|
|
// agree with the function return value type.
|
|
// * Function call argument types match the function prototype
|
|
// * All other things that are tested by asserts spread about the code...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Verifier.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ModuleProvider.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
using namespace llvm;
|
|
|
|
namespace { // Anonymous namespace for class
|
|
|
|
struct Verifier : public FunctionPass, InstVisitor<Verifier> {
|
|
bool Broken; // Is this module found to be broken?
|
|
bool RealPass; // Are we not being run by a PassManager?
|
|
VerifierFailureAction action;
|
|
// What to do if verification fails.
|
|
Module *Mod; // Module we are verifying right now
|
|
DominatorSet *DS; // Dominator set, caution can be null!
|
|
std::stringstream msgs; // A stringstream to collect messages
|
|
|
|
Verifier()
|
|
: Broken(false), RealPass(true), action(AbortProcessAction),
|
|
DS(0), msgs( std::ios_base::app | std::ios_base::out ) {}
|
|
Verifier( VerifierFailureAction ctn )
|
|
: Broken(false), RealPass(true), action(ctn), DS(0),
|
|
msgs( std::ios_base::app | std::ios_base::out ) {}
|
|
Verifier(bool AB )
|
|
: Broken(false), RealPass(true),
|
|
action( AB ? AbortProcessAction : PrintMessageAction), DS(0),
|
|
msgs( std::ios_base::app | std::ios_base::out ) {}
|
|
Verifier(DominatorSet &ds)
|
|
: Broken(false), RealPass(false), action(PrintMessageAction),
|
|
DS(&ds), msgs( std::ios_base::app | std::ios_base::out ) {}
|
|
|
|
|
|
bool doInitialization(Module &M) {
|
|
Mod = &M;
|
|
verifySymbolTable(M.getSymbolTable());
|
|
|
|
// If this is a real pass, in a pass manager, we must abort before
|
|
// returning back to the pass manager, or else the pass manager may try to
|
|
// run other passes on the broken module.
|
|
if (RealPass)
|
|
abortIfBroken();
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) {
|
|
// Get dominator information if we are being run by PassManager
|
|
if (RealPass) DS = &getAnalysis<DominatorSet>();
|
|
visit(F);
|
|
|
|
// If this is a real pass, in a pass manager, we must abort before
|
|
// returning back to the pass manager, or else the pass manager may try to
|
|
// run other passes on the broken module.
|
|
if (RealPass)
|
|
abortIfBroken();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool doFinalization(Module &M) {
|
|
// Scan through, checking all of the external function's linkage now...
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
|
visitGlobalValue(*I);
|
|
|
|
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
|
|
visitGlobalValue(*I);
|
|
|
|
// If the module is broken, abort at this time.
|
|
abortIfBroken();
|
|
return false;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
if (RealPass)
|
|
AU.addRequired<DominatorSet>();
|
|
}
|
|
|
|
/// abortIfBroken - If the module is broken and we are supposed to abort on
|
|
/// this condition, do so.
|
|
///
|
|
void abortIfBroken() {
|
|
if (Broken)
|
|
{
|
|
msgs << "Broken module found, ";
|
|
switch (action)
|
|
{
|
|
case AbortProcessAction:
|
|
msgs << "compilation aborted!\n";
|
|
std::cerr << msgs.str();
|
|
abort();
|
|
case ThrowExceptionAction:
|
|
msgs << "verification terminated.\n";
|
|
throw msgs.str();
|
|
case PrintMessageAction:
|
|
msgs << "verification continues.\n";
|
|
std::cerr << msgs.str();
|
|
break;
|
|
case ReturnStatusAction:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Verification methods...
