1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/Target/X86/X86FixupLEAs.cpp
Derek Schuff e26993d076 Add MachineFunctionProperty checks for AllVRegsAllocated for target passes
Summary:
This adds the same checks that were added in r264593 to all
target-specific passes that run after register allocation.

Reviewers: qcolombet

Subscribers: jyknight, dsanders, llvm-commits

Differential Revision: http://reviews.llvm.org/D18525

llvm-svn: 265313
2016-04-04 17:09:25 +00:00

417 lines
14 KiB
C++

//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass that finds instructions that can be
// re-written as LEA instructions in order to reduce pipeline delays.
// When optimizing for size it replaces suitable LEAs with INC or DEC.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
#define DEBUG_TYPE "x86-fixup-LEAs"
STATISTIC(NumLEAs, "Number of LEA instructions created");
namespace {
class FixupLEAPass : public MachineFunctionPass {
enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
static char ID;
/// \brief Loop over all of the instructions in the basic block
/// replacing applicable instructions with LEA instructions,
/// where appropriate.
bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
const char *getPassName() const override { return "X86 LEA Fixup"; }
/// \brief Given a machine register, look for the instruction
/// which writes it in the current basic block. If found,
/// try to replace it with an equivalent LEA instruction.
/// If replacement succeeds, then also process the newly created
/// instruction.
void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// \brief Given a memory access or LEA instruction
/// whose address mode uses a base and/or index register, look for
/// an opportunity to replace the instruction which sets the base or index
/// register with an equivalent LEA instruction.
void processInstruction(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// \brief Given a LEA instruction which is unprofitable
/// on Silvermont try to replace it with an equivalent ADD instruction
void processInstructionForSLM(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// \brief Look for LEAs that add 1 to reg or subtract 1 from reg
/// and convert them to INC or DEC respectively.
bool fixupIncDec(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) const;
/// \brief Determine if an instruction references a machine register
/// and, if so, whether it reads or writes the register.
RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
/// \brief Step backwards through a basic block, looking
/// for an instruction which writes a register within
/// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// \brief if an instruction can be converted to an
/// equivalent LEA, insert the new instruction into the basic block
/// and return a pointer to it. Otherwise, return zero.
MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI) const;
public:
FixupLEAPass() : MachineFunctionPass(ID) {}
/// \brief Loop over all of the basic blocks,
/// replacing instructions by equivalent LEA instructions
/// if needed and when possible.
bool runOnMachineFunction(MachineFunction &MF) override;
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::AllVRegsAllocated);
}
private:
MachineFunction *MF;
const X86InstrInfo *TII; // Machine instruction info.
bool OptIncDec;
bool OptLEA;
};
char FixupLEAPass::ID = 0;
}
MachineInstr *
FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI) const {
MachineInstr *MI = MBBI;
MachineInstr *NewMI;
switch (MI->getOpcode()) {
case X86::MOV32rr:
case X86::MOV64rr: {
const MachineOperand &Src = MI->getOperand(1);
const MachineOperand &Dest = MI->getOperand(0);
NewMI = BuildMI(*MF, MI->getDebugLoc(),
TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
: X86::LEA64r))
.addOperand(Dest)
.addOperand(Src)
.addImm(1)
.addReg(0)
.addImm(0)
.addReg(0);
MFI->insert(MBBI, NewMI); // Insert the new inst
return NewMI;
}
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
if (!MI->getOperand(2).isImm()) {
// convertToThreeAddress will call getImm()
// which requires isImm() to be true
return nullptr;
}
break;
case X86::ADD16rr:
case X86::ADD16rr_DB:
if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
// if src1 != src2, then convertToThreeAddress will
// need to create a Virtual register, which we cannot do
// after register allocation.
return nullptr;
}
}
return TII->convertToThreeAddress(MFI, MBBI, nullptr);
}
FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
MF = &Func;
const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
OptIncDec = !ST.slowIncDec() || Func.getFunction()->optForMinSize();
OptLEA = ST.LEAusesAG() || ST.slowLEA();
if (!OptLEA && !OptIncDec)
return false;
TII = ST.getInstrInfo();
DEBUG(dbgs() << "Start X86FixupLEAs\n";);
// Process all basic blocks.
for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
processBasicBlock(Func, I);
DEBUG(dbgs() << "End X86FixupLEAs\n";);
return true;
}
FixupLEAPass::RegUsageState
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
RegUsageState RegUsage = RU_NotUsed;
MachineInstr *MI = I;
for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
MachineOperand &opnd = MI->getOperand(i);
if (opnd.isReg() && opnd.getReg() == p.getReg()) {
if (opnd.isDef())
return RU_Write;
RegUsage = RU_Read;
}
}
return RegUsage;
}
/// getPreviousInstr - Given a reference to an instruction in a basic
/// block, return a reference to the previous instruction in the block,
