1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/include/llvm/IR/User.h
Tyker 43346d7e59 Basis of dropping uses in llvm.assume.
Summary: This patch adds the basic utilities to deal with dropable uses. dropable uses are uses that we rather drop than prevent transformations, for now they are limited to uses in llvm.assume.

Reviewers: jdoerfert, sstefan1

Reviewed By: jdoerfert

Subscribers: uenoku, lebedev.ri, mgorny, hiraditya, dexonsmith, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73404
2020-03-12 10:10:22 +01:00

340 lines
12 KiB
C++

//===- llvm/User.h - User class definition ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class defines the interface that one who uses a Value must implement.
// Each instance of the Value class keeps track of what User's have handles
// to it.
//
// * Instructions are the largest class of Users.
// * Constants may be users of other constants (think arrays and stuff)
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_USER_H
#define LLVM_IR_USER_H
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
namespace llvm {
template <typename T> class ArrayRef;
template <typename T> class MutableArrayRef;
/// Compile-time customization of User operands.
///
/// Customizes operand-related allocators and accessors.
template <class>
struct OperandTraits;
class User : public Value {
template <unsigned>
friend struct HungoffOperandTraits;
LLVM_ATTRIBUTE_ALWAYS_INLINE inline static void *
allocateFixedOperandUser(size_t, unsigned, unsigned);
protected:
/// Allocate a User with an operand pointer co-allocated.
///
/// This is used for subclasses which need to allocate a variable number
/// of operands, ie, 'hung off uses'.
void *operator new(size_t Size);
/// Allocate a User with the operands co-allocated.
///
/// This is used for subclasses which have a fixed number of operands.
void *operator new(size_t Size, unsigned Us);
/// Allocate a User with the operands co-allocated. If DescBytes is non-zero
/// then allocate an additional DescBytes bytes before the operands. These
/// bytes can be accessed by calling getDescriptor.
///
/// DescBytes needs to be divisible by sizeof(void *). The allocated
/// descriptor, if any, is aligned to sizeof(void *) bytes.
///
/// This is used for subclasses which have a fixed number of operands.
void *operator new(size_t Size, unsigned Us, unsigned DescBytes);
User(Type *ty, unsigned vty, Use *, unsigned NumOps)
: Value(ty, vty) {
assert(NumOps < (1u << NumUserOperandsBits) && "Too many operands");
NumUserOperands = NumOps;
// If we have hung off uses, then the operand list should initially be
// null.
assert((!HasHungOffUses || !getOperandList()) &&
"Error in initializing hung off uses for User");
}
/// Allocate the array of Uses, followed by a pointer
/// (with bottom bit set) to the User.
/// \param IsPhi identifies callers which are phi nodes and which need
/// N BasicBlock* allocated along with N
void allocHungoffUses(unsigned N, bool IsPhi = false);
/// Grow the number of hung off uses. Note that allocHungoffUses
/// should be called if there are no uses.
void growHungoffUses(unsigned N, bool IsPhi = false);
protected:
~User() = default; // Use deleteValue() to delete a generic Instruction.
public:
User(const User &) = delete;
/// Free memory allocated for User and Use objects.
void operator delete(void *Usr);
/// Placement delete - required by std, called if the ctor throws.
void operator delete(void *Usr, unsigned) {
// Note: If a subclass manipulates the information which is required to calculate the
// Usr memory pointer, e.g. NumUserOperands, the operator delete of that subclass has
// to restore the changed information to the original value, since the dtor of that class
// is not called if the ctor fails.
User::operator delete(Usr);
#ifndef LLVM_ENABLE_EXCEPTIONS
llvm_unreachable("Constructor throws?");
#endif
}
/// Placement delete - required by std, called if the ctor throws.
void operator delete(void *Usr, unsigned, unsigned) {
// Note: If a subclass manipulates the information which is required to calculate the
// Usr memory pointer, e.g. NumUserOperands, the operator delete of that subclass has
// to restore the changed information to the original value, since the dtor of that class
// is not called if the ctor fails.
User::operator delete(Usr);
#ifndef LLVM_ENABLE_EXCEPTIONS
llvm_unreachable("Constructor throws?");
#endif
}
protected:
template <int Idx, typename U> static Use &OpFrom(const U *that) {
return Idx < 0
? OperandTraits<U>::op_end(const_cast<U*>(that))[Idx]
: OperandTraits<U>::op_begin(const_cast<U*>(that))[Idx];
}
template <int Idx> Use &Op() {
return OpFrom<Idx>(this);
}
template <int Idx> const Use &Op() const {
return OpFrom<Idx>(this);
}
private:
const Use *getHungOffOperands() const {
return *(reinterpret_cast<const Use *const *>(this) - 1);
}
Use *&getHungOffOperands() { return *(reinterpret_cast<Use **>(this) - 1); }
const Use *getIntrusiveOperands() const {
return reinterpret_cast<const Use *>(this) - NumUserOperands;
}
Use *getIntrusiveOperands() {
return reinterpret_cast<Use *>(this) - NumUserOperands;
}
void setOperandList(Use *NewList) {
assert(HasHungOffUses &&
"Setting operand list only required for hung off uses");
getHungOffOperands() = NewList;
}
public:
const Use *getOperandList() const {
return HasHungOffUses ? getHungOffOperands() : getIntrusiveOperands();
}
Use *getOperandList() {
return const_cast<Use *>(static_cast<const User *>(this)->getOperandList());
}
Value *getOperand(unsigned i) const {
