mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
54bfbca17f
llvm-svn: 808
2173 lines
77 KiB
C++
2173 lines
77 KiB
C++
// $Id$
|
|
//***************************************************************************
|
|
// File:
|
|
// SparcInstrSelection.cpp
|
|
//
|
|
// Purpose:
|
|
// BURS instruction selection for SPARC V9 architecture.
|
|
//
|
|
// History:
|
|
// 7/02/01 - Vikram Adve - Created
|
|
//**************************************************************************/
|
|
|
|
#include "SparcInternals.h"
|
|
#include "llvm/CodeGen/InstrSelectionSupport.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/InstrForest.h"
|
|
#include "llvm/CodeGen/InstrSelection.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/ConstPoolVals.h"
|
|
#include <math.h>
|
|
|
|
//******************** Internal Data Declarations ************************/
|
|
|
|
// to be used later
|
|
struct BranchPattern {
|
|
bool flipCondition; // should the sense of the test be reversed
|
|
BasicBlock* targetBB; // which basic block to branch to
|
|
MachineInstr* extraBranch; // if neither branch is fall-through, then this
|
|
// BA must be inserted after the cond'l one
|
|
};
|
|
|
|
//************************* Forward Declarations ***************************/
|
|
|
|
|
|
static void SetMemOperands_Internal (MachineInstr* minstr,
|
|
const InstructionNode* vmInstrNode,
|
|
Value* ptrVal,
|
|
Value* arrayOffsetVal,
|
|
const vector<ConstPoolVal*>& idxVec,
|
|
const TargetMachine& target);
|
|
|
|
|
|
//************************ Internal Functions ******************************/
|
|
|
|
// Convenience function to get the value of an integer constant, for an
|
|
// appropriate integer or non-integer type that can be held in an integer.
|
|
// The type of the argument must be the following:
|
|
// Signed or unsigned integer
|
|
// Boolean
|
|
// Pointer
|
|
//
|
|
// isValidConstant is set to true if a valid constant was found.
|
|
//
|
|
static int64_t
|
|
GetConstantValueAsSignedInt(const Value *V,
|
|
bool &isValidConstant)
|
|
{
|
|
if (!isa<ConstPoolVal>(V))
|
|
{
|
|
isValidConstant = false;
|
|
return 0;
|
|
}
|
|
|
|
isValidConstant = true;
|
|
|
|
if (V->getType() == Type::BoolTy)
|
|
return (int64_t) ((ConstPoolBool*)V)->getValue();
|
|
|
|
if (V->getType()->isIntegral())
|
|
{
|
|
if (V->getType()->isSigned())
|
|
return ((ConstPoolSInt*)V)->getValue();
|
|
|
|
assert(V->getType()->isUnsigned());
|
|
uint64_t Val = ((ConstPoolUInt*)V)->getValue();
|
|
if (Val < INT64_MAX) // then safe to cast to signed
|
|
return (int64_t)Val;
|
|
}
|
|
|
|
isValidConstant = false;
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: ThisIsAChainRule
|
|
//
|
|
// Purpose:
|
|
// Check if a given BURG rule is a chain rule.
|
|
//------------------------------------------------------------------------
|
|
|
|
extern bool
|
|
ThisIsAChainRule(int eruleno)
|
|
{
|
|
switch(eruleno)
|
|
{
|
|
case 111: // stmt: reg
|
|
case 113: // stmt: bool
|
|
case 123:
|
|
case 124:
|
|
case 125:
|
|
case 126:
|
|
case 127:
|
|
case 128:
|
|
case 129:
|
|
case 130:
|
|
case 131:
|
|
case 132:
|
|
case 133:
|
|
case 155:
|
|
case 221:
|
|
case 222:
|
|
case 241:
|
|
case 242:
|
|
case 243:
|
|
case 244:
|
|
return true; break;
|
|
|
|
default:
|
|
return false; break;
|
|
}
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBprInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode;
|
|
|
|
Instruction* setCCInstr =
|
|
((InstructionNode*) instrNode->leftChild())->getInstruction();
|
|
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BRZ; break;
|
|
case Instruction::SetNE: opCode = BRNZ; break;
|
|
case Instruction::SetLE: opCode = BRLEZ; break;
|
|
case Instruction::SetGE: opCode = BRGEZ; break;
|
|
case Instruction::SetLT: opCode = BRLZ; break;
|
|
case Instruction::SetGT: opCode = BRGZ; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
opCode = INVALID_OPCODE;
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBpccInstruction(const InstructionNode* instrNode,
|
|
const BinaryOperator* setCCInstr)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
|
|
|
|
if (isSigned)
|
|
{
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BE; break;
|
|
case Instruction::SetNE: opCode = BNE; break;
|
|
case Instruction::SetLE: opCode = BLE; break;
|
|
case Instruction::SetGE: opCode = BGE; break;
|
|
case Instruction::SetLT: opCode = BL; break;
|
|
case Instruction::SetGT: opCode = BG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BE; break;
|
|
case Instruction::SetNE: opCode = BNE; break;
|
|
case Instruction::SetLE: opCode = BLEU; break;
|
|
case Instruction::SetGE: opCode = BCC; break;
|
|
case Instruction::SetLT: opCode = BCS; break;
|
|
case Instruction::SetGT: opCode = BGU; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseBFpccInstruction(const InstructionNode* instrNode,
|
|
const BinaryOperator* setCCInstr)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = FBE; break;
|
|
case Instruction::SetNE: opCode = FBNE; break;
|
|
case Instruction::SetLE: opCode = FBLE; break;
|
|
case Instruction::SetGE: opCode = FBGE; break;
|
|
case Instruction::SetLT: opCode = FBL; break;
|
|
case Instruction::SetGT: opCode = FBG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBccInstruction(const InstructionNode* instrNode,
|
|
bool& isFPBranch)
|
|
{
|
|
InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
|
|
BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
|
|
const Type* setCCType = setCCInstr->getOperand(0)->getType();
|
|
|
|
isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
|
|
|
|
if (isFPBranch)
|
|
return ChooseBFpccInstruction(instrNode, setCCInstr);
|
|
else
|
|
return ChooseBpccInstruction(instrNode, setCCInstr);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMovFpccInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(instrNode->getInstruction()->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = MOVFE; break;
|
|
case Instruction::SetNE: opCode = MOVFNE; break;
|
|
case Instruction::SetLE: opCode = MOVFLE; break;
|
|
case Instruction::SetGE: opCode = MOVFGE; break;
|
|
case Instruction::SetLT: opCode = MOVFL; break;
|
|
case Instruction::SetGT: opCode = MOVFG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Assumes that SUBcc v1, v2 -> v3 has been executed.