/// wrapping around to the last instruction of the block if the block
/// branches to itself.
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
if (I == MFI->begin()) {
if (MFI->isPredecessor(&*MFI)) {
I = --MFI->end();
return true;
} else
return false;
}
--I;
return true;
}
MachineBasicBlock::iterator
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
int InstrDistance = 1;
MachineBasicBlock::iterator CurInst;
static const int INSTR_DISTANCE_THRESHOLD = 5;
CurInst = I;
bool Found;
Found = getPreviousInstr(CurInst, MFI);
while (Found && I != CurInst) {
if (CurInst->isCall() || CurInst->isInlineAsm())
break;
if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
break; // too far back to make a difference
if (usesRegister(p, CurInst) == RU_Write) {
return CurInst;
}
InstrDistance += TII->getInstrLatency(
MF->getSubtarget().getInstrItineraryData(), CurInst);
Found = getPreviousInstr(CurInst, MFI);
}
return nullptr;
}
static inline bool isLEA(const int opcode) {
return opcode == X86::LEA16r || opcode == X86::LEA32r ||
opcode == X86::LEA64r || opcode == X86::LEA64_32r;
}
/// isLEASimpleIncOrDec - Does this LEA have one these forms:
/// lea %reg, 1(%reg)
/// lea %reg, -1(%reg)
static inline bool isLEASimpleIncOrDec(MachineInstr *LEA) {
unsigned SrcReg = LEA->getOperand(1 + X86::AddrBaseReg).getReg();
unsigned DstReg = LEA->getOperand(0).getReg();
unsigned AddrDispOp = 1 + X86::AddrDisp;
return SrcReg == DstReg &&
LEA->getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
LEA->getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
LEA->getOperand(AddrDispOp).isImm() &&
(LEA->getOperand(AddrDispOp).getImm() == 1 ||
LEA->getOperand(AddrDispOp).getImm() == -1);
}
bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) const {
MachineInstr *MI = I;
int Opcode = MI->getOpcode();
if (!isLEA(Opcode))
return false;
if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) {
int NewOpcode;
bool isINC = MI->getOperand(4).getImm() == 1;
switch (Opcode) {
case X86::LEA16r:
NewOpcode = isINC ? X86::INC16r : X86::DEC16r;
break;
case X86::LEA32r:
case X86::LEA64_32r:
NewOpcode = isINC ? X86::INC32r : X86::DEC32r;
break;
case X86::LEA64r:
NewOpcode = isINC ? X86::INC64r : X86::DEC64r;
break;
}
MachineInstr *NewMI =
BuildMI(*MFI, I, MI->getDebugLoc(), TII->get(NewOpcode))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1));
MFI->erase(I);
I = static_cast<MachineBasicBlock::iterator>(NewMI);
return true;
}
return false;
}
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
// Process a load, store, or LEA instruction.
MachineInstr *MI = I;
int opcode = MI->getOpcode();
const MCInstrDesc &Desc = MI->getDesc();
int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
if (AddrOffset >= 0) {
AddrOffset += X86II::getOperandBias(Desc);
MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
if (p.isReg() && p.getReg() != X86::ESP) {
seekLEAFixup(p, I, MFI);
}
MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
if (q.isReg() && q.getReg() != X86::ESP) {
seekLEAFixup(q, I, MFI);
}
}
}
void FixupLEAPass::seekLEAFixup(MachineOperand &p,
MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
if (MBI) {
MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
if (NewMI) {
++NumLEAs;
DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
// now to replace with an equivalent LEA...
DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
MFI->erase(MBI);
MachineBasicBlock::iterator J =
static_cast<MachineBasicBlock::iterator>(NewMI);
processInstruction(J, MFI);
}
}
}
void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
MachineInstr *MI = I;
const int opcode = MI->getOpcode();
if (!isLEA(opcode))
return;
if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
!TII->isSafeToClobberEFLAGS(*MFI, I))
return;
const unsigned DstR = MI->getOperand(0).getReg();
const unsigned SrcR1 = MI->getOperand(1).getReg();
const unsigned SrcR2 = MI->getOperand(3).getReg();
if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
return;
if (MI->getOperand(2).getImm() > 1)
return;
int addrr_opcode, addri_opcode;
switch (opcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA16r:
addrr_opcode = X86::ADD16rr;
addri_opcode = X86::ADD16ri;
break;
case X86::LEA32r:
addrr_opcode = X86::ADD32rr;
addri_opcode = X86::ADD32ri;
break;
case X86::LEA64_32r:
case X86::LEA64r:
addrr_opcode = X86::ADD64rr;
addri_opcode = X86::ADD64ri32;
break;
}
DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
DEBUG(dbgs() << "FixLEA: Replaced by: ";);
MachineInstr *NewMI = nullptr;
const MachineOperand &Dst = MI->getOperand(0);
// Make ADD instruction for two registers writing to LEA's destination
if (SrcR1 != 0 && SrcR2 != 0) {
const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
.addOperand(Dst)
.addOperand(Src1)
.addOperand(Src2);
MFI->insert(I, NewMI);
DEBUG(NewMI->dump(););
}
// Make ADD instruction for immediate
if (MI->getOperand(4).getImm() != 0) {
const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
.addOperand(Dst)
.addOperand(SrcR)
.addImm(MI->getOperand(4).getImm());
MFI->insert(I, NewMI);
DEBUG(NewMI->dump(););
}
if (NewMI) {
MFI->erase(I);
I = static_cast<MachineBasicBlock::iterator>(NewMI);
}
}
bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
MachineFunction::iterator MFI) {
for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
if (OptIncDec)
if (fixupIncDec(I, MFI))
continue;
if (OptLEA) {
if (MF.getSubtarget<X86Subtarget>().isSLM())
processInstructionForSLM(I, MFI);
else
processInstruction(I, MFI);
}
}
return false;
}