mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
48473628b0
getFramePointerReg only depends on information in ARMSubtarget, so move it in there so it can be accessed from more places. Make use of ARMSubtarget::getFramePointerReg to remove duplicated code. The main use of useR7AsFramePointer is getFramePointerReg, so inline it. Differential Revision: https://reviews.llvm.org/D104476
945 lines
33 KiB
C++
945 lines
33 KiB
C++
//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the ARM specific subclass of TargetSubtargetInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
|
|
#define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
|
|
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMBaseRegisterInfo.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMFrameLowering.h"
|
|
#include "ARMISelLowering.h"
|
|
#include "ARMSelectionDAGInfo.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/MC/MCInstrItineraries.h"
|
|
#include "llvm/MC/MCSchedule.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#define GET_SUBTARGETINFO_HEADER
|
|
#include "ARMGenSubtargetInfo.inc"
|
|
|
|
namespace llvm {
|
|
|
|
class ARMBaseTargetMachine;
|
|
class GlobalValue;
|
|
class StringRef;
|
|
|
|
class ARMSubtarget : public ARMGenSubtargetInfo {
|
|
protected:
|
|
enum ARMProcFamilyEnum {
|
|
Others,
|
|
|
|
CortexA12,
|
|
CortexA15,
|
|
CortexA17,
|
|
CortexA32,
|
|
CortexA35,
|
|
CortexA5,
|
|
CortexA53,
|
|
CortexA55,
|
|
CortexA57,
|
|
CortexA7,
|
|
CortexA72,
|
|
CortexA73,
|
|
CortexA75,
|
|
CortexA76,
|
|
CortexA77,
|
|
CortexA78,
|
|
CortexA78C,
|
|
CortexA8,
|
|
CortexA9,
|
|
CortexM3,
|
|
CortexM7,
|
|
CortexR4,
|
|
CortexR4F,
|
|
CortexR5,
|
|
CortexR52,
|
|
CortexR7,
|
|
CortexX1,
|
|
Exynos,
|
|
Krait,
|
|
Kryo,
|
|
NeoverseN1,
|
|
NeoverseN2,
|
|
NeoverseV1,
|
|
Swift
|
|
};
|
|
enum ARMProcClassEnum {
|
|
None,
|
|
|
|
AClass,
|
|
MClass,
|
|
RClass
|
|
};
|
|
enum ARMArchEnum {
|
|
ARMv2,
|
|
ARMv2a,
|
|
ARMv3,
|
|
ARMv3m,
|
|
ARMv4,
|
|
ARMv4t,
|
|
ARMv5,
|
|
ARMv5t,
|
|
ARMv5te,
|
|
ARMv5tej,
|
|
ARMv6,
|
|
ARMv6k,
|
|
ARMv6kz,
|
|
ARMv6m,
|
|
ARMv6sm,
|
|
ARMv6t2,
|
|
ARMv7a,
|
|
ARMv7em,
|
|
ARMv7m,
|
|
ARMv7r,
|
|
ARMv7ve,
|
|
ARMv81a,
|
|
ARMv82a,
|
|
ARMv83a,
|
|
ARMv84a,
|
|
ARMv85a,
|
|
ARMv86a,
|
|
ARMv87a,
|
|
ARMv8a,
|
|
ARMv8mBaseline,
|
|
ARMv8mMainline,
|
|
ARMv8r,
|
|
ARMv81mMainline,
|
|
};
|
|
|
|
public:
|
|
/// What kind of timing do load multiple/store multiple instructions have.
|
|
enum ARMLdStMultipleTiming {
|
|
/// Can load/store 2 registers/cycle.
|
|
DoubleIssue,
|
|
/// Can load/store 2 registers/cycle, but needs an extra cycle if the access
|
|
/// is not 64-bit aligned.
|
|
DoubleIssueCheckUnalignedAccess,
|
|
/// Can load/store 1 register/cycle.
|
|
SingleIssue,
|
|
/// Can load/store 1 register/cycle, but needs an extra cycle for address
|
|
/// computation and potentially also for register writeback.
|
|
SingleIssuePlusExtras,
|
|
};
|
|
|
|
protected:
|
|
/// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
|
|
ARMProcFamilyEnum ARMProcFamily = Others;
|
|
|
|
/// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
|
|
ARMProcClassEnum ARMProcClass = None;
|
|
|
|
/// ARMArch - ARM architecture
|
|
ARMArchEnum ARMArch = ARMv4t;
|
|
|
|
/// HasV4TOps, HasV5TOps, HasV5TEOps,
|
|
/// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
|
|
/// Specify whether target support specific ARM ISA variants.
