1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/lib/CodeGen/ExecutionDomainFix.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

473 lines
15 KiB
C++

//===- ExecutionDomainFix.cpp - Fix execution domain issues ----*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
using namespace llvm;
#define DEBUG_TYPE "execution-deps-fix"
iterator_range<SmallVectorImpl<int>::const_iterator>
ExecutionDomainFix::regIndices(unsigned Reg) const {
assert(Reg < AliasMap.size() && "Invalid register");
const auto &Entry = AliasMap[Reg];
return make_range(Entry.begin(), Entry.end());
}
DomainValue *ExecutionDomainFix::alloc(int domain) {
DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue
: Avail.pop_back_val();
if (domain >= 0)
dv->addDomain(domain);
assert(dv->Refs == 0 && "Reference count wasn't cleared");
assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
return dv;
}
void ExecutionDomainFix::release(DomainValue *DV) {
while (DV) {
assert(DV->Refs && "Bad DomainValue");
if (--DV->Refs)
return;
// There are no more DV references. Collapse any contained instructions.
if (DV->AvailableDomains && !DV->isCollapsed())
collapse(DV, DV->getFirstDomain());
DomainValue *Next = DV->Next;
DV->clear();
Avail.push_back(DV);
// Also release the next DomainValue in the chain.
DV = Next;
}
}
DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) {
DomainValue *DV = DVRef;
if (!DV || !DV->Next)
return DV;
// DV has a chain. Find the end.
do
DV = DV->Next;
while (DV->Next);
// Update DVRef to point to DV.
retain(DV);
release(DVRef);
DVRef = DV;
return DV;
}
void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) {
assert(unsigned(rx) < NumRegs && "Invalid index");
assert(!LiveRegs.empty() && "Must enter basic block first.");
if (LiveRegs[rx] == dv)
return;
if (LiveRegs[rx])
release(LiveRegs[rx]);
LiveRegs[rx] = retain(dv);
}
void ExecutionDomainFix::kill(int rx) {
assert(unsigned(rx) < NumRegs && "Invalid index");
assert(!LiveRegs.empty() && "Must enter basic block first.");
if (!LiveRegs[rx])
return;
release(LiveRegs[rx]);
LiveRegs[rx] = nullptr;
}
void ExecutionDomainFix::force(int rx, unsigned domain) {
assert(unsigned(rx) < NumRegs && "Invalid index");
assert(!LiveRegs.empty() && "Must enter basic block first.");
if (DomainValue *dv = LiveRegs[rx]) {
if (dv->isCollapsed())
dv->addDomain(domain);
else if (dv->hasDomain(domain))
collapse(dv, domain);
else {
// This is an incompatible open DomainValue. Collapse it to whatever and
// force the new value into domain. This costs a domain crossing.
collapse(dv, dv->getFirstDomain());
assert(LiveRegs[rx] && "Not live after collapse?");
LiveRegs[rx]->addDomain(domain);
}
} else {
// Set up basic collapsed DomainValue.
setLiveReg(rx, alloc(domain));
}
}
void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) {
assert(dv->hasDomain(domain) && "Cannot collapse");
// Collapse all the instructions.
while (!dv->Instrs.empty())
TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
dv->setSingleDomain(domain);
// If there are multiple users, give them new, unique DomainValues.
if (!LiveRegs.empty() && dv->Refs > 1)
for (unsigned rx = 0; rx != NumRegs; ++rx)
if (LiveRegs[rx] == dv)
setLiveReg(rx, alloc(domain));
}
bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) {
assert(!A->isCollapsed() && "Cannot merge into collapsed");
assert(!B->isCollapsed() && "Cannot merge from collapsed");
if (A == B)
return true;
// Restrict to the domains that A and B have in common.
unsigned common = A->getCommonDomains(B->AvailableDomains);
if (!common)
return false;
A->AvailableDomains = common;
A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
// Clear the old DomainValue so we won't try to swizzle instructions twice.
B->clear();
// All uses of B are referred to A.
B->Next = retain(A);
for (unsigned rx = 0; rx != NumRegs; ++rx) {
assert(!LiveRegs.empty() && "no space allocated for live registers");
if (LiveRegs[rx] == B)
setLiveReg(rx, A);
}
return true;
}
void ExecutionDomainFix::enterBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
MachineBasicBlock *MBB = TraversedMBB.MBB;
// Set up LiveRegs to represent registers entering MBB.