|
|
// In most cases, we want to clear v3 and then follow it by instruction
|
|
// MOVcc 1 -> v3.
|
|
// Set mustClearReg=false if v3 need not be cleared before conditional move.
|
|
// Set valueToMove=0 if we want to conditionally move 0 instead of 1
|
|
// (i.e., we want to test inverse of a condition)
|
|
// (The latter two cases do not seem to arise because SetNE needs nothing.)
|
|
//
|
|
static MachineOpCode
|
|
ChooseMovpccAfterSub(const InstructionNode* instrNode,
|
|
bool& mustClearReg,
|
|
int& valueToMove)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
mustClearReg = true;
|
|
valueToMove = 1;
|
|
|
|
switch(instrNode->getInstruction()->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = MOVE; break;
|
|
case Instruction::SetLE: opCode = MOVLE; break;
|
|
case Instruction::SetGE: opCode = MOVGE; break;
|
|
case Instruction::SetLT: opCode = MOVL; break;
|
|
case Instruction::SetGT: opCode = MOVG; break;
|
|
case Instruction::SetNE: assert(0 && "No move required!"); break;
|
|
default: assert(0 && "Unrecognized VM instr!"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseConvertToFloatInstr(const InstructionNode* instrNode,
|
|
const Type* opType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(instrNode->getOpLabel())
|
|
{
|
|
case ToFloatTy:
|
|
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
|
|
opCode = FITOS;
|
|
else if (opType == Type::LongTy)
|
|
opCode = FXTOS;
|
|
else if (opType == Type::DoubleTy)
|
|
opCode = FDTOS;
|
|
else if (opType == Type::FloatTy)
|
|
;
|
|
else
|
|
assert(0 && "Cannot convert this type to FLOAT on SPARC");
|
|
break;
|
|
|
|
case ToDoubleTy:
|
|
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
|
|
opCode = FITOD;
|
|
else if (opType == Type::LongTy)
|
|
opCode = FXTOD;
|
|
else if (opType == Type::FloatTy)
|
|
opCode = FSTOD;
|
|
else if (opType == Type::DoubleTy)
|
|
;
|
|
else
|
|
assert(0 && "Cannot convert this type to DOUBLE on SPARC");
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseConvertToIntInstr(const InstructionNode* instrNode,
|
|
const Type* opType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;;
|
|
|
|
int instrType = (int) instrNode->getOpLabel();
|
|
|
|
if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
|
|
{
|
|
switch (opType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FSTOI; break;
|
|
case Type::DoubleTyID: opCode = FDTOI; break;
|
|
default:
|
|
assert(0 && "Non-numeric non-bool type cannot be converted to Int");
|
|
break;
|
|
}
|
|
}
|
|
else if (instrType == ToLongTy)
|
|
{
|
|
switch (opType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FSTOX; break;
|
|
case Type::DoubleTyID: opCode = FDTOX; break;
|
|
default:
|
|
assert(0 && "Non-numeric non-bool type cannot be converted to Long");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
assert(0 && "Should not get here, Mo!");
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseAddInstructionByType(const Type* resultType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
if (resultType->isIntegral() ||
|
|
isa<PointerType>(resultType) ||
|
|
isa<MethodType>(resultType) ||
|
|
resultType->isLabelType() ||
|
|
resultType == Type::BoolTy)
|
|
{
|
|
opCode = ADD;
|
|
}
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FADDS; break;
|
|
case Type::DoubleTyID: opCode = FADDD; break;
|
|
default: assert(0 && "Invalid type for ADD instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseAddInstruction(const InstructionNode* instrNode)
|
|
{
|
|
return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateMovFloatInstruction(const InstructionNode* instrNode,
|
|
const Type* resultType)
|
|
{
|
|
MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
|
|
? FMOVS : FMOVD);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
instrNode->getValue());
|
|
return minstr;
|
|
}
|
|
|
|
static inline MachineInstr*
|
|
CreateAddConstInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<ConstPoolVal>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Add with 0 for float or double: use an FMOV of appropriate type,
|
|
// instead of an FADD (1 vs 3 cycles). There is no integer MOV.
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType == Type::FloatTy ||
|
|
resultType == Type::DoubleTy)
|
|
{
|
|
double dval = ((ConstPoolFP*) constOp)->getValue();
|
|
if (dval == 0.0)
|
|
minstr = CreateMovFloatInstruction(instrNode, resultType);
|
|
}
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseSubInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isIntegral() ||
|
|
resultType->isPointerType())
|
|
{
|
|
opCode = SUB;
|
|
}
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FSUBS; break;
|
|
case Type::DoubleTyID: opCode = FSUBD; break;
|
|
default: assert(0 && "Invalid type for SUB instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateSubConstInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<ConstPoolVal>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Sub with 0 for float or double: use an FMOV of appropriate type,
|
|
// instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType == Type::FloatTy ||
|
|
resultType == Type::DoubleTy)
|
|
{
|
|
double dval = ((ConstPoolFP*) constOp)->getValue();
|
|
if (dval == 0.0)
|
|
minstr = CreateMovFloatInstruction(instrNode, resultType);
|
|
}
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseFcmpInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
|
|
switch(operand->getType()->getPrimitiveID()) {
|
|
case Type::FloatTyID: opCode = FCMPS; break;
|
|
case Type::DoubleTyID: opCode = FCMPD; break;
|
|
default: assert(0 && "Invalid type for FCMP instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Assumes that leftArg and rightArg are both cast instructions.
