1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 11:33:24 +02:00
llvm-mirror/lib/Target/ARM/ARMTargetTransformInfo.cpp
Tim Northover 4396c4b8cf ARM: don't try to hoist constant RHS out of a division.
Divisions by a constant can be converted into multiplies which are usually
cheaper, but this isn't possible if the constant gets separated (particularly
in loops). Fix this by telling ConstantHoisting that the immediate in a DIV is
cheap.

I considered making the check generic, but neither AArch64 (strangely) nor x86
showed any benefit on the tests I had.

llvm-svn: 266464
2016-04-15 18:17:18 +00:00

511 lines
21 KiB
C++

//===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ARMTargetTransformInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "armtti"
int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
unsigned Bits = Ty->getPrimitiveSizeInBits();
if (Bits == 0 || Bits > 64)
return 4;
int64_t SImmVal = Imm.getSExtValue();
uint64_t ZImmVal = Imm.getZExtValue();
if (!ST->isThumb()) {
if ((SImmVal >= 0 && SImmVal < 65536) ||
(ARM_AM::getSOImmVal(ZImmVal) != -1) ||
(ARM_AM::getSOImmVal(~ZImmVal) != -1))
return 1;
return ST->hasV6T2Ops() ? 2 : 3;
}
if (ST->isThumb2()) {
if ((SImmVal >= 0 && SImmVal < 65536) ||
(ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
(ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
return 1;
return ST->hasV6T2Ops() ? 2 : 3;
}
// Thumb1.
if (SImmVal >= 0 && SImmVal < 256)
return 1;
if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
return 2;
// Load from constantpool.
return 3;
}
int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty) {
// Division by a constant can be turned into multiplication, but only if we
// know it's constant. So it's not so much that the immediate is cheap (it's
// not), but that the alternative is worse.
// FIXME: this is probably unneeded with GlobalISel.
if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
Idx == 1)
return 0;
return getIntImmCost(Imm, Ty);
}
int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Single to/from double precision conversions.
static const CostTblEntry NEONFltDblTbl[] = {
// Vector fptrunc/fpext conversions.
{ ISD::FP_ROUND, MVT::v2f64, 2 },
{ ISD::FP_EXTEND, MVT::v2f32, 2 },
{ ISD::FP_EXTEND, MVT::v4f32, 4 }
};
if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
ISD == ISD::FP_EXTEND)) {
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
return LT.first * Entry->Cost;
}
EVT SrcTy = TLI->getValueType(DL, Src);
EVT DstTy = TLI->getValueType(DL, Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple())
return BaseT::getCastInstrCost(Opcode, Dst, Src);
// Some arithmetic, load and store operations have specific instructions
// to cast up/down their types automatically at no extra cost.
// TODO: Get these tables to know at least what the related operations are.
static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
// The number of vmovl instructions for the extension.
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
// Operations that we legalize using splitting.
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
// Vector float <-> i32 conversions.
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
// Vector double <-> i32 conversions.
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
};
if (SrcTy.isVector() && ST->hasNEON()) {
if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
DstTy.getSimpleVT(),
SrcTy.getSimpleVT()))
return Entry->Cost;
}
// Scalar float to integer conversions.
static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
{ ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
{ ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
{ ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
{ ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
{ ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
{ ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
{ ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
{ ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
{ ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
{ ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
{ ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
{ ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
};
if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
DstTy.getSimpleVT(),
SrcTy.getSimpleVT()))
return Entry->Cost;
}
// Scalar integer to float conversions.
static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
{ ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
{ ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
{ ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
};
if (SrcTy.isInteger() && ST->hasNEON()) {
if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
ISD, DstTy.getSimpleVT(),
SrcTy.getSimpleVT()))
return Entry->Cost;
}
// Scalar integer conversion costs.
static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
// i16 -> i64 requires two dependent operations.
{ ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
// Truncates on i64 are assumed to be free.
{ ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
{ ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
{ ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
{ ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
};
if (SrcTy.isInteger()) {
if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
DstTy.getSimpleVT(),
SrcTy.getSimpleVT()))
return Entry->Cost;
}
return BaseT::getCastInstrCost(Opcode, Dst, Src);
}
int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
unsigned Index) {
// Penalize inserting into an D-subregister. We end up with a three times
// lower estimated throughput on swift.
if (ST->isSwift() &&
Opcode == Instruction::InsertElement &&
ValTy->isVectorTy() &&
ValTy->getScalarSizeInBits() <= 32)
return 3;
if ((Opcode == Instruction::InsertElement ||
Opcode == Instruction::ExtractElement)) {
// Cross-class copies are expensive on many microarchitectures,
// so assume they are expensive by default.
if (ValTy->getVectorElementType()->isIntegerTy())
return 3;
// Even if it's not a cross class copy, this likely leads to mixing
// of NEON and VFP code and should be therefore penalized.