|
|
bool HasV4TOps = false;
|
|
bool HasV5TOps = false;
|
|
bool HasV5TEOps = false;
|
|
bool HasV6Ops = false;
|
|
bool HasV6MOps = false;
|
|
bool HasV6KOps = false;
|
|
bool HasV6T2Ops = false;
|
|
bool HasV7Ops = false;
|
|
bool HasV8Ops = false;
|
|
bool HasV8_1aOps = false;
|
|
bool HasV8_2aOps = false;
|
|
bool HasV8_3aOps = false;
|
|
bool HasV8_4aOps = false;
|
|
bool HasV8_5aOps = false;
|
|
bool HasV8_6aOps = false;
|
|
bool HasV8_7aOps = false;
|
|
bool HasV8MBaselineOps = false;
|
|
bool HasV8MMainlineOps = false;
|
|
bool HasV8_1MMainlineOps = false;
|
|
bool HasMVEIntegerOps = false;
|
|
bool HasMVEFloatOps = false;
|
|
bool HasCDEOps = false;
|
|
|
|
/// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
|
|
/// floating point ISAs are supported.
|
|
bool HasVFPv2 = false;
|
|
bool HasVFPv3 = false;
|
|
bool HasVFPv4 = false;
|
|
bool HasFPARMv8 = false;
|
|
bool HasNEON = false;
|
|
bool HasFPRegs = false;
|
|
bool HasFPRegs16 = false;
|
|
bool HasFPRegs64 = false;
|
|
|
|
/// Versions of the VFP flags restricted to single precision, or to
|
|
/// 16 d-registers, or both.
|
|
bool HasVFPv2SP = false;
|
|
bool HasVFPv3SP = false;
|
|
bool HasVFPv4SP = false;
|
|
bool HasFPARMv8SP = false;
|
|
bool HasVFPv3D16 = false;
|
|
bool HasVFPv4D16 = false;
|
|
bool HasFPARMv8D16 = false;
|
|
bool HasVFPv3D16SP = false;
|
|
bool HasVFPv4D16SP = false;
|
|
bool HasFPARMv8D16SP = false;
|
|
|
|
/// HasDotProd - True if the ARMv8.2A dot product instructions are supported.
|
|
bool HasDotProd = false;
|
|
|
|
/// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
|
|
/// specified. Use the method useNEONForSinglePrecisionFP() to
|
|
/// determine if NEON should actually be used.
|
|
bool UseNEONForSinglePrecisionFP = false;
|
|
|
|
/// UseMulOps - True if non-microcoded fused integer multiply-add and
|
|
/// multiply-subtract instructions should be used.
|
|
bool UseMulOps = false;
|
|
|
|
/// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
|
|
/// whether the FP VML[AS] instructions are slow (if so, don't use them).
|
|
bool SlowFPVMLx = false;
|
|
|
|
/// SlowFPVFMx - If the VFP4 / NEON instructions are available, indicates
|
|
/// whether the FP VFM[AS] instructions are slow (if so, don't use them).
|
|
bool SlowFPVFMx = false;
|
|
|
|
/// HasVMLxForwarding - If true, NEON has special multiplier accumulator
|
|
/// forwarding to allow mul + mla being issued back to back.
|
|
bool HasVMLxForwarding = false;
|
|
|
|
/// SlowFPBrcc - True if floating point compare + branch is slow.
|
|
bool SlowFPBrcc = false;
|
|
|
|
/// InThumbMode - True if compiling for Thumb, false for ARM.
|
|
bool InThumbMode = false;
|
|
|
|
/// UseSoftFloat - True if we're using software floating point features.
|
|
bool UseSoftFloat = false;
|
|
|
|
/// UseMISched - True if MachineScheduler should be used for this subtarget.
|
|
bool UseMISched = false;
|
|
|
|
/// DisablePostRAScheduler - False if scheduling should happen again after
|
|
/// register allocation.
|
|
bool DisablePostRAScheduler = false;
|
|
|
|
/// HasThumb2 - True if Thumb2 instructions are supported.
|
|
bool HasThumb2 = false;
|
|
|
|
/// NoARM - True if subtarget does not support ARM mode execution.
|
|
bool NoARM = false;
|
|
|
|
/// ReserveR9 - True if R9 is not available as a general purpose register.
|
|
bool ReserveR9 = false;
|
|
|
|
/// NoMovt - True if MOVT / MOVW pairs are not used for materialization of
|
|
/// 32-bit imms (including global addresses).
|
|
bool NoMovt = false;
|
|
|
|
/// SupportsTailCall - True if the OS supports tail call. The dynamic linker
|
|
/// must be able to synthesize call stubs for interworking between ARM and
|
|
/// Thumb.
|
|
bool SupportsTailCall = false;
|
|
|
|
/// HasFP16 - True if subtarget supports half-precision FP conversions
|
|
bool HasFP16 = false;
|
|
|
|
/// HasFullFP16 - True if subtarget supports half-precision FP operations
|
|
bool HasFullFP16 = false;
|
|
|
|
/// HasFP16FML - True if subtarget supports half-precision FP fml operations
|
|
bool HasFP16FML = false;
|
|
|
|
/// HasBF16 - True if subtarget supports BFloat16 floating point operations
|
|
bool HasBF16 = false;
|
|
|
|
/// HasMatMulInt8 - True if subtarget supports 8-bit integer matrix multiply
|
|
bool HasMatMulInt8 = false;
|
|
|
|
/// HasD32 - True if subtarget has the full 32 double precision
|
|
/// FP registers for VFPv3.