|
|
//
|
|
static inline bool
|
|
BothFloatToDouble(const InstructionNode* instrNode)
|
|
{
|
|
InstrTreeNode* leftArg = instrNode->leftChild();
|
|
InstrTreeNode* rightArg = instrNode->rightChild();
|
|
InstrTreeNode* leftArgArg = leftArg->leftChild();
|
|
InstrTreeNode* rightArgArg = rightArg->leftChild();
|
|
assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
|
|
|
|
// Check if both arguments are floats cast to double
|
|
return (leftArg->getValue()->getType() == Type::DoubleTy &&
|
|
leftArgArg->getValue()->getType() == Type::FloatTy &&
|
|
rightArgArg->getValue()->getType() == Type::FloatTy);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMulInstruction(const InstructionNode* instrNode,
|
|
bool checkCasts)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
if (checkCasts && BothFloatToDouble(instrNode))
|
|
{
|
|
return opCode = FSMULD;
|
|
}
|
|
// else fall through and use the regular multiply instructions
|
|
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isIntegral())
|
|
{
|
|
opCode = MULX;
|
|
}
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FMULS; break;
|
|
case Type::DoubleTyID: opCode = FMULD; break;
|
|
default: assert(0 && "Invalid type for MUL instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateIntNegInstruction(TargetMachine& target,
|
|
Value* vreg)
|
|
{
|
|
MachineInstr* minstr = new MachineInstr(SUB);
|
|
minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateMulConstInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode,
|
|
MachineInstr*& getMinstr2)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
getMinstr2 = NULL;
|
|
bool needNeg = false;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<ConstPoolVal>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
|
|
// (2) Multiply by 2^x for integer types: replace with Shift
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isIntegral() || resultType->isPointerType())
|
|
{
|
|
unsigned pow;
|
|
bool isValidConst;
|
|
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
|
|
if (isValidConst)
|
|
{
|
|
bool needNeg = false;
|
|
if (C < 0)
|
|
{
|
|
needNeg = true;
|
|
C = -C;
|
|
}
|
|
|
|
if (C == 0 || C == 1)
|
|
{
|
|
minstr = new MachineInstr(ADD);
|
|
|
|
if (C == 0)
|
|
minstr->SetMachineOperand(0,
|
|
target.getRegInfo().getZeroRegNum());
|
|
else
|
|
minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
|
|
}
|
|
else if (IsPowerOf2(C, pow))
|
|
{
|
|
minstr = new MachineInstr((resultType == Type::LongTy)
|
|
? SLLX : SLL);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
|
|
pow);
|
|
}
|
|
|
|
if (minstr && needNeg)
|
|
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
|
|
getMinstr2 = CreateIntNegInstruction(target,
|
|
instrNode->getValue());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (resultType == Type::FloatTy ||
|
|
resultType == Type::DoubleTy)
|
|
{
|
|
bool isValidConst;
|
|
double dval = ((ConstPoolFP*) constOp)->getValue();
|
|
|
|
if (isValidConst)
|
|
{
|
|
if (dval == 0)
|
|
{
|
|
minstr = new MachineInstr((resultType == Type::FloatTy)
|
|
? FITOS : FITOD);
|
|
minstr->SetMachineOperand(0,
|
|
target.getRegInfo().getZeroRegNum());
|
|
}
|
|
else if (fabs(dval) == 1)
|
|
{
|
|
bool needNeg = (dval < 0);
|
|
|
|
MachineOpCode opCode = needNeg
|
|
? (resultType == Type::FloatTy? FNEGS : FNEGD)
|
|
: (resultType == Type::FloatTy? FMOVS : FMOVD);
|
|
|
|
minstr = new MachineInstr(opCode);
|
|
minstr->SetMachineOperand(0,
|
|
MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (minstr != NULL)
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
instrNode->getValue());
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseDivInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isIntegral())
|
|
opCode = resultType->isSigned()? SDIVX : UDIVX;
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FDIVS; break;
|
|
case Type::DoubleTyID: opCode = FDIVD; break;
|
|
default: assert(0 && "Invalid type for DIV instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateDivConstInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode,
|
|
MachineInstr*& getMinstr2)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
getMinstr2 = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<ConstPoolVal>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
|
|
// (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isIntegral())
|
|
{
|
|
unsigned pow;
|
|
bool isValidConst;
|
|
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
|
|
if (isValidConst)
|
|
{
|
|
bool needNeg = false;
|
|
if (C < 0)
|
|
{
|
|
needNeg = true;
|
|
C = -C;
|
|
}
|
|
|
|
if (C == 1)
|
|
{
|
|
minstr = new MachineInstr(ADD);
|
|
minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
|
|
}
|
|
else if (IsPowerOf2(C, pow))
|
|
{
|
|
MachineOpCode opCode= ((resultType->isSigned())
|
|
? (resultType==Type::LongTy)? SRAX : SRA
|
|
: (resultType==Type::LongTy)? SRLX : SRL);
|
|
minstr = new MachineInstr(opCode);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
|
|
pow);
|
|
}
|
|
|
|
if (minstr && needNeg)
|
|
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
|
|
getMinstr2 = CreateIntNegInstruction(target,
|
|
instrNode->getValue());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (resultType == Type::FloatTy ||
|
|
resultType == Type::DoubleTy)
|
|
{
|
|
bool isValidConst;
|
|
double dval = ((ConstPoolFP*) constOp)->getValue();
|
|
|
|
if (isValidConst && fabs(dval) == 1)
|
|
{
|
|
bool needNeg = (dval < 0);
|
|
|
|
MachineOpCode opCode = needNeg
|
|
? (resultType == Type::FloatTy? FNEGS : FNEGD)
|
|
: (resultType == Type::FloatTy? FMOVS : FMOVD);
|
|
|
|
minstr = new MachineInstr(opCode);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (minstr != NULL)
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
instrNode->getValue());
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseLoadInstruction(const Type *DestTy)
|
|
{
|
|
switch (DestTy->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::UByteTyID: return LDUB;
|
|
case Type::SByteTyID: return LDSB;
|
|
case Type::UShortTyID: return LDUH;
|
|
case Type::ShortTyID: return LDSH;
|
|
case Type::UIntTyID: return LDUW;
|
|
case Type::IntTyID: return LDSW;
|
|
case Type::PointerTyID:
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID: return LDX;
|
|
case Type::FloatTyID: return LD;
|
|
case Type::DoubleTyID: return LDD;
|
|
default: assert(0 && "Invalid type for Load instruction");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseStoreInstruction(const Type *DestTy)
|
|
{
|
|
switch (DestTy->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::UByteTyID:
|
|
case Type::SByteTyID: return STB;
|
|
case Type::UShortTyID:
|
|
case Type::ShortTyID: return STH;
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID: return STW;
|
|
case Type::PointerTyID:
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID: return STX;
|
|
case Type::FloatTyID: return ST;
|
|
case Type::DoubleTyID: return STD;
|
|
default: assert(0 && "Invalid type for Store instruction");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// Function SetOperandsForMemInstr
|
|
//
|
|
// Choose addressing mode for the given load or store instruction.