|
|
void verifySymbolTable(SymbolTable &ST);
|
|
void visitGlobalValue(GlobalValue &GV);
|
|
void visitFunction(Function &F);
|
|
void visitBasicBlock(BasicBlock &BB);
|
|
void visitPHINode(PHINode &PN);
|
|
void visitBinaryOperator(BinaryOperator &B);
|
|
void visitShiftInst(ShiftInst &SI);
|
|
void visitVANextInst(VANextInst &VAN) { visitInstruction(VAN); }
|
|
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
|
|
void visitCallInst(CallInst &CI);
|
|
void visitGetElementPtrInst(GetElementPtrInst &GEP);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
void visitInstruction(Instruction &I);
|
|
void visitTerminatorInst(TerminatorInst &I);
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
void visitUserOp1(Instruction &I);
|
|
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
|
|
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
|
|
|
|
|
|
void WriteValue(const Value *V) {
|
|
if (!V) return;
|
|
if (isa<Instruction>(V)) {
|
|
msgs << *V;
|
|
} else if (const Type *Ty = dyn_cast<Type>(V)) {
|
|
WriteTypeSymbolic(msgs, Ty, Mod);
|
|
} else {
|
|
WriteAsOperand (msgs, V, true, true, Mod);
|
|
msgs << "\n";
|
|
}
|
|
}
|
|
|
|
|
|
// CheckFailed - A check failed, so print out the condition and the message
|
|
// that failed. This provides a nice place to put a breakpoint if you want
|
|
// to see why something is not correct.
|
|
void CheckFailed(const std::string &Message,
|
|
const Value *V1 = 0, const Value *V2 = 0,
|
|
const Value *V3 = 0, const Value *V4 = 0) {
|
|
msgs << Message << "\n";
|
|
WriteValue(V1);
|
|
WriteValue(V2);
|
|
WriteValue(V3);
|
|
WriteValue(V4);
|
|
Broken = true;
|
|
}
|
|
};
|
|
|
|
RegisterOpt<Verifier> X("verify", "Module Verifier");
|
|
} // End anonymous namespace
|
|
|
|
|
|
// Assert - We know that cond should be true, if not print an error message.
|
|
#define Assert(C, M) \
|
|
do { if (!(C)) { CheckFailed(M); return; } } while (0)
|
|
#define Assert1(C, M, V1) \
|
|
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
|
|
#define Assert2(C, M, V1, V2) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
|
|
#define Assert3(C, M, V1, V2, V3) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
|
|
#define Assert4(C, M, V1, V2, V3, V4) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
|
|
|
|
|
|
void Verifier::visitGlobalValue(GlobalValue &GV) {
|
|
Assert1(!GV.isExternal() || GV.hasExternalLinkage(),
|
|
"Global is external, but doesn't have external linkage!", &GV);
|
|
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
|
|
"Only global variables can have appending linkage!", &GV);
|
|
|
|
if (GV.hasAppendingLinkage()) {
|
|
GlobalVariable &GVar = cast<GlobalVariable>(GV);
|
|
Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
|
|
"Only global arrays can have appending linkage!", &GV);
|
|
}
|
|
}
|
|
|
|
// verifySymbolTable - Verify that a function or module symbol table is ok
|
|
//
|
|
void Verifier::verifySymbolTable(SymbolTable &ST) {
|
|
// Loop over all of the types in the symbol table...
|
|
for (SymbolTable::iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI)
|
|
for (SymbolTable::type_iterator I = TI->second.begin(),
|
|
E = TI->second.end(); I != E; ++I) {
|
|
Value *V = I->second;
|
|
|
|
// Check that there are no void typed values in the symbol table. Values
|
|
// with a void type cannot be put into symbol tables because they cannot
|
|
// have names!
|
|
Assert1(V->getType() != Type::VoidTy,
|
|
"Values with void type are not allowed to have names!", V);
|
|
}
|
|
}
|
|
|
|
|
|
// visitFunction - Verify that a function is ok.
|
|
//
|
|
void Verifier::visitFunction(Function &F) {
|
|
// Check function arguments...