|
|
bool HasD32 = false;
|
|
|
|
/// HasHardwareDivide - True if subtarget supports [su]div in Thumb mode
|
|
bool HasHardwareDivideInThumb = false;
|
|
|
|
/// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
|
|
bool HasHardwareDivideInARM = false;
|
|
|
|
/// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
|
|
/// instructions.
|
|
bool HasDataBarrier = false;
|
|
|
|
/// HasFullDataBarrier - True if the subtarget supports DFB data barrier
|
|
/// instruction.
|
|
bool HasFullDataBarrier = false;
|
|
|
|
/// HasV7Clrex - True if the subtarget supports CLREX instructions
|
|
bool HasV7Clrex = false;
|
|
|
|
/// HasAcquireRelease - True if the subtarget supports v8 atomics (LDA/LDAEX etc)
|
|
/// instructions
|
|
bool HasAcquireRelease = false;
|
|
|
|
/// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
|
|
/// over 16-bit ones.
|
|
bool Pref32BitThumb = false;
|
|
|
|
/// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
|
|
/// that partially update CPSR and add false dependency on the previous
|
|
/// CPSR setting instruction.
|
|
bool AvoidCPSRPartialUpdate = false;
|
|
|
|
/// CheapPredicableCPSRDef - If true, disable +1 predication cost
|
|
/// for instructions updating CPSR. Enabled for Cortex-A57.
|
|
bool CheapPredicableCPSRDef = false;
|
|
|
|
/// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
|
|
/// movs with shifter operand (i.e. asr, lsl, lsr).
|
|
bool AvoidMOVsShifterOperand = false;
|
|
|
|
/// HasRetAddrStack - Some processors perform return stack prediction. CodeGen should
|
|
/// avoid issue "normal" call instructions to callees which do not return.
|
|
bool HasRetAddrStack = false;
|
|
|
|
/// HasBranchPredictor - True if the subtarget has a branch predictor. Having
|
|
/// a branch predictor or not changes the expected cost of taking a branch
|
|
/// which affects the choice of whether to use predicated instructions.
|
|
bool HasBranchPredictor = true;
|
|
|
|
/// HasMPExtension - True if the subtarget supports Multiprocessing
|
|
/// extension (ARMv7 only).
|
|
bool HasMPExtension = false;
|
|
|
|
/// HasVirtualization - True if the subtarget supports the Virtualization
|
|
/// extension.
|
|
bool HasVirtualization = false;
|
|
|
|
/// HasFP64 - If true, the floating point unit supports double
|
|
/// precision.
|
|
bool HasFP64 = false;
|
|
|
|
/// If true, the processor supports the Performance Monitor Extensions. These
|
|
/// include a generic cycle-counter as well as more fine-grained (often
|
|
/// implementation-specific) events.
|
|
bool HasPerfMon = false;
|
|
|
|
/// HasTrustZone - if true, processor supports TrustZone security extensions
|
|
bool HasTrustZone = false;
|
|
|
|
/// Has8MSecExt - if true, processor supports ARMv8-M Security Extensions
|
|
bool Has8MSecExt = false;
|
|
|
|
/// HasSHA2 - if true, processor supports SHA1 and SHA256
|
|
bool HasSHA2 = false;
|
|
|
|
/// HasAES - if true, processor supports AES
|
|
bool HasAES = false;
|
|
|
|
/// HasCrypto - if true, processor supports Cryptography extensions
|
|
bool HasCrypto = false;
|
|
|
|
/// HasCRC - if true, processor supports CRC instructions
|
|
bool HasCRC = false;
|
|
|
|
/// HasRAS - if true, the processor supports RAS extensions
|
|
bool HasRAS = false;
|
|
|
|
/// HasLOB - if true, the processor supports the Low Overhead Branch extension
|
|
bool HasLOB = false;
|
|
|
|
/// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
|
|
/// particularly effective at zeroing a VFP register.
|
|
bool HasZeroCycleZeroing = false;
|
|
|
|
/// HasFPAO - if true, processor does positive address offset computation faster
|
|
bool HasFPAO = false;
|
|
|
|
/// HasFuseAES - if true, processor executes back to back AES instruction
|
|
/// pairs faster.
|
|
bool HasFuseAES = false;
|
|
|
|
/// HasFuseLiterals - if true, processor executes back to back
|
|
/// bottom and top halves of literal generation faster.
|
|
bool HasFuseLiterals = false;
|
|
|
|
/// If true, if conversion may decide to leave some instructions unpredicated.
|
|
bool IsProfitableToUnpredicate = false;
|
|
|
|
/// If true, VMOV will be favored over VGETLNi32.
|
|
bool HasSlowVGETLNi32 = false;
|
|
|
|
/// If true, VMOV will be favored over VDUP.
|
|
bool HasSlowVDUP32 = false;
|
|
|
|
/// If true, VMOVSR will be favored over VMOVDRR.
|
|
bool PreferVMOVSR = false;
|
|
|
|
/// If true, ISHST barriers will be used for Release semantics.
|
|
bool PreferISHST = false;
|
|
|
|
/// If true, a VLDM/VSTM starting with an odd register number is considered to
|
|
/// take more microops than single VLDRS/VSTRS.