|
|
// Use [reg+reg] if it is an indexed reference, and the index offset is
|
|
// not a constant or if it cannot fit in the offset field.
|
|
// Use [reg+offset] in all other cases.
|
|
//
|
|
// This assumes that all array refs are "lowered" to one of these forms:
|
|
// %x = load (subarray*) ptr, constant ; single constant offset
|
|
// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
|
|
// Generally, this should happen via strength reduction + LICM.
|
|
// Also, strength reduction should take care of using the same register for
|
|
// the loop index variable and an array index, when that is profitable.
|
|
//------------------------------------------------------------------------
|
|
|
|
static void
|
|
SetOperandsForMemInstr(MachineInstr* minstr,
|
|
const InstructionNode* vmInstrNode,
|
|
const TargetMachine& target)
|
|
{
|
|
MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
|
|
|
|
// Variables to hold the index vector, ptr value, and offset value.
|
|
// The major work here is to extract these for all 3 instruction types
|
|
// and then call the common function SetMemOperands_Internal().
|
|
//
|
|
const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
|
|
vector<ConstPoolVal*>* newIdxVec = NULL;
|
|
Value* ptrVal;
|
|
Value* arrayOffsetVal = NULL;
|
|
|
|
// Test if a GetElemPtr instruction is being folded into this mem instrn.
|
|
// If so, it will be in the left child for Load and GetElemPtr,
|
|
// and in the right child for Store instructions.
|
|
//
|
|
InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
|
|
? vmInstrNode->rightChild()
|
|
: vmInstrNode->leftChild());
|
|
|
|
if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
|
|
ptrChild->getOpLabel() == GetElemPtrIdx)
|
|
{
|
|
// There is a GetElemPtr instruction and there may be a chain of
|
|
// more than one. Use the pointer value of the last one in the chain.
|
|
// Fold the index vectors from the entire chain and from the mem
|
|
// instruction into one single index vector.
|
|
// Finally, we never fold for an array instruction so make that NULL.
|
|
|
|
newIdxVec = new vector<ConstPoolVal*>;
|
|
ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
|
|
|
|
newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
|
|
idxVec = newIdxVec;
|
|
|
|
assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
|
|
&& "GetElemPtr cannot be folded into array refs in selection");
|
|
}
|
|
else
|
|
{
|
|
// There is no GetElemPtr instruction.
|
|
// Use the pointer value and the index vector from the Mem instruction.
|
|
// If it is an array reference, get the array offset value.
|
|
//
|
|
ptrVal = memInst->getPtrOperand();
|
|
|
|
const Type* opType =
|
|
((const PointerType*) ptrVal->getType())->getValueType();
|
|
if (opType->isArrayType())
|
|
{
|
|
assert((memInst->getNumOperands()
|
|
== (unsigned) 1 + memInst->getFirstOffsetIdx())
|
|
&& "Array refs must be lowered before Instruction Selection");
|
|
|
|
arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
|
|
}
|
|
}
|
|
|
|
SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
|
|
*idxVec, target);
|
|
|
|
if (newIdxVec != NULL)
|
|
delete newIdxVec;
|
|
}
|
|
|
|
|
|
static void
|
|
SetMemOperands_Internal(MachineInstr* minstr,
|
|
const InstructionNode* vmInstrNode,
|
|
Value* ptrVal,
|
|
Value* arrayOffsetVal,
|
|
const vector<ConstPoolVal*>& idxVec,
|
|
const TargetMachine& target)
|
|
{
|
|
MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
|
|
|
|
// Initialize so we default to storing the offset in a register.
|
|
int64_t smallConstOffset;
|
|
Value* valueForRegOffset = NULL;
|
|
MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
|
|
|
|
// Check if there is an index vector and if so, if it translates to
|
|
// a small enough constant to fit in the immediate-offset field.
|
|
//
|
|
if (idxVec.size() > 0)
|
|
{
|
|
bool isConstantOffset = false;
|
|
unsigned offset;
|
|
|
|
const PointerType* ptrType = (PointerType*) ptrVal->getType();
|
|
|
|
if (ptrType->getValueType()->isStructType())
|
|
{
|
|
// the offset is always constant for structs
|
|
isConstantOffset = true;
|
|
|
|
// Compute the offset value using the index vector
|
|
offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
|
|
}
|
|
else
|
|
{
|
|
// It must be an array ref. Check if the offset is a constant,
|
|
// and that the indexing has been lowered to a single offset.
|
|
//
|
|
assert(ptrType->getValueType()->isArrayType());
|
|
assert(arrayOffsetVal != NULL
|
|
&& "Expect to be given Value* for array offsets");
|
|
|
|
if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(arrayOffsetVal))
|
|
{
|
|
isConstantOffset = true; // always constant for structs
|
|
assert(arrayOffsetVal->getType()->isIntegral());
|
|
offset = (CPV->getType()->isSigned()
|
|
? ((ConstPoolSInt*)CPV)->getValue()
|
|
: (int64_t) ((ConstPoolUInt*)CPV)->getValue());
|
|
}
|
|
else
|
|
{
|
|
valueForRegOffset = arrayOffsetVal;
|
|
}
|
|
}
|
|
|
|
if (isConstantOffset)
|
|
{
|
|
// create a virtual register for the constant
|
|
valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
offsetOpType = MachineOperand::MO_SignExtendedImmed;
|
|
smallConstOffset = 0;
|
|
}
|
|
|
|
// Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
|
|
// It is the left child in the instruction tree in all cases.