// Set default domain values to 'no domain' (nullptr)
if (LiveRegs.empty())
LiveRegs.assign(NumRegs, nullptr);
// This is the entry block.
if (MBB->pred_empty()) {
LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
return;
}
// Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming is null if this is a backedge from a BB
// we haven't processed yet
if (Incoming.empty())
continue;
for (unsigned rx = 0; rx != NumRegs; ++rx) {
DomainValue *pdv = resolve(Incoming[rx]);
if (!pdv)
continue;
if (!LiveRegs[rx]) {
setLiveReg(rx, pdv);
continue;
}
// We have a live DomainValue from more than one predecessor.
if (LiveRegs[rx]->isCollapsed()) {
// We are already collapsed, but predecessor is not. Force it.
unsigned Domain = LiveRegs[rx]->getFirstDomain();
if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
collapse(pdv, Domain);
continue;
}
// Currently open, merge in predecessor.
if (!pdv->isCollapsed())
merge(LiveRegs[rx], pdv);
else
force(rx, pdv->getFirstDomain());
}
}
LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
<< (!TraversedMBB.IsDone ? ": incomplete\n"
: ": all preds known\n"));
}
void ExecutionDomainFix::leaveBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
assert(!LiveRegs.empty() && "Must enter basic block first.");
unsigned MBBNumber = TraversedMBB.MBB->getNumber();
assert(MBBNumber < MBBOutRegsInfos.size() &&
"Unexpected basic block number.");
// Save register clearances at end of MBB - used by enterBasicBlock().
for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) {
release(OldLiveReg);
}
MBBOutRegsInfos[MBBNumber] = LiveRegs;
LiveRegs.clear();
}
bool ExecutionDomainFix::visitInstr(MachineInstr *MI) {
// Update instructions with explicit execution domains.
std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
if (DomP.first) {
if (DomP.second)
visitSoftInstr(MI, DomP.second);
else
visitHardInstr(MI, DomP.first);
}
return !DomP.first;
}
void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) {
assert(!MI->isDebugInstr() && "Won't process debug values");
const MCInstrDesc &MCID = MI->getDesc();
for (unsigned i = 0,
e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isUse())
continue;
for (int rx : regIndices(MO.getReg())) {
// This instruction explicitly defines rx.
LLVM_DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI);
// Kill off domains redefined by generic instructions.
if (Kill)
kill(rx);
}
}
}
void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
// Collapse all uses.
for (unsigned i = mi->getDesc().getNumDefs(),
e = mi->getDesc().getNumOperands();
i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg())
continue;
for (int rx : regIndices(mo.getReg())) {
force(rx, domain);
}
}
// Kill all defs and force them.
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg())
continue;
for (int rx : regIndices(mo.getReg())) {
kill(rx);
force(rx, domain);
}
}
}
void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
// Bitmask of available domains for this instruction after taking collapsed
// operands into account.
unsigned available = mask;
// Scan the explicit use operands for incoming domains.
SmallVector<int, 4> used;
if (!LiveRegs.empty())
for (unsigned i = mi->getDesc().getNumDefs(),
e = mi->getDesc().getNumOperands();
i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg())
continue;
for (int rx : regIndices(mo.getReg())) {
DomainValue *dv = LiveRegs[rx];
if (dv == nullptr)
continue;
// Bitmask of domains that dv and available have in common.
unsigned common = dv->getCommonDomains(available);
// Is it possible to use this collapsed register for free?
if (dv->isCollapsed()) {
// Restrict available domains to the ones in common with the operand.
// If there are no common domains, we must pay the cross-domain
// penalty for this operand.
if (common)
available = common;
} else if (common)
// Open DomainValue is compatible, save it for merging.
used.push_back(rx);
else
// Open DomainValue is not compatible with instruction. It is useless
// now.
kill(rx);
}
}
// If the collapsed operands force a single domain, propagate the collapse.
if (isPowerOf2_32(available)) {
unsigned domain = countTrailingZeros(available);
TII->setExecutionDomain(*mi, domain);
visitHardInstr(mi, domain);
return;
}
// Kill off any remaining uses that don't match available, and build a list of
// incoming DomainValues that we want to merge.