|
|
bool SlowOddRegister = false;
|
|
|
|
/// If true, loading into a D subregister will be penalized.
|
|
bool SlowLoadDSubregister = false;
|
|
|
|
/// If true, use a wider stride when allocating VFP registers.
|
|
bool UseWideStrideVFP = false;
|
|
|
|
/// If true, the AGU and NEON/FPU units are multiplexed.
|
|
bool HasMuxedUnits = false;
|
|
|
|
/// If true, VMOVS will never be widened to VMOVD.
|
|
bool DontWidenVMOVS = false;
|
|
|
|
/// If true, splat a register between VFP and NEON instructions.
|
|
bool SplatVFPToNeon = false;
|
|
|
|
/// If true, run the MLx expansion pass.
|
|
bool ExpandMLx = false;
|
|
|
|
/// If true, VFP/NEON VMLA/VMLS have special RAW hazards.
|
|
bool HasVMLxHazards = false;
|
|
|
|
// If true, read thread pointer from coprocessor register.
|
|
bool ReadTPHard = false;
|
|
|
|
/// If true, VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON.
|
|
bool UseNEONForFPMovs = false;
|
|
|
|
/// If true, VLDn instructions take an extra cycle for unaligned accesses.
|
|
bool CheckVLDnAlign = false;
|
|
|
|
/// If true, VFP instructions are not pipelined.
|
|
bool NonpipelinedVFP = false;
|
|
|
|
/// StrictAlign - If true, the subtarget disallows unaligned memory
|
|
/// accesses for some types. For details, see
|
|
/// ARMTargetLowering::allowsMisalignedMemoryAccesses().
|
|
bool StrictAlign = false;
|
|
|
|
/// RestrictIT - If true, the subtarget disallows generation of deprecated IT
|
|
/// blocks to conform to ARMv8 rule.
|
|
bool RestrictIT = false;
|
|
|
|
/// HasDSP - If true, the subtarget supports the DSP (saturating arith
|
|
/// and such) instructions.
|
|
bool HasDSP = false;
|
|
|
|
/// NaCl TRAP instruction is generated instead of the regular TRAP.
|
|
bool UseNaClTrap = false;
|
|
|
|
/// Generate calls via indirect call instructions.
|
|
bool GenLongCalls = false;
|
|
|
|
/// Generate code that does not contain data access to code sections.
|
|
bool GenExecuteOnly = false;
|
|
|
|
/// Target machine allowed unsafe FP math (such as use of NEON fp)
|
|
bool UnsafeFPMath = false;
|
|
|
|
/// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS).
|
|
bool UseSjLjEH = false;
|
|
|
|
/// Has speculation barrier
|
|
bool HasSB = false;
|
|
|
|
/// Implicitly convert an instruction to a different one if its immediates
|
|
/// cannot be encoded. For example, ADD r0, r1, #FFFFFFFF -> SUB r0, r1, #1.
|
|
bool NegativeImmediates = true;
|
|
|
|
/// Harden against Straight Line Speculation for Returns and Indirect
|
|
/// Branches.
|
|
bool HardenSlsRetBr = false;
|
|
|
|
/// Harden against Straight Line Speculation for indirect calls.
|
|
bool HardenSlsBlr = false;
|
|
|
|
/// Generate thunk code for SLS mitigation in the normal text section.
|
|
bool HardenSlsNoComdat = false;
|
|
|
|
/// stackAlignment - The minimum alignment known to hold of the stack frame on
|
|
/// entry to the function and which must be maintained by every function.
|
|
Align stackAlignment = Align(4);
|
|
|
|
/// CPUString - String name of used CPU.
|
|
std::string CPUString;
|
|
|
|
unsigned MaxInterleaveFactor = 1;
|
|
|
|
/// Clearance before partial register updates (in number of instructions)
|
|
unsigned PartialUpdateClearance = 0;
|
|
|
|
/// What kind of timing do load multiple/store multiple have (double issue,
|
|
/// single issue etc).
|
|
ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue;
|
|
|
|
/// The adjustment that we need to apply to get the operand latency from the
|
|
/// operand cycle returned by the itinerary data for pre-ISel operands.
|
|
int PreISelOperandLatencyAdjustment = 2;
|
|
|
|
/// What alignment is preferred for loop bodies, in log2(bytes).
|
|
unsigned PrefLoopLogAlignment = 0;
|
|
|
|
/// The cost factor for MVE instructions, representing the multiple beats an
|
|
// instruction can take. The default is 2, (set in initSubtargetFeatures so
|
|
// that we can use subtarget features less than 2).
|
|
unsigned MVEVectorCostFactor = 0;
|
|
|
|
/// OptMinSize - True if we're optimising for minimum code size, equal to
|
|
/// the function attribute.
|
|
bool OptMinSize = false;
|
|
|
|
/// IsLittle - The target is Little Endian
|
|
bool IsLittle;
|
|
|
|
/// TargetTriple - What processor and OS we're targeting.
|
|
Triple TargetTriple;
|
|
|
|
/// SchedModel - Processor specific instruction costs.