|
|
Value* leftVal = vmInstrNode->leftChild()->getValue();
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
|
|
|
|
// Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
|
|
// Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
|
|
//
|
|
unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
|
|
if (offsetOpType == MachineOperand::MO_VirtualRegister)
|
|
{
|
|
assert(valueForRegOffset != NULL);
|
|
minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
|
|
}
|
|
else
|
|
minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
|
|
|
|
if (memInst->getOpcode() == Instruction::Store)
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
|
|
else
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
vmInstrNode->getValue());
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest)
|
|
{
|
|
MachineInstr* minstr;
|
|
if (isSigned)
|
|
{
|
|
minstr = new MachineInstr(SETSW);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
|
|
}
|
|
else
|
|
{
|
|
minstr = new MachineInstr(SETUW);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
|
|
}
|
|
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
// Create an instruction sequence to load a constant into a register.
|
|
// This always creates either one or two instructions.
|
|
// If two instructions are created, the second one is returned in getMinstr2
|
|
//
|
|
static MachineInstr*
|
|
CreateLoadConstInstr(const TargetMachine &target,
|
|
Instruction* vmInstr,
|
|
Value* val,
|
|
Instruction* dest,
|
|
MachineInstr*& getMinstr2)
|
|
{
|
|
assert(isa<ConstPoolVal>(val));
|
|
|
|
MachineInstr* minstr1 = NULL;
|
|
|
|
getMinstr2 = NULL;
|
|
|
|
// Use a "set" instruction for known constants that can go in an integer reg.
|
|
// Use a "set" instruction followed by a int-to-float conversion for known
|
|
// constants that must go in a floating point reg but have an integer value.
|
|
// Use a "load" instruction for all other constants, in particular,
|
|
// floating point constants.
|
|
//
|
|
const Type* valType = val->getType();
|
|
|
|
if (valType->isIntegral() || valType == Type::BoolTy)
|
|
{
|
|
bool isValidConstant;
|
|
int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
|
|
assert(isValidConstant && "Unrecognized constant");
|
|
minstr1 = CreateIntSetInstruction(C, valType->isSigned(), dest);
|
|
}
|
|
else
|
|
{
|
|
|
|
#undef MOVE_INT_TO_FP_REG_AVAILABLE
|
|
#ifdef MOVE_INT_TO_FP_REG_AVAILABLE
|
|
//
|
|
// This code was written to generate the following sequence:
|
|
// SET[SU]W <int-const> <int-reg>
|
|
// FITO[SD] <int-reg> <fp-reg>
|
|
// (it really should have moved the int-reg to an fp-reg and then FITOS).
|
|
// But for now the only way to move a value from an int-reg to an fp-reg
|
|
// is via memory. Leave this code here but unused.
|
|
//
|
|
assert(valType == Type::FloatTy || valType == Type::DoubleTy);
|
|
double dval = ((ConstPoolFP*) val)->getValue();
|
|
if (dval == (int64_t) dval)
|
|
{
|
|
// The constant actually has an integer value, so use a
|
|
// [set; int-to-float] sequence instead of a load instruction.
|
|
//
|
|
TmpInstruction* addrReg = NULL;
|
|
if (dval != 0.0)
|
|
{ // First, create an integer constant of the same value as dval
|
|
ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
|
|
(int64_t) dval);
|
|
// Create another TmpInstruction for the hidden integer register
|
|
addrReg = new TmpInstruction(Instruction::UserOp1, ival, NULL);
|
|
vmInstr->getMachineInstrVec().addTempValue(addrReg);
|
|
|
|
// Create the `SET' instruction
|
|
minstr1 = CreateIntSetInstruction((int64_t)dval, true, addrReg);
|
|
addrReg->addMachineInstruction(minstr1);
|
|
}
|
|
|
|
// In which variable do we put the second instruction?
|
|
MachineInstr*& instr2 = (minstr1)? getMinstr2 : minstr1;
|
|
|
|
// Create the int-to-float instruction
|
|
instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
|
|
|
|
if (dval == 0.0)
|
|
instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
|
|
else
|
|
instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
addrReg);
|
|
|
|
instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
dest);
|
|
}
|
|
else
|
|
#endif /*MOVE_INT_TO_FP_REG_AVAILABLE*/
|
|
|
|
{
|
|
// Make an instruction sequence to load the constant, viz:
|
|
// SETSW <addr-of-constant>, addrReg
|
|
// LOAD /*addr*/ addrReg, /*offset*/ 0, dest
|
|
// set the offset field to 0.
|
|
//
|
|
int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
|
|
|
|
// Create another TmpInstruction for the hidden integer register
|
|
TmpInstruction* addrReg =
|
|
new TmpInstruction(Instruction::UserOp1, val, NULL);
|
|
vmInstr->getMachineInstrVec().addTempValue(addrReg);
|
|
|
|
minstr1 = new MachineInstr(SETUW);
|
|
minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val);
|
|
minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
addrReg);
|
|
addrReg->addMachineInstruction(minstr1);
|
|
|
|
getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType()));
|
|
getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
|
|
addrReg);
|
|
getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed,
|
|
zeroOffset);
|
|
getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
|
|
dest);
|
|
}
|
|
}
|
|
|
|
assert(minstr1);
|
|
return minstr1;
|
|
}
|
|
|
|
|
|
TmpInstruction*
|
|
InsertCodeToLoadConstant(ConstPoolVal* opValue,
|
|
Instruction* vmInstr,
|
|
vector<MachineInstr*>& loadConstVec,
|
|
TargetMachine& target)
|
|
{
|
|
// value is constant and must be loaded into a register.