SmallVector<int, 4> Regs;
for (int rx : used) {
assert(!LiveRegs.empty() && "no space allocated for live registers");
DomainValue *&LR = LiveRegs[rx];
// This useless DomainValue could have been missed above.
if (!LR->getCommonDomains(available)) {
kill(rx);
continue;
}
// Sorted insertion.
// Enables giving priority to the latest domains during merging.
auto I = std::upper_bound(
Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) {
return RDA->getReachingDef(mi, RC->getRegister(LHS)) <
RDA->getReachingDef(mi, RC->getRegister(RHS));
});
Regs.insert(I, rx);
}
// doms are now sorted in order of appearance. Try to merge them all, giving
// priority to the latest ones.
DomainValue *dv = nullptr;
while (!Regs.empty()) {
if (!dv) {
dv = LiveRegs[Regs.pop_back_val()];
// Force the first dv to match the current instruction.
dv->AvailableDomains = dv->getCommonDomains(available);
assert(dv->AvailableDomains && "Domain should have been filtered");
continue;
}
DomainValue *Latest = LiveRegs[Regs.pop_back_val()];
// Skip already merged values.
if (Latest == dv || Latest->Next)
continue;
if (merge(dv, Latest))
continue;
// If latest didn't merge, it is useless now. Kill all registers using it.
for (int i : used) {
assert(!LiveRegs.empty() && "no space allocated for live registers");
if (LiveRegs[i] == Latest)
kill(i);
}
}
// dv is the DomainValue we are going to use for this instruction.
if (!dv) {
dv = alloc();
dv->AvailableDomains = available;
}
dv->Instrs.push_back(mi);
// Finally set all defs and non-collapsed uses to dv. We must iterate through
// all the operators, including imp-def ones.
for (MachineOperand &mo : mi->operands()) {
if (!mo.isReg())
continue;
for (int rx : regIndices(mo.getReg())) {
if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) {
kill(rx);
setLiveReg(rx, dv);
}
}
}
}
void ExecutionDomainFix::processBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
enterBasicBlock(TraversedMBB);
// If this block is not done, it makes little sense to make any decisions
// based on clearance information. We need to make a second pass anyway,
// and by then we'll have better information, so we can avoid doing the work
// to try and break dependencies now.
for (MachineInstr &MI : *TraversedMBB.MBB) {
if (!MI.isDebugInstr()) {
bool Kill = false;
if (TraversedMBB.PrimaryPass)
Kill = visitInstr(&MI);
processDefs(&MI, Kill);
}
}
leaveBasicBlock(TraversedMBB);
}
bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) {
if (skipFunction(mf.getFunction()))
return false;
MF = &mf;
TII = MF->getSubtarget().getInstrInfo();
TRI = MF->getSubtarget().getRegisterInfo();
LiveRegs.clear();
assert(NumRegs == RC->getNumRegs() && "Bad regclass");
LLVM_DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: "
<< TRI->getRegClassName(RC) << " **********\n");
// If no relevant registers are used in the function, we can skip it
// completely.
bool anyregs = false;
const MachineRegisterInfo &MRI = mf.getRegInfo();
for (unsigned Reg : *RC) {
if (MRI.isPhysRegUsed(Reg)) {
anyregs = true;
break;
}
}
if (!anyregs)
return false;
RDA = &getAnalysis<ReachingDefAnalysis>();
// Initialize the AliasMap on the first use.
if (AliasMap.empty()) {
// Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
// therefore the LiveRegs array.
AliasMap.resize(TRI->getNumRegs());
for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid();
++AI)
AliasMap[*AI].push_back(i);
}
// Initialize the MBBOutRegsInfos
MBBOutRegsInfos.resize(mf.getNumBlockIDs());
// Traverse the basic blocks.
LoopTraversal Traversal;
LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
processBasicBlock(TraversedMBB);
}
for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) {
for (DomainValue *OutLiveReg : OutLiveRegs) {
if (OutLiveReg)
release(OutLiveReg);
}
}
MBBOutRegsInfos.clear();
Avail.clear();
Allocator.DestroyAll();
return false;
}