|
|
MCSchedModel SchedModel;
|
|
|
|
/// Selected instruction itineraries (one entry per itinerary class.)
|
|
InstrItineraryData InstrItins;
|
|
|
|
/// Options passed via command line that could influence the target
|
|
const TargetOptions &Options;
|
|
|
|
const ARMBaseTargetMachine &TM;
|
|
|
|
public:
|
|
/// This constructor initializes the data members to match that
|
|
/// of the specified triple.
|
|
///
|
|
ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
|
|
const ARMBaseTargetMachine &TM, bool IsLittle,
|
|
bool MinSize = false);
|
|
|
|
/// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
|
|
/// that still makes it profitable to inline the call.
|
|
unsigned getMaxInlineSizeThreshold() const {
|
|
return 64;
|
|
}
|
|
|
|
/// getMaxMemcpyTPInlineSizeThreshold - Returns the maximum size
|
|
/// that still makes it profitable to inline a llvm.memcpy as a Tail
|
|
/// Predicated loop.
|
|
/// This threshold should only be used for constant size inputs.
|
|
unsigned getMaxMemcpyTPInlineSizeThreshold() const { return 128; }
|
|
|
|
/// ParseSubtargetFeatures - Parses features string setting specified
|
|
/// subtarget options. Definition of function is auto generated by tblgen.
|
|
void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
|
|
|
|
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
|
|
/// so that we can use initializer lists for subtarget initialization.
|
|
ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
|
|
|
|
const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
|
|
return &TSInfo;
|
|
}
|
|
|
|
const ARMBaseInstrInfo *getInstrInfo() const override {
|
|
return InstrInfo.get();
|
|
}
|
|
|
|
const ARMTargetLowering *getTargetLowering() const override {
|
|
return &TLInfo;
|
|
}
|
|
|
|
const ARMFrameLowering *getFrameLowering() const override {
|
|
return FrameLowering.get();
|
|
}
|
|
|
|
const ARMBaseRegisterInfo *getRegisterInfo() const override {
|
|
return &InstrInfo->getRegisterInfo();
|
|
}
|
|
|
|
const CallLowering *getCallLowering() const override;
|
|
InstructionSelector *getInstructionSelector() const override;
|
|
const LegalizerInfo *getLegalizerInfo() const override;
|
|
const RegisterBankInfo *getRegBankInfo() const override;
|
|
|
|
private:
|
|
ARMSelectionDAGInfo TSInfo;
|
|
// Either Thumb1FrameLowering or ARMFrameLowering.
|
|
std::unique_ptr<ARMFrameLowering> FrameLowering;
|
|
// Either Thumb1InstrInfo or Thumb2InstrInfo.
|
|
std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
|
|
ARMTargetLowering TLInfo;
|
|
|
|
/// GlobalISel related APIs.
|
|
std::unique_ptr<CallLowering> CallLoweringInfo;
|
|
std::unique_ptr<InstructionSelector> InstSelector;
|
|
std::unique_ptr<LegalizerInfo> Legalizer;
|
|
std::unique_ptr<RegisterBankInfo> RegBankInfo;
|
|
|
|
void initializeEnvironment();
|
|
void initSubtargetFeatures(StringRef CPU, StringRef FS);
|
|
ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
|
|
|
|
std::bitset<8> CoprocCDE = {};
|
|
public:
|
|
void computeIssueWidth();
|
|
|
|
bool hasV4TOps() const { return HasV4TOps; }
|
|
bool hasV5TOps() const { return HasV5TOps; }
|
|
bool hasV5TEOps() const { return HasV5TEOps; }
|
|
bool hasV6Ops() const { return HasV6Ops; }
|
|
bool hasV6MOps() const { return HasV6MOps; }
|
|
bool hasV6KOps() const { return HasV6KOps; }
|
|
bool hasV6T2Ops() const { return HasV6T2Ops; }
|
|
bool hasV7Ops() const { return HasV7Ops; }
|
|
bool hasV8Ops() const { return HasV8Ops; }
|
|
bool hasV8_1aOps() const { return HasV8_1aOps; }
|
|
bool hasV8_2aOps() const { return HasV8_2aOps; }
|
|
bool hasV8_3aOps() const { return HasV8_3aOps; }
|
|
bool hasV8_4aOps() const { return HasV8_4aOps; }
|
|
bool hasV8_5aOps() const { return HasV8_5aOps; }
|
|
bool hasV8_6aOps() const { return HasV8_6aOps; }
|
|
bool hasV8_7aOps() const { return HasV8_7aOps; }
|
|
bool hasV8MBaselineOps() const { return HasV8MBaselineOps; }
|
|
bool hasV8MMainlineOps() const { return HasV8MMainlineOps; }
|
|
bool hasV8_1MMainlineOps() const { return HasV8_1MMainlineOps; }
|
|
bool hasMVEIntegerOps() const { return HasMVEIntegerOps; }
|
|
bool hasMVEFloatOps() const { return HasMVEFloatOps; }
|
|
bool hasCDEOps() const { return HasCDEOps; }
|
|
bool hasFPRegs() const { return HasFPRegs; }
|
|
bool hasFPRegs16() const { return HasFPRegs16; }
|
|
bool hasFPRegs64() const { return HasFPRegs64; }
|
|
|
|
/// @{
|
|
/// These functions are obsolete, please consider adding subtarget features
|
|
/// or properties instead of calling them.