|
|
const FunctionType *FT = F.getFunctionType();
|
|
unsigned NumArgs = F.getArgumentList().size();
|
|
|
|
Assert2(FT->getNumParams() == NumArgs,
|
|
"# formal arguments must match # of arguments for function type!",
|
|
&F, FT);
|
|
Assert1(F.getReturnType()->isFirstClassType() ||
|
|
F.getReturnType() == Type::VoidTy,
|
|
"Functions cannot return aggregate values!", &F);
|
|
|
|
// Check that the argument values match the function type for this function...
|
|
unsigned i = 0;
|
|
for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i)
|
|
Assert2(I->getType() == FT->getParamType(i),
|
|
"Argument value does not match function argument type!",
|
|
I, FT->getParamType(i));
|
|
|
|
if (!F.isExternal()) {
|
|
verifySymbolTable(F.getSymbolTable());
|
|
|
|
// Check the entry node
|
|
BasicBlock *Entry = &F.getEntryBlock();
|
|
Assert1(pred_begin(Entry) == pred_end(Entry),
|
|
"Entry block to function must not have predecessors!", Entry);
|
|
}
|
|
}
|
|
|
|
|
|
// verifyBasicBlock - Verify that a basic block is well formed...
|
|
//
|
|
void Verifier::visitBasicBlock(BasicBlock &BB) {
|
|
// Check constraints that this basic block imposes on all of the PHI nodes in
|
|
// it.
|
|
if (isa<PHINode>(BB.front())) {
|
|
std::vector<BasicBlock*> Preds(pred_begin(&BB), pred_end(&BB));
|
|
std::sort(Preds.begin(), Preds.end());
|
|
|
|
for (BasicBlock::iterator I = BB.begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
|
|
// Ensure that PHI nodes have at least one entry!
|
|
Assert1(PN->getNumIncomingValues() != 0,
|
|
"PHI nodes must have at least one entry. If the block is dead, "
|
|
"the PHI should be removed!", PN);
|
|
Assert1(PN->getNumIncomingValues() >= Preds.size(),
|
|
"PHINode has more entries than the basic block has predecessors!",
|
|
PN);
|
|
Assert1(PN->getNumIncomingValues() <= Preds.size(),
|
|
"PHINode has less entries than the basic block has predecessors!",
|
|
PN);
|
|
|
|
// Get and sort all incoming values in the PHI node...
|
|
std::vector<std::pair<BasicBlock*, Value*> > Values;
|
|
Values.reserve(PN->getNumIncomingValues());
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
|
|
PN->getIncomingValue(i)));
|
|
std::sort(Values.begin(), Values.end());
|
|
|
|
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
|
|
// Check to make sure that if there is more than one entry for a
|
|
// particular basic block in this PHI node, that the incoming values are
|
|
// all identical.
|
|
//
|
|
Assert4(i == 0 || Values[i].first != Values[i-1].first ||
|
|
Values[i].second == Values[i-1].second,
|
|
"PHI node has multiple entries for the same basic block with "
|
|
"different incoming values!", PN, Values[i].first,
|
|
Values[i].second, Values[i-1].second);
|
|
|
|
// Check to make sure that the predecessors and PHI node entries are
|
|
// matched up.
|
|
Assert3(Values[i].first == Preds[i],
|
|
"PHI node entries do not match predecessors!", PN,
|
|
Values[i].first, Preds[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ensure that basic blocks have terminators!
|
|
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
|
|
}
|
|
|
|
void Verifier::visitTerminatorInst(TerminatorInst &I) {
|
|
// Ensure that terminators only exist at the end of the basic block.