assert(i < NumUserOperands && "getOperand() out of range!");
return getOperandList()[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < NumUserOperands && "setOperand() out of range!");
assert((!isa<Constant>((const Value*)this) ||
isa<GlobalValue>((const Value*)this)) &&
"Cannot mutate a constant with setOperand!");
getOperandList()[i] = Val;
}
const Use &getOperandUse(unsigned i) const {
assert(i < NumUserOperands && "getOperandUse() out of range!");
return getOperandList()[i];
}
Use &getOperandUse(unsigned i) {
assert(i < NumUserOperands && "getOperandUse() out of range!");
return getOperandList()[i];
}
unsigned getNumOperands() const { return NumUserOperands; }
/// Returns the descriptor co-allocated with this User instance.
ArrayRef<const uint8_t> getDescriptor() const;
/// Returns the descriptor co-allocated with this User instance.
MutableArrayRef<uint8_t> getDescriptor();
/// Set the number of operands on a GlobalVariable.
///
/// GlobalVariable always allocates space for a single operands, but
/// doesn't always use it.
///
/// FIXME: As that the number of operands is used to find the start of
/// the allocated memory in operator delete, we need to always think we have
/// 1 operand before delete.
void setGlobalVariableNumOperands(unsigned NumOps) {
assert(NumOps <= 1 && "GlobalVariable can only have 0 or 1 operands");
NumUserOperands = NumOps;
}
/// Subclasses with hung off uses need to manage the operand count
/// themselves. In these instances, the operand count isn't used to find the
/// OperandList, so there's no issue in having the operand count change.
void setNumHungOffUseOperands(unsigned NumOps) {
assert(HasHungOffUses && "Must have hung off uses to use this method");
assert(NumOps < (1u << NumUserOperandsBits) && "Too many operands");
NumUserOperands = NumOps;
}
/// A droppable user is a user for which uses can be dropped without affecting
/// correctness and should be dropped rather than preventing a transformation
/// from happening.
bool isDroppable() const;
// ---------------------------------------------------------------------------
// Operand Iterator interface...
//
using op_iterator = Use*;
using const_op_iterator = const Use*;
using op_range = iterator_range<op_iterator>;
using const_op_range = iterator_range<const_op_iterator>;
op_iterator op_begin() { return getOperandList(); }
const_op_iterator op_begin() const { return getOperandList(); }
op_iterator op_end() {
return getOperandList() + NumUserOperands;
}
const_op_iterator op_end() const {
return getOperandList() + NumUserOperands;
}
op_range operands() {
return op_range(op_begin(), op_end());
}
const_op_range operands() const {
return const_op_range(op_begin(), op_end());
}
/// Iterator for directly iterating over the operand Values.
struct value_op_iterator
: iterator_adaptor_base<value_op_iterator, op_iterator,
std::random_access_iterator_tag, Value *,
ptrdiff_t, Value *, Value *> {
explicit value_op_iterator(Use *U = nullptr) : iterator_adaptor_base(U) {}
Value *operator*() const { return *I; }
Value *operator->() const { return operator*(); }
};
value_op_iterator value_op_begin() {
return value_op_iterator(op_begin());
}
value_op_iterator value_op_end() {
return value_op_iterator(op_end());
}
iterator_range<value_op_iterator> operand_values() {
return make_range(value_op_begin(), value_op_end());
}
struct const_value_op_iterator
: iterator_adaptor_base<const_value_op_iterator, const_op_iterator,
std::random_access_iterator_tag, const Value *,
ptrdiff_t, const Value *, const Value *> {
explicit const_value_op_iterator(const Use *U = nullptr) :
iterator_adaptor_base(U) {}
const Value *operator*() const { return *I; }
const Value *operator->() const { return operator*(); }
};
const_value_op_iterator value_op_begin() const {
return const_value_op_iterator(op_begin());
}
const_value_op_iterator value_op_end() const {
return const_value_op_iterator(op_end());
}
iterator_range<const_value_op_iterator> operand_values() const {
return make_range(value_op_begin(), value_op_end());
}
/// Drop all references to operands.
///
/// This function is in charge of "letting go" of all objects that this User
/// refers to. This allows one to 'delete' a whole class at a time, even
/// though there may be circular references... First all references are
/// dropped, and all use counts go to zero. Then everything is deleted for
/// real. Note that no operations are valid on an object that has "dropped
/// all references", except operator delete.
void dropAllReferences() {
for (Use &U : operands())
U.set(nullptr);
}
/// Replace uses of one Value with another.
///
/// Replaces all references to the "From" definition with references to the
/// "To" definition.
void replaceUsesOfWith(Value *From, Value *To);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return isa<Instruction>(V) || isa<Constant>(V);
}
};
// Either Use objects, or a Use pointer can be prepended to User.
static_assert(alignof(Use) >= alignof(User),
"Alignment is insufficient after objects prepended to User");
static_assert(alignof(Use *) >= alignof(User),
"Alignment is insufficient after objects prepended to User");
template<> struct simplify_type<User::op_iterator> {
using SimpleType = Value*;
static SimpleType getSimplifiedValue(User::op_iterator &Val) {
return Val->get();
}
};
template<> struct simplify_type<User::const_op_iterator> {
using SimpleType = /*const*/ Value*;
static SimpleType getSimplifiedValue(User::const_op_iterator &Val) {
return Val->get();
}
};
} // end namespace llvm
#endif // LLVM_IR_USER_H