|
|
bool isCortexA5() const { return ARMProcFamily == CortexA5; }
|
|
bool isCortexA7() const { return ARMProcFamily == CortexA7; }
|
|
bool isCortexA8() const { return ARMProcFamily == CortexA8; }
|
|
bool isCortexA9() const { return ARMProcFamily == CortexA9; }
|
|
bool isCortexA15() const { return ARMProcFamily == CortexA15; }
|
|
bool isSwift() const { return ARMProcFamily == Swift; }
|
|
bool isCortexM3() const { return ARMProcFamily == CortexM3; }
|
|
bool isCortexM7() const { return ARMProcFamily == CortexM7; }
|
|
bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
|
|
bool isCortexR5() const { return ARMProcFamily == CortexR5; }
|
|
bool isKrait() const { return ARMProcFamily == Krait; }
|
|
/// @}
|
|
|
|
bool hasARMOps() const { return !NoARM; }
|
|
|
|
bool hasVFP2Base() const { return HasVFPv2SP; }
|
|
bool hasVFP3Base() const { return HasVFPv3D16SP; }
|
|
bool hasVFP4Base() const { return HasVFPv4D16SP; }
|
|
bool hasFPARMv8Base() const { return HasFPARMv8D16SP; }
|
|
bool hasNEON() const { return HasNEON; }
|
|
bool hasSHA2() const { return HasSHA2; }
|
|
bool hasAES() const { return HasAES; }
|
|
bool hasCrypto() const { return HasCrypto; }
|
|
bool hasDotProd() const { return HasDotProd; }
|
|
bool hasCRC() const { return HasCRC; }
|
|
bool hasRAS() const { return HasRAS; }
|
|
bool hasLOB() const { return HasLOB; }
|
|
bool hasVirtualization() const { return HasVirtualization; }
|
|
|
|
bool useNEONForSinglePrecisionFP() const {
|
|
return hasNEON() && UseNEONForSinglePrecisionFP;
|
|
}
|
|
|
|
bool hasDivideInThumbMode() const { return HasHardwareDivideInThumb; }
|
|
bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
|
|
bool hasDataBarrier() const { return HasDataBarrier; }
|
|
bool hasFullDataBarrier() const { return HasFullDataBarrier; }
|
|
bool hasV7Clrex() const { return HasV7Clrex; }
|
|
bool hasAcquireRelease() const { return HasAcquireRelease; }
|
|
|
|
bool hasAnyDataBarrier() const {
|
|
return HasDataBarrier || (hasV6Ops() && !isThumb());
|
|
}
|
|
|
|
bool useMulOps() const { return UseMulOps; }
|
|
bool useFPVMLx() const { return !SlowFPVMLx; }
|
|
bool useFPVFMx() const {
|
|
return !isTargetDarwin() && hasVFP4Base() && !SlowFPVFMx;
|
|
}
|
|
bool useFPVFMx16() const { return useFPVFMx() && hasFullFP16(); }
|
|
bool useFPVFMx64() const { return useFPVFMx() && hasFP64(); }
|
|
bool hasVMLxForwarding() const { return HasVMLxForwarding; }
|
|
bool isFPBrccSlow() const { return SlowFPBrcc; }
|
|
bool hasFP64() const { return HasFP64; }
|
|
bool hasPerfMon() const { return HasPerfMon; }
|
|
bool hasTrustZone() const { return HasTrustZone; }
|
|
bool has8MSecExt() const { return Has8MSecExt; }
|
|
bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
|
|
bool hasFPAO() const { return HasFPAO; }
|
|
bool isProfitableToUnpredicate() const { return IsProfitableToUnpredicate; }
|
|
bool hasSlowVGETLNi32() const { return HasSlowVGETLNi32; }
|
|
bool hasSlowVDUP32() const { return HasSlowVDUP32; }
|
|
bool preferVMOVSR() const { return PreferVMOVSR; }
|
|
bool preferISHSTBarriers() const { return PreferISHST; }
|
|
bool expandMLx() const { return ExpandMLx; }
|
|
bool hasVMLxHazards() const { return HasVMLxHazards; }
|
|
bool hasSlowOddRegister() const { return SlowOddRegister; }
|
|
bool hasSlowLoadDSubregister() const { return SlowLoadDSubregister; }
|
|
bool useWideStrideVFP() const { return UseWideStrideVFP; }
|
|
bool hasMuxedUnits() const { return HasMuxedUnits; }
|
|
bool dontWidenVMOVS() const { return DontWidenVMOVS; }
|
|
bool useSplatVFPToNeon() const { return SplatVFPToNeon; }
|
|
bool useNEONForFPMovs() const { return UseNEONForFPMovs; }
|
|
bool checkVLDnAccessAlignment() const { return CheckVLDnAlign; }
|
|
bool nonpipelinedVFP() const { return NonpipelinedVFP; }
|
|
bool prefers32BitThumb() const { return Pref32BitThumb; }
|
|
bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
|
|
bool cheapPredicableCPSRDef() const { return CheapPredicableCPSRDef; }
|
|
bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
|
|
bool hasRetAddrStack() const { return HasRetAddrStack; }
|
|
bool hasBranchPredictor() const { return HasBranchPredictor; }
|
|
bool hasMPExtension() const { return HasMPExtension; }
|
|
bool hasDSP() const { return HasDSP; }
|
|
bool useNaClTrap() const { return UseNaClTrap; }
|
|
bool useSjLjEH() const { return UseSjLjEH; }
|
|
bool hasSB() const { return HasSB; }
|
|
bool genLongCalls() const { return GenLongCalls; }
|
|
bool genExecuteOnly() const { return GenExecuteOnly; }
|
|
bool hasBaseDSP() const {
|
|
if (isThumb())
|
|
return hasDSP();
|
|