|
|
Assert1(&I == I.getParent()->getTerminator(),
|
|
"Terminator found in the middle of a basic block!", I.getParent());
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitReturnInst(ReturnInst &RI) {
|
|
Function *F = RI.getParent()->getParent();
|
|
if (RI.getNumOperands() == 0)
|
|
Assert1(F->getReturnType() == Type::VoidTy,
|
|
"Function returns no value, but ret instruction found that does!",
|
|
&RI);
|
|
else
|
|
Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
|
|
"Function return type does not match operand "
|
|
"type of return inst!", &RI, F->getReturnType());
|
|
|
|
// Check to make sure that the return value has necessary properties for
|
|
// terminators...
|
|
visitTerminatorInst(RI);
|
|
}
|
|
|
|
void Verifier::visitSelectInst(SelectInst &SI) {
|
|
Assert1(SI.getCondition()->getType() == Type::BoolTy,
|
|
"Select condition type must be bool!", &SI);
|
|
Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
|
|
"Select values must have identical types!", &SI);
|
|
Assert1(SI.getTrueValue()->getType() == SI.getType(),
|
|
"Select values must have same type as select instruction!", &SI);
|
|
}
|
|
|
|
|
|
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
|
|
/// a pass, if any exist, it's an error.
|
|
///
|
|
void Verifier::visitUserOp1(Instruction &I) {
|
|
Assert1(0, "User-defined operators should not live outside of a pass!",
|
|
&I);
|
|
}
|
|
|
|
/// visitPHINode - Ensure that a PHI node is well formed.
|
|
///
|
|
void Verifier::visitPHINode(PHINode &PN) {
|
|
// Ensure that the PHI nodes are all grouped together at the top of the block.
|
|
// This can be tested by checking whether the instruction before this is
|
|
// either nonexistent (because this is begin()) or is a PHI node. If not,
|
|
// then there is some other instruction before a PHI.
|
|
Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()),
|
|
"PHI nodes not grouped at top of basic block!",
|
|
&PN, PN.getParent());
|
|
|
|
// Check that all of the operands of the PHI node have the same type as the
|
|
// result.
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
|
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
|
|
"PHI node operands are not the same type as the result!", &PN);
|
|
|
|
// All other PHI node constraints are checked in the visitBasicBlock method.
|
|
|
|
visitInstruction(PN);
|
|
}
|
|
|
|
void Verifier::visitCallInst(CallInst &CI) {
|
|
Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
|
|
"Called function must be a pointer!", &CI);
|
|
const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
|
|
Assert1(isa<FunctionType>(FPTy->getElementType()),
|
|
"Called function is not pointer to function type!", &CI);
|
|
|
|
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
|
|
|
|
// Verify that the correct number of arguments are being passed
|
|
if (FTy->isVarArg())
|
|
Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
|
|
"Called function requires more parameters than were provided!",&CI);
|
|
else
|
|
Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
|
|
"Incorrect number of arguments passed to called function!", &CI);
|
|
|
|
// Verify that all arguments to the call match the function type...
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
|
|
"Call parameter type does not match function signature!",
|
|
CI.getOperand(i+1), FTy->getParamType(i), &CI);
|
|
|
|
if (Function *F = CI.getCalledFunction())
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
|
|
visitIntrinsicFunctionCall(ID, CI);
|
|
|
|
visitInstruction(CI);
|
|
}
|
|
|
|
/// visitBinaryOperator - Check that both arguments to the binary operator are
|
|
/// of the same type!
|
|
///
|
|
void Verifier::visitBinaryOperator(BinaryOperator &B) {
|
|
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
|
|
"Both operands to a binary operator are not of the same type!", &B);
|
|
|
|
// Check that logical operators are only used with integral operands.