if (ValTy->isVectorTy() &&
ValTy->getScalarSizeInBits() <= 32)
return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
}
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}
int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// On NEON a a vector select gets lowered to vbsl.
if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
// Lowering of some vector selects is currently far from perfect.
static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
};
EVT SelCondTy = TLI->getValueType(DL, CondTy);
EVT SelValTy = TLI->getValueType(DL, ValTy);
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
SelCondTy.getSimpleVT(),
SelValTy.getSimpleVT()))
return Entry->Cost;
}
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
return LT.first;
}
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
// Address computations in vectorized code with non-consecutive addresses will
// likely result in more instructions compared to scalar code where the
// computation can more often be merged into the index mode. The resulting
// extra micro-ops can significantly decrease throughput.
unsigned NumVectorInstToHideOverhead = 10;
if (Ty->isVectorTy() && IsComplex)
return NumVectorInstToHideOverhead;
// In many cases the address computation is not merged into the instruction
// addressing mode.
return 1;
}
int ARMTTIImpl::getFPOpCost(Type *Ty) {
// Use similar logic that's in ARMISelLowering:
// Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access
// to VFP.
if (ST->hasVFP2() && !ST->isThumb1Only()) {
if (Ty->isFloatTy()) {
return TargetTransformInfo::TCC_Basic;
}
if (Ty->isDoubleTy()) {
return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive :
TargetTransformInfo::TCC_Basic;
}
}
return TargetTransformInfo::TCC_Expensive;
}
int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) {
// We only handle costs of reverse and alternate shuffles for now.
if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
if (Kind == TTI::SK_Reverse) {
static const CostTblEntry NEONShuffleTbl[] = {
// Reverse shuffle cost one instruction if we are shuffling within a
// double word (vrev) or two if we shuffle a quad word (vrev, vext).
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
LT.second))
return LT.first * Entry->Cost;
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}
if (Kind == TTI::SK_Alternate) {
static const CostTblEntry NEONAltShuffleTbl[] = {
// Alt shuffle cost table for ARM. Cost is the number of instructions
// required to create the shuffled vector.
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
{ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl,
ISD::VECTOR_SHUFFLE, LT.second))
return LT.first * Entry->Cost;
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}
int ARMTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo) {
int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
const unsigned FunctionCallDivCost = 20;
const unsigned ReciprocalDivCost = 10;
static const CostTblEntry CostTbl[] = {
// Division.
// These costs are somewhat random. Choose a cost of 20 to indicate that
// vectorizing devision (added function call) is going to be very expensive.
// Double registers types.
{ ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
{ ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
{ ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
{ ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
{ ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
{ ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
{ ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
{ ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
{ ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
{ ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
{ ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
// Quad register types.
{ ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
{ ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
{ ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
{ ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
{ ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
{ ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
{ ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
{ ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
{ ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
// Multiplication.
};
if (ST->hasNEON())
if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
return LT.first * Entry->Cost;
int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
Opd1PropInfo, Opd2PropInfo);
// This is somewhat of a hack. The problem that we are facing is that SROA
// creates a sequence of shift, and, or instructions to construct values.
// These sequences are recognized by the ISel and have zero-cost. Not so for
// the vectorized code. Because we have support for v2i64 but not i64 those
// sequences look particularly beneficial to vectorize.
// To work around this we increase the cost of v2i64 operations to make them
// seem less beneficial.
if (LT.second == MVT::v2i64 &&
Op2Info == TargetTransformInfo::OK_UniformConstantValue)
Cost += 4;
return Cost;
}
int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) {
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
if (Src->isVectorTy() && Alignment != 16 &&
Src->getVectorElementType()->isDoubleTy()) {
// Unaligned loads/stores are extremely inefficient.
// We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
return LT.first * 4;
}
return LT.first;
}
int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
unsigned Factor,
ArrayRef<unsigned> Indices,
unsigned Alignment,
unsigned AddressSpace) {
assert(Factor >= 2 && "Invalid interleave factor");
assert(isa<VectorType>(VecTy) && "Expect a vector type");
// vldN/vstN doesn't support vector types of i64/f64 element.
bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
unsigned NumElts = VecTy->getVectorNumElements();
Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
// vldN/vstN only support legal vector types of size 64 or 128 in bits.
if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
return Factor;
}
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace);
}