|
|
// First, create a tmp virtual register (TmpInstruction)
|
|
// to hold the constant.
|
|
// This will replace the constant operand in `minstr'.
|
|
TmpInstruction* tmpReg =
|
|
new TmpInstruction(Instruction::UserOp1, opValue, NULL);
|
|
vmInstr->getMachineInstrVec().addTempValue(tmpReg);
|
|
|
|
MachineInstr *minstr1, *minstr2;
|
|
minstr1 = CreateLoadConstInstr(target, vmInstr,
|
|
opValue, tmpReg, minstr2);
|
|
|
|
loadConstVec.push_back(minstr1);
|
|
if (minstr2 != NULL)
|
|
loadConstVec.push_back(minstr2);
|
|
|
|
tmpReg->addMachineInstruction(loadConstVec.back());
|
|
|
|
return tmpReg;
|
|
}
|
|
|
|
|
|
// Special handling for constant operands:
|
|
// -- if the constant is 0, use the hardwired 0 register, if any;
|
|
// -- if the constant is of float or double type but has an integer value,
|
|
// use int-to-float conversion instruction instead of generating a load;
|
|
// -- if the constant fits in the IMMEDIATE field, use that field;
|
|
// -- else insert instructions to put the constant into a register, either
|
|
// directly or by loading explicitly from the constant pool.
|
|
//
|
|
static unsigned
|
|
FixConstantOperands(const InstructionNode* vmInstrNode,
|
|
MachineInstr** mvec,
|
|
unsigned numInstr,
|
|
TargetMachine& target)
|
|
{
|
|
vector<MachineInstr*> loadConstVec;
|
|
loadConstVec.reserve(MAX_INSTR_PER_VMINSTR);
|
|
|
|
Instruction* vmInstr = vmInstrNode->getInstruction();
|
|
|
|
for (unsigned i=0; i < numInstr; i++)
|
|
{
|
|
MachineInstr* minstr = mvec[i];
|
|
const MachineInstrDescriptor& instrDesc =
|
|
target.getInstrInfo().getDescriptor(minstr->getOpCode());
|
|
|
|
for (unsigned op=0; op < minstr->getNumOperands(); op++)
|
|
{
|
|
const MachineOperand& mop = minstr->getOperand(op);
|
|
|
|
// skip the result position (for efficiency below) and any other
|
|
// positions already marked as not a virtual register
|
|
if (instrDesc.resultPos == (int) op ||
|
|
mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
|
|
mop.getVRegValue() == NULL)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
Value* opValue = mop.getVRegValue();
|
|
|
|
if (isa<ConstPoolVal>(opValue))
|
|
{
|
|
unsigned int machineRegNum;
|
|
int64_t immedValue;
|
|
MachineOperand::MachineOperandType opType =
|
|
ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
|
|
/*canUseImmed*/ (op == 1),
|
|
machineRegNum, immedValue);
|
|
|
|
if (opType == MachineOperand::MO_MachineRegister)
|
|
minstr->SetMachineOperand(op, machineRegNum);
|
|
else if (opType == MachineOperand::MO_VirtualRegister)
|
|
{
|
|
TmpInstruction* tmpReg =
|
|
InsertCodeToLoadConstant((ConstPoolVal*) opValue,
|
|
vmInstr, loadConstVec, target);
|
|
minstr->SetMachineOperand(op, opType, tmpReg);
|
|
}
|
|
else
|
|
minstr->SetMachineOperand(op, opType, immedValue);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Also, check for implicit operands used (not those defined) by the
|
|
// machine instruction. These include:
|
|
// -- arguments to a Call
|
|
// -- return value of a Return
|
|
// Any such operand that is a constant value needs to be fixed also.
|
|
// The current instructions with implicit refs (viz., Call and Return)
|
|
// have no immediate fields, so the constant always needs to be loaded
|
|
// into a register.
|
|
//
|
|
for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
|
|
if (isa<ConstPoolVal>(minstr->getImplicitRef(i)))
|
|
{
|
|
TmpInstruction* tmpReg = InsertCodeToLoadConstant((ConstPoolVal*)
|
|
minstr->getImplicitRef(i),
|
|
vmInstr, loadConstVec, target);
|
|
minstr->setImplicitRef(i, tmpReg);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Finally, inserted the generated instructions in the vector
|
|
// to be returned.
|
|
//
|
|
unsigned numNew = loadConstVec.size();
|
|
if (numNew > 0)
|
|
{
|
|
// Insert the new instructions *before* the old ones by moving
|
|
// the old ones over `numNew' positions (last-to-first, of course!).
|
|
// We do check *after* returning that we did not exceed the vector mvec.
|
|
for (int i=numInstr-1; i >= 0; i--)
|
|
mvec[i+numNew] = mvec[i];
|
|
|
|
for (unsigned i=0; i < numNew; i++)
|
|
mvec[i] = loadConstVec[i];
|
|
}
|
|
|
|
return (numInstr + numNew);
|
|
}
|
|
|
|
|
|
//
|
|
// Substitute operand `operandNum' of the instruction in node `treeNode'
|
|
// in place of the use(s) of that instruction in node `parent'.
|
|
// Check both explicit and implicit operands!