|
|
if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or ||
|
|
B.getOpcode() == Instruction::Xor) {
|
|
Assert1(B.getType()->isIntegral(),
|
|
"Logical operators only work with integral types!", &B);
|
|
Assert1(B.getType() == B.getOperand(0)->getType(),
|
|
"Logical operators must have same type for operands and result!",
|
|
&B);
|
|
} else if (isa<SetCondInst>(B)) {
|
|
// Check that setcc instructions return bool
|
|
Assert1(B.getType() == Type::BoolTy,
|
|
"setcc instructions must return boolean values!", &B);
|
|
} else {
|
|
// Arithmetic operators only work on integer or fp values
|
|
Assert1(B.getType() == B.getOperand(0)->getType(),
|
|
"Arithmetic operators must have same type for operands and result!",
|
|
&B);
|
|
Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint(),
|
|
"Arithmetic operators must have integer or fp type!", &B);
|
|
}
|
|
|
|
visitInstruction(B);
|
|
}
|
|
|
|
void Verifier::visitShiftInst(ShiftInst &SI) {
|
|
Assert1(SI.getType()->isInteger(),
|
|
"Shift must return an integer result!", &SI);
|
|
Assert1(SI.getType() == SI.getOperand(0)->getType(),
|
|
"Shift return type must be same as first operand!", &SI);
|
|
Assert1(SI.getOperand(1)->getType() == Type::UByteTy,
|
|
"Second operand to shift must be ubyte type!", &SI);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
const Type *ElTy =
|
|
GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
|
|
std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true);
|
|
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
|
|
Assert2(PointerType::get(ElTy) == GEP.getType(),
|
|
"GEP is not of right type for indices!", &GEP, ElTy);
|
|
visitInstruction(GEP);
|
|
}
|
|
|
|
void Verifier::visitLoadInst(LoadInst &LI) {
|
|
const Type *ElTy =
|
|
cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
|
|
Assert2(ElTy == LI.getType(),
|
|
"Load result type does not match pointer operand type!", &LI, ElTy);
|
|
visitInstruction(LI);
|
|
}
|
|
|
|
void Verifier::visitStoreInst(StoreInst &SI) {
|
|
const Type *ElTy =
|
|
cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
|
|
Assert2(ElTy == SI.getOperand(0)->getType(),
|
|
"Stored value type does not match pointer operand type!", &SI, ElTy);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
|
|
/// verifyInstruction - Verify that an instruction is well formed.
|
|
///
|
|
void Verifier::visitInstruction(Instruction &I) {
|
|
BasicBlock *BB = I.getParent();
|
|
Assert1(BB, "Instruction not embedded in basic block!", &I);
|
|
|
|
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
|
|
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
|
|
UI != UE; ++UI)
|
|
Assert1(*UI != (User*)&I ||
|
|
!DS->dominates(&BB->getParent()->getEntryBlock(), BB),
|
|
"Only PHI nodes may reference their own value!", &I);
|
|
}
|
|
|
|
// Check that void typed values don't have names
|
|
Assert1(I.getType() != Type::VoidTy || !I.hasName(),
|
|
"Instruction has a name, but provides a void value!", &I);
|
|
|
|
// Check that the return value of the instruction is either void or a legal
|
|
// value type.
|
|
Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
|
|
"Instruction returns a non-scalar type!", &I);
|
|
|
|
// Check that all uses of the instruction, if they are instructions
|
|
// themselves, actually have parent basic blocks. If the use is not an
|
|
// instruction, it is an error!
|
|
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
|
|
UI != UE; ++UI) {
|
|
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
|
|
*UI);
|
|
Instruction *Used = cast<Instruction>(*UI);
|
|
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
|
|
" embeded in a basic block!", &I, Used);
|
|
}
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
// Check to make sure that the "address of" an intrinsic function is never
|
|
// taken.
|
|
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
|
|
Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
|
|
"Cannot take the address of an intrinsic!", &I);
|
|
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
|
|
Assert1(OpBB->getParent() == BB->getParent(),
|
|
"Referring to a basic block in another function!", &I);
|
|
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
|
|
Assert1(OpArg->getParent() == BB->getParent(),
|
|
"Referring to an argument in another function!", &I);
|
|
} else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
|
|
BasicBlock *OpBlock = Op->getParent();
|
|
|
|
// Check that a definition dominates all of its uses.
