1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/Target/RISCV/RISCVInstrInfoM.td
Kai Wang c7edd72ce9 [RISCV] Scheduler description for the Rocket core
Pipeline scheduler model for the RISC-V Rocket micro-architecture using the
MIScheduler interface.  Support for both 32 and 64-bit Rocket cores is
implemented.

Differential revision: https://reviews.llvm.org/D68685
2020-01-23 19:36:47 -06:00

98 lines
4.2 KiB
TableGen

//===-- RISCVInstrInfoM.td - RISC-V 'M' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'M', Integer
// Multiplication and Division instruction set extension.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
def riscv_divw : SDNode<"RISCVISD::DIVW", SDTIntBinOp>;
def riscv_divuw : SDNode<"RISCVISD::DIVUW", SDTIntBinOp>;
def riscv_remuw : SDNode<"RISCVISD::REMUW", SDTIntBinOp>;
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtM] in {
def MUL : ALU_rr<0b0000001, 0b000, "mul">,
Sched<[WriteIMul, ReadIMul, ReadIMul]>;
def MULH : ALU_rr<0b0000001, 0b001, "mulh">,
Sched<[WriteIMul, ReadIMul, ReadIMul]>;
def MULHSU : ALU_rr<0b0000001, 0b010, "mulhsu">,
Sched<[WriteIMul, ReadIMul, ReadIMul]>;
def MULHU : ALU_rr<0b0000001, 0b011, "mulhu">,
Sched<[WriteIMul, ReadIMul, ReadIMul]>;
def DIV : ALU_rr<0b0000001, 0b100, "div">,
Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
def DIVU : ALU_rr<0b0000001, 0b101, "divu">,
Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
def REM : ALU_rr<0b0000001, 0b110, "rem">,
Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
def REMU : ALU_rr<0b0000001, 0b111, "remu">,
Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>;
} // Predicates = [HasStdExtM]
let Predicates = [HasStdExtM, IsRV64] in {
def MULW : ALUW_rr<0b0000001, 0b000, "mulw">,
Sched<[WriteIMul32, ReadIMul32, ReadIMul32]>;
def DIVW : ALUW_rr<0b0000001, 0b100, "divw">,
Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
def DIVUW : ALUW_rr<0b0000001, 0b101, "divuw">,
Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
def REMW : ALUW_rr<0b0000001, 0b110, "remw">,
Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
def REMUW : ALUW_rr<0b0000001, 0b111, "remuw">,
Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>;
} // Predicates = [HasStdExtM, IsRV64]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtM] in {
def : PatGprGpr<mul, MUL>;
def : PatGprGpr<mulhs, MULH>;
def : PatGprGpr<mulhu, MULHU>;
// No ISDOpcode for mulhsu
def : PatGprGpr<sdiv, DIV>;
def : PatGprGpr<udiv, DIVU>;
def : PatGprGpr<srem, REM>;
def : PatGprGpr<urem, REMU>;
} // Predicates = [HasStdExtM]
let Predicates = [HasStdExtM, IsRV64] in {
def : Pat<(sext_inreg (mul GPR:$rs1, GPR:$rs2), i32),
(MULW GPR:$rs1, GPR:$rs2)>;
def : PatGprGpr<riscv_divw, DIVW>;
def : PatGprGpr<riscv_divuw, DIVUW>;
def : PatGprGpr<riscv_remuw, REMUW>;
// Handle the specific cases where using DIVU/REMU would be correct and result
// in fewer instructions than emitting DIVUW/REMUW then zero-extending the
// result.
def : Pat<(zexti32 (riscv_divuw (zexti32 GPR:$rs1), (zexti32 GPR:$rs2))),
(DIVU GPR:$rs1, GPR:$rs2)>;
def : Pat<(zexti32 (riscv_remuw (zexti32 GPR:$rs1), (zexti32 GPR:$rs2))),
(REMU GPR:$rs1, GPR:$rs2)>;
// Although the sexti32 operands may not have originated from an i32 srem,
// this pattern is safe as it is impossible for two sign extended inputs to
// produce a result where res[63:32]=0 and res[31]=1.
def : Pat<(srem (sexti32 GPR:$rs1), (sexti32 GPR:$rs2)),
(REMW GPR:$rs1, GPR:$rs2)>;
def : Pat<(sext_inreg (srem (sexti32 GPR:$rs1),
(sexti32 GPR:$rs2)), i32),
(REMW GPR:$rs1, GPR:$rs2)>;
} // Predicates = [HasStdExtM, IsRV64]