|
|
//
|
|
static void
|
|
ForwardOperand(InstructionNode* treeNode,
|
|
InstrTreeNode* parent,
|
|
int operandNum)
|
|
{
|
|
assert(treeNode && parent && "Invalid invocation of ForwardOperand");
|
|
|
|
Instruction* unusedOp = treeNode->getInstruction();
|
|
Value* fwdOp = unusedOp->getOperand(operandNum);
|
|
|
|
// The parent itself may be a list node, so find the real parent instruction
|
|
while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
|
|
{
|
|
parent = parent->parent();
|
|
assert(parent && "ERROR: Non-instruction node has no parent in tree.");
|
|
}
|
|
InstructionNode* parentInstrNode = (InstructionNode*) parent;
|
|
|
|
Instruction* userInstr = parentInstrNode->getInstruction();
|
|
MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
|
|
for (unsigned i=0, N=mvec.size(); i < N; i++)
|
|
{
|
|
MachineInstr* minstr = mvec[i];
|
|
|
|
for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
|
|
{
|
|
const MachineOperand& mop = minstr->getOperand(i);
|
|
if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
|
|
mop.getVRegValue() == unusedOp)
|
|
{
|
|
minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
|
|
fwdOp);
|
|
}
|
|
}
|
|
|
|
for (unsigned i=0, numOps=minstr->getNumImplicitRefs(); i < numOps; ++i)
|
|
if (minstr->getImplicitRef(i) == unusedOp)
|
|
minstr->setImplicitRef(i, fwdOp, minstr->implicitRefIsDefined(i));
|
|
}
|
|
}
|
|
|
|
|
|
MachineInstr*
|
|
CreateCopyInstructionsByType(const TargetMachine& target,
|
|
Value* src,
|
|
Instruction* dest,
|
|
MachineInstr*& getMinstr2)
|
|
{
|
|
getMinstr2 = NULL; // initialize second return value
|
|
|
|
MachineInstr* minstr1 = NULL;
|
|
|
|
const Type* resultType = dest->getType();
|
|
|
|
MachineOpCode opCode = ChooseAddInstructionByType(resultType);
|
|
if (opCode == INVALID_OPCODE)
|
|
{
|
|
assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
|
|
return NULL;
|
|
}
|
|
|
|
// if `src' is a constant that doesn't fit in the immed field, generate
|
|
// a load instruction instead of an add
|
|
if (isa<ConstPoolVal>(src))
|
|
{
|
|
unsigned int machineRegNum;
|
|
int64_t immedValue;
|
|
MachineOperand::MachineOperandType opType =
|
|
ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
|
|
machineRegNum, immedValue);
|
|
|
|
if (opType == MachineOperand::MO_VirtualRegister)
|
|
{ // value is constant and cannot fit in immed field for the ADD
|
|
minstr1 = CreateLoadConstInstr(target, dest, src, dest, getMinstr2);
|
|
}
|
|
}
|
|
|
|
if (minstr1 == NULL)
|
|
{ // Create the appropriate add instruction.
|
|
// Make `src' the second operand, in case it is a constant
|
|
// Use (unsigned long) 0 for a NULL pointer value.
|
|
//
|
|
const Type* nullValueType =
|
|
(resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
|
|
: resultType;
|
|
minstr1 = new MachineInstr(opCode);
|
|
minstr1->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
ConstPoolVal::getNullConstant(nullValueType));
|
|
minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
|
|
minstr1->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
|
|
}
|
|
|
|
return minstr1;
|
|
}
|
|
|
|
|
|
// This function is currently unused and incomplete but will be
|
|
// used if we have a linear layout of basic blocks in LLVM code.
|
|
// It decides which branch should fall-through, and whether an
|
|
// extra unconditional branch is needed (when neither falls through).
|
|
//
|
|
void
|
|
ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
|
|
{
|
|
BranchInst* brInstr = (BranchInst*) vmInstr;
|
|
|
|
brPattern.flipCondition = false;
|
|
brPattern.targetBB = brInstr->getSuccessor(0);
|
|
brPattern.extraBranch = NULL;
|
|
|
|
assert(brInstr->getNumSuccessors() > 1 &&
|
|
"Unnecessary analysis for unconditional branch");
|
|
|
|
assert(0 && "Fold branches in peephole optimization");
|
|
}
|
|
|
|
|
|
//******************* Externally Visible Functions *************************/
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: GetInstructionsByRule
|
|
//
|
|
// Purpose:
|
|
// Choose machine instructions for the SPARC according to the
|
|
// patterns chosen by the BURG-generated parser.
|
|
//------------------------------------------------------------------------
|
|
|
|
unsigned
|
|
GetInstructionsByRule(InstructionNode* subtreeRoot,
|
|
int ruleForNode,
|
|
short* nts,
|
|
TargetMachine &target,
|
|
MachineInstr** mvec)
|
|
{
|
|
int numInstr = 1; // initialize for common case
|
|
bool checkCast = false; // initialize here to use fall-through
|
|
Value *leftVal, *rightVal;
|
|
const Type* opType;
|
|
int nextRule;
|
|
int forwardOperandNum = -1;
|
|
int64_t s0=0, s8=8; // variables holding constants to avoid
|
|
uint64_t u0=0; // overloading ambiguities below
|
|
|
|
mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
|
|
|
|
//
|
|
// Let's check for chain rules outside the switch so that we don't have
|
|
// to duplicate the list of chain rule production numbers here again
|
|
//
|
|
if (ThisIsAChainRule(ruleForNode))
|
|
{
|
|
// Chain rules have a single nonterminal on the RHS.
|
|
// Get the rule that matches the RHS non-terminal and use that instead.
|
|
//
|
|
assert(nts[0] && ! nts[1]
|
|
&& "A chain rule should have only one RHS non-terminal!");
|
|
nextRule = burm_rule(subtreeRoot->state, nts[0]);
|
|
nts = burm_nts[nextRule];
|
|
numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
|
|
}
|
|
else
|
|
{
|
|
switch(ruleForNode) {
|
|
case 1: // stmt: Ret
|
|
case 2: // stmt: RetValue(reg)
|
|
// NOTE: Prepass of register allocation is responsible
|
|
// for moving return value to appropriate register.
|
|
// Mark the return-address register as a hidden virtual reg.
|
|
// Mark the return value register as an implicit ref of
|
|
// the machine instruction.