|
|
if (!isa<PHINode>(I)) {
|
|
// Invoke results are only usable in the normal destination, not in the
|
|
// exceptional destination.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Op))
|
|
OpBlock = II->getNormalDest();
|
|
else if (OpBlock == BB) {
|
|
// If they are in the same basic block, make sure that the definition
|
|
// comes before the use.
|
|
Assert2(DS->dominates(Op, &I),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
}
|
|
|
|
// Definition must dominate use unless use is unreachable!
|
|
Assert2(DS->dominates(OpBlock, BB) ||
|
|
!DS->dominates(&BB->getParent()->getEntryBlock(), BB),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
} else {
|
|
// PHI nodes are more difficult than other nodes because they actually
|
|
// "use" the value in the predecessor basic blocks they correspond to.
|
|
BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
|
|
Assert2(DS->dominates(OpBlock, PredBB) ||
|
|
!DS->dominates(&BB->getParent()->getEntryBlock(), PredBB),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
|
|
///
|
|
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
|
|
Function *IF = CI.getCalledFunction();
|
|
const FunctionType *FT = IF->getFunctionType();
|
|
Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF);
|
|
unsigned NumArgs = 0;
|
|
|
|
// FIXME: this should check the return type of each intrinsic as well, also
|
|
// arguments!
|
|
switch (ID) {
|
|
case Intrinsic::vastart:
|
|
Assert1(CI.getParent()->getParent()->getFunctionType()->isVarArg(),
|
|
"llvm.va_start intrinsic may only occur in function with variable"
|
|
" args!", &CI);
|
|
NumArgs = 0;
|
|
break;
|
|
case Intrinsic::vaend: NumArgs = 1; break;
|
|
case Intrinsic::vacopy: NumArgs = 1; break;
|
|
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
Assert1(isa<PointerType>(FT->getReturnType()),
|
|
"llvm.(frame|return)address must return pointers", IF);
|
|
Assert1(FT->getNumParams() == 1 && isa<ConstantInt>(CI.getOperand(1)),
|
|
"llvm.(frame|return)address require a single constant integer argument",
|
|
&CI);
|
|
NumArgs = 1;
|
|
break;
|
|
|
|
// Verify that read and write port have integral parameters of the correct
|
|
// signed-ness.
|
|
case Intrinsic::writeport:
|
|
Assert1(FT->getNumParams() == 2,
|
|
"Illegal # arguments for intrinsic function!", IF);
|
|
Assert1(FT->getParamType(0)->isIntegral(),
|
|
"First argument not unsigned int!", IF);
|
|
Assert1(FT->getParamType(1)->isUnsigned(),
|
|
"First argument not unsigned int!", IF);
|
|
NumArgs = 2;
|
|
break;
|
|
|
|
case Intrinsic::writeio:
|
|
Assert1(FT->getNumParams() == 2,
|
|
"Illegal # arguments for intrinsic function!", IF);
|
|
Assert1(FT->getParamType(0)->isFirstClassType(),
|
|
"First argument not a first class type!", IF);
|
|
Assert1(FT->getParamType(1)->getPrimitiveID() == Type::PointerTyID,
|
|
"Second argument not a pointer!", IF);
|
|
NumArgs = 2;
|
|
break;
|
|
|
|
case Intrinsic::readport:
|
|
Assert1(FT->getNumParams() == 1,
|
|
"Illegal # arguments for intrinsic function!", IF);
|
|
Assert1(FT->getReturnType()->isFirstClassType(),
|
|
"Return type is not a first class type!", IF);
|
|
Assert1(FT->getParamType(0)->isUnsigned(),
|