else
|
|
return hasV5TEOps();
|
|
}
|
|
|
|
bool hasFP16() const { return HasFP16; }
|
|
bool hasD32() const { return HasD32; }
|
|
bool hasFullFP16() const { return HasFullFP16; }
|
|
bool hasFP16FML() const { return HasFP16FML; }
|
|
bool hasBF16() const { return HasBF16; }
|
|
|
|
bool hasFuseAES() const { return HasFuseAES; }
|
|
bool hasFuseLiterals() const { return HasFuseLiterals; }
|
|
/// Return true if the CPU supports any kind of instruction fusion.
|
|
bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); }
|
|
|
|
bool hasMatMulInt8() const { return HasMatMulInt8; }
|
|
|
|
const Triple &getTargetTriple() const { return TargetTriple; }
|
|
|
|
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
|
|
bool isTargetIOS() const { return TargetTriple.isiOS(); }
|
|
bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); }
|
|
bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); }
|
|
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
|
|
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
|
|
bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
|
|
bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
|
|
|
|
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
|
|
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
|
|
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
|
|
|
|
// ARM EABI is the bare-metal EABI described in ARM ABI documents and
|
|
// can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
|
|
// FIXME: Add a flag for bare-metal for that target and set Triple::EABI
|
|
// even for GNUEABI, so we can make a distinction here and still conform to
|
|
// the EABI on GNU (and Android) mode. This requires change in Clang, too.
|
|
// FIXME: The Darwin exception is temporary, while we move users to
|
|
// "*-*-*-macho" triples as quickly as possible.
|
|
bool isTargetAEABI() const {
|
|
return (TargetTriple.getEnvironment() == Triple::EABI ||
|
|
TargetTriple.getEnvironment() == Triple::EABIHF) &&
|
|
!isTargetDarwin() && !isTargetWindows();
|
|
}
|
|
bool isTargetGNUAEABI() const {
|
|
return (TargetTriple.getEnvironment() == Triple::GNUEABI ||
|
|
TargetTriple.getEnvironment() == Triple::GNUEABIHF) &&
|
|
!isTargetDarwin() && !isTargetWindows();
|
|
}
|
|
bool isTargetMuslAEABI() const {
|
|
return (TargetTriple.getEnvironment() == Triple::MuslEABI ||
|
|
TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
|
|
!isTargetDarwin() && !isTargetWindows();
|
|
}
|
|
|
|
// ARM Targets that support EHABI exception handling standard
|
|
// Darwin uses SjLj. Other targets might need more checks.
|
|
bool isTargetEHABICompatible() const {
|
|
return (TargetTriple.getEnvironment() == Triple::EABI ||
|
|
TargetTriple.getEnvironment() == Triple::GNUEABI ||
|
|
TargetTriple.getEnvironment() == Triple::MuslEABI ||
|
|
TargetTriple.getEnvironment() == Triple::EABIHF ||
|
|
TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
|
|
TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
|
|
isTargetAndroid()) &&
|
|
!isTargetDarwin() && !isTargetWindows();
|
|
}
|
|
|
|
bool isTargetHardFloat() const;
|
|
|
|
bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
|
|
|
|
bool isXRaySupported() const override;
|
|
|
|
bool isAPCS_ABI() const;
|
|
bool isAAPCS_ABI() const;
|
|
bool isAAPCS16_ABI() const;
|
|
|
|
bool isROPI() const;
|
|
bool isRWPI() const;
|
|
|
|
bool useMachineScheduler() const { return UseMISched; }
|
|
bool disablePostRAScheduler() const { return DisablePostRAScheduler; }
|
|
bool useSoftFloat() const { return UseSoftFloat; }
|
|
bool isThumb() const { return InThumbMode; }
|
|
bool hasMinSize() const { return OptMinSize; }
|
|
bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
|
|
bool isThumb2() const { return InThumbMode && HasThumb2; }
|
|
bool hasThumb2() const { return HasThumb2; }
|
|
bool isMClass() const { return ARMProcClass == MClass; }
|
|
bool isRClass() const { return ARMProcClass == RClass; }
|
|
bool isAClass() const { return ARMProcClass == AClass; }
|
|
bool isReadTPHard() const { return ReadTPHard; }
|
|
|
|
bool isR9Reserved() const {
|
|
return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
|
|
}
|
|
|
|
MCPhysReg getFramePointerReg() const {
|
|
if (isTargetDarwin() || (!isTargetWindows() && isThumb()))
|
|
return ARM::R7;
|
|
return ARM::R11;
|
|
}
|
|
|
|
/// Returns true if the frame setup is split into two separate pushes (first
|
|
/// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent
|
|
/// to lr. This is always required on Thumb1-only targets, as the push and
|
|
/// pop instructions can't access the high registers.