|
"First argument not unsigned int!", IF);
|
|
NumArgs = 1;
|
|
break;
|
|
|
|
case Intrinsic:: readio: {
|
|
const Type * ParamType = FT->getParamType(0);
|
|
const Type * ReturnType = FT->getReturnType();
|
|
|
|
Assert1(FT->getNumParams() == 1,
|
|
"Illegal # arguments for intrinsic function!", IF);
|
|
Assert1(isa<PointerType>(ParamType),
|
|
"First argument not a pointer!", IF);
|
|
Assert1(((cast<PointerType>(ParamType)->getElementType()) == ReturnType),
|
|
"Pointer type doesn't match return type!", IF);
|
|
NumArgs = 1;
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::setjmp: NumArgs = 1; break;
|
|
case Intrinsic::longjmp: NumArgs = 2; break;
|
|
case Intrinsic::sigsetjmp: NumArgs = 2; break;
|
|
case Intrinsic::siglongjmp: NumArgs = 2; break;
|
|
|
|
case Intrinsic::dbg_stoppoint: NumArgs = 4; break;
|
|
case Intrinsic::dbg_region_start:NumArgs = 1; break;
|
|
case Intrinsic::dbg_region_end: NumArgs = 1; break;
|
|
case Intrinsic::dbg_func_start: NumArgs = 1; break;
|
|
case Intrinsic::dbg_declare: NumArgs = 1; break;
|
|
|
|
case Intrinsic::memcpy: NumArgs = 4; break;
|
|
case Intrinsic::memmove: NumArgs = 4; break;
|
|
case Intrinsic::memset: NumArgs = 4; break;
|
|
|
|
case Intrinsic::alpha_ctlz: NumArgs = 1; break;
|
|
case Intrinsic::alpha_cttz: NumArgs = 1; break;
|
|
case Intrinsic::alpha_ctpop: NumArgs = 1; break;
|
|
case Intrinsic::alpha_umulh: NumArgs = 2; break;
|
|
case Intrinsic::alpha_vecop: NumArgs = 4; break;
|
|
case Intrinsic::alpha_pup: NumArgs = 3; break;
|
|
case Intrinsic::alpha_bytezap: NumArgs = 2; break;
|
|
case Intrinsic::alpha_bytemanip: NumArgs = 3; break;
|
|
case Intrinsic::alpha_dfpbop: NumArgs = 3; break;
|
|
case Intrinsic::alpha_dfpuop: NumArgs = 2; break;
|
|
case Intrinsic::alpha_unordered: NumArgs = 2; break;
|
|
case Intrinsic::alpha_uqtodfp: NumArgs = 2; break;
|
|
case Intrinsic::alpha_uqtosfp: NumArgs = 2; break;
|
|
case Intrinsic::alpha_dfptosq: NumArgs = 2; break;
|
|
case Intrinsic::alpha_sfptosq: NumArgs = 2; break;
|
|
|
|
case Intrinsic::not_intrinsic:
|
|
assert(0 && "Invalid intrinsic!"); NumArgs = 0; break;
|
|
}
|
|
|
|
Assert1(FT->getNumParams() == NumArgs || (FT->getNumParams() < NumArgs &&
|
|
FT->isVarArg()),
|
|
"Illegal # arguments for intrinsic function!", IF);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implement the public interfaces to this file...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
|
|
return new Verifier(action);
|
|
}
|
|
|
|
|
|
// verifyFunction - Create
|
|
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
|
|
Function &F = const_cast<Function&>(f);
|
|
assert(!F.isExternal() && "Cannot verify external functions");
|
|
|
|
FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
|
|
Verifier *V = new Verifier(action);
|
|
FPM.add(V);
|
|
FPM.run(F);
|
|
return V->Broken;
|
|
}
|
|
|
|
/// verifyModule - Check a module for errors, printing messages on stderr.
|
|
/// Return true if the module is corrupt.
|
|
///
|
|
bool llvm::verifyModule(const Module &M, VerifierFailureAction action) {
|
|
PassManager PM;
|
|
Verifier *V = new Verifier(action);
|
|
PM.add(V);
|
|
PM.run((Module&)M);
|
|
return V->Broken;
|
|
}
|