|
|
bool splitFramePushPop(const MachineFunction &MF) const {
|
|
return (getFramePointerReg() == ARM::R7 &&
|
|
MF.getTarget().Options.DisableFramePointerElim(MF)) ||
|
|
isThumb1Only();
|
|
}
|
|
|
|
bool useStride4VFPs() const;
|
|
|
|
bool useMovt() const;
|
|
|
|
bool supportsTailCall() const { return SupportsTailCall; }
|
|
|
|
bool allowsUnalignedMem() const { return !StrictAlign; }
|
|
|
|
bool restrictIT() const { return RestrictIT; }
|
|
|
|
const std::string & getCPUString() const { return CPUString; }
|
|
|
|
bool isLittle() const { return IsLittle; }
|
|
|
|
unsigned getMispredictionPenalty() const;
|
|
|
|
/// Returns true if machine scheduler should be enabled.
|
|
bool enableMachineScheduler() const override;
|
|
|
|
/// True for some subtargets at > -O0.
|
|
bool enablePostRAScheduler() const override;
|
|
|
|
/// True for some subtargets at > -O0.
|
|
bool enablePostRAMachineScheduler() const override;
|
|
|
|
/// Check whether this subtarget wants to use subregister liveness.
|
|
bool enableSubRegLiveness() const override;
|
|
|
|
/// Enable use of alias analysis during code generation (during MI
|
|
/// scheduling, DAGCombine, etc.).
|
|
bool useAA() const override { return true; }
|
|
|
|
// enableAtomicExpand- True if we need to expand our atomics.
|
|
bool enableAtomicExpand() const override;
|
|
|
|
/// getInstrItins - Return the instruction itineraries based on subtarget
|
|
/// selection.
|
|
const InstrItineraryData *getInstrItineraryData() const override {
|
|
return &InstrItins;
|
|
}
|
|
|
|
/// getStackAlignment - Returns the minimum alignment known to hold of the
|
|
/// stack frame on entry to the function and which must be maintained by every
|
|
/// function for this subtarget.
|
|
Align getStackAlignment() const { return stackAlignment; }
|
|
|
|
unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; }
|
|
|
|
unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; }
|
|
|
|
ARMLdStMultipleTiming getLdStMultipleTiming() const {
|
|
return LdStMultipleTiming;
|
|
}
|
|
|
|
int getPreISelOperandLatencyAdjustment() const {
|
|
return PreISelOperandLatencyAdjustment;
|
|
}
|
|
|
|
/// True if the GV will be accessed via an indirect symbol.
|
|
bool isGVIndirectSymbol(const GlobalValue *GV) const;
|
|
|
|
/// Returns the constant pool modifier needed to access the GV.
|
|
bool isGVInGOT(const GlobalValue *GV) const;
|
|
|
|
/// True if fast-isel is used.
|
|
bool useFastISel() const;
|
|
|
|
/// Returns the correct return opcode for the current feature set.
|
|
/// Use BX if available to allow mixing thumb/arm code, but fall back
|
|
/// to plain mov pc,lr on ARMv4.
|
|
unsigned getReturnOpcode() const {
|
|
if (isThumb())
|
|
return ARM::tBX_RET;
|
|
if (hasV4TOps())
|
|
return ARM::BX_RET;
|
|
return ARM::MOVPCLR;
|
|
}
|
|
|
|
/// Allow movt+movw for PIC global address calculation.
|
|
/// ELF does not have GOT relocations for movt+movw.
|
|
/// ROPI does not use GOT.
|
|
bool allowPositionIndependentMovt() const {
|
|
return isROPI() || !isTargetELF();
|
|
}
|
|
|
|
unsigned getPrefLoopLogAlignment() const { return PrefLoopLogAlignment; }
|
|
|
|
unsigned
|
|
getMVEVectorCostFactor(TargetTransformInfo::TargetCostKind CostKind) const {
|
|
if (CostKind == TargetTransformInfo::TCK_CodeSize)
|
|
return 1;
|
|
return MVEVectorCostFactor;
|
|
}
|
|
|
|
bool ignoreCSRForAllocationOrder(const MachineFunction &MF,
|
|
unsigned PhysReg) const override;
|
|
unsigned getGPRAllocationOrder(const MachineFunction &MF) const;
|
|
|
|
bool hardenSlsRetBr() const { return HardenSlsRetBr; }
|
|
bool hardenSlsBlr() const { return HardenSlsBlr; }
|
|
bool hardenSlsNoComdat() const { return HardenSlsNoComdat; }
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
|