|
|
{
|
|
ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction();
|
|
assert(returnInstr->getOpcode() == Instruction::Ret);
|
|
|
|
Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
|
|
returnInstr, NULL);
|
|
returnInstr->getMachineInstrVec().addTempValue(returnReg);
|
|
|
|
mvec[0] = new MachineInstr(RETURN);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
returnReg);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s8);
|
|
|
|
if (returnInstr->getReturnValue() != NULL)
|
|
mvec[0]->addImplicitRef(returnInstr->getReturnValue());
|
|
|
|
returnReg->addMachineInstruction(mvec[0]);
|
|
|
|
mvec[numInstr++] = new MachineInstr(NOP); // delay slot
|
|
break;
|
|
}
|
|
|
|
case 3: // stmt: Store(reg,reg)
|
|
case 4: // stmt: Store(reg,ptrreg)
|
|
mvec[0] = new MachineInstr(
|
|
ChooseStoreInstruction(
|
|
subtreeRoot->leftChild()->getValue()->getType()));
|
|
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 5: // stmt: BrUncond
|
|
mvec[0] = new MachineInstr(BA);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*)NULL);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
break;
|
|
|
|
case 206: // stmt: BrCond(setCCconst)
|
|
// setCCconst => boolean was computed with `%b = setCC type reg1 const'
|
|
// If the constant is ZERO, we can use the branch-on-integer-register
|
|
// instructions and avoid the SUBcc instruction entirely.
|
|
// Otherwise this is just the same as case 5, so just fall through.
|
|
{
|
|
InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
|
|
assert(constNode &&
|
|
constNode->getNodeType() ==InstrTreeNode::NTConstNode);
|
|
ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
|
|
bool isValidConst;
|
|
|
|
if ((constVal->getType()->isIntegral()
|
|
|| constVal->getType()->isPointerType())
|
|
&& GetConstantValueAsSignedInt(constVal, isValidConst) == 0
|
|
&& isValidConst)
|
|
{
|
|
// That constant is a zero after all...
|
|
// Use the left child of setCC as the first argument!
|
|
mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
|
|
// false branch
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(BA);
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*) NULL);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
|
|
break;
|
|
}
|
|
// ELSE FALL THROUGH
|
|
}
|
|
|
|
case 6: // stmt: BrCond(bool)
|
|
// bool => boolean was computed with some boolean operator
|
|
// (SetCC, Not, ...). We need to check whether the type was a FP,
|
|
// signed int or unsigned int, and check the branching condition in
|
|
// order to choose the branch to use.
|
|
//
|
|
{
|
|
bool isFPBranch;
|
|
mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
|
|
isFPBranch));
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
|
|
// false branch
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(BA);
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*) NULL);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
break;
|
|
}
|
|
|
|
case 208: // stmt: BrCond(boolconst)
|
|
{
|
|
// boolconst => boolean is a constant; use BA to first or second label
|
|
ConstPoolVal* constVal =
|
|
cast<ConstPoolVal>(subtreeRoot->leftChild()->getValue());
|
|
unsigned dest = ((ConstPoolBool*) constVal)->getValue()? 0 : 1;
|
|
|
|
mvec[0] = new MachineInstr(BA);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*) NULL);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
break;
|
|
}
|
|
|
|
case 8: // stmt: BrCond(boolreg)
|
|
// boolreg => boolean is stored in an existing register.
|
|
// Just use the branch-on-integer-register instruction!
|
|
//
|
|
{
|
|
mvec[0] = new MachineInstr(BRNZ);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP); // delay slot
|
|
|
|
// false branch
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(BA);
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*) NULL);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
break;
|
|
}
|
|
|
|
case 9: // stmt: Switch(reg)
|
|
assert(0 && "*** SWITCH instruction is not implemented yet.");
|
|
numInstr = 0;
|
|
break;
|
|
|
|
case 10: // reg: VRegList(reg, reg)
|
|
assert(0 && "VRegList should never be the topmost non-chain rule");
|
|
break;
|
|
|
|
case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
|
|
mvec[0] = new MachineInstr(XNOR);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
|
|
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->getValue());
|
|
break;
|
|
|
|
case 322: // reg: ToBoolTy(bool):
|
|
case 22: // reg: ToBoolTy(reg):
|
|
opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral() || opType == Type::BoolTy);
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
break;
|
|
|
|
case 23: // reg: ToUByteTy(reg)
|
|
case 25: // reg: ToUShortTy(reg)
|
|
case 27: // reg: ToUIntTy(reg)
|
|
case 29: // reg: ToULongTy(reg)
|
|
opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral() ||
|
|
opType->isPointerType() ||
|
|
opType == Type::BoolTy && "Cast is illegal for other types");
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
break;
|
|
|
|
case 24: // reg: ToSByteTy(reg)
|
|
case 26: // reg: ToShortTy(reg)
|
|
case 28: // reg: ToIntTy(reg)
|
|
case 30: // reg: ToLongTy(reg)
|
|
opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
if (opType->isIntegral() || opType == Type::BoolTy)
|
|
{
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
}
|
|
else
|
|
{
|
|
mvec[0] = new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,
|
|
opType));
|
|
Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
}
|
|
break;
|
|
|
|
case 31: // reg: ToFloatTy(reg):
|
|
case 32: // reg: ToDoubleTy(reg):
|
|
case 232: // reg: ToDoubleTy(Constant):
|
|
|
|
// If this instruction has a parent (a user) in the tree
|
|
// and the user is translated as an FsMULd instruction,
|
|
// then the cast is unnecessary. So check that first.
|
|
// In the future, we'll want to do the same for the FdMULq instruction,
|
|
// so do the check here instead of only for ToFloatTy(reg).
|
|
//
|
|
if (subtreeRoot->parent() != NULL &&
|
|
((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
|
|
{
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
}
|
|
else
|
|
{
|
|
opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
|
|
if (opCode == INVALID_OPCODE) // no conversion needed
|
|
{
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
}
|
|
else
|
|
{
|
|
mvec[0] = new MachineInstr(opCode);
|
|
Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 19: // reg: ToArrayTy(reg):
|
|
case 20: // reg: ToPointerTy(reg):
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
break;
|
|
|
|
case 233: // reg: Add(reg, Constant)
|
|
mvec[0] = CreateAddConstInstruction(subtreeRoot);
|
|
if (mvec[0] != NULL)
|
|
break;
|
|
// ELSE FALL THROUGH
|
|
|
|
case 33: // reg: Add(reg, reg)
|
|
mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 234: // reg: Sub(reg, Constant)
|
|
mvec[0] = CreateSubConstInstruction(subtreeRoot);
|
|
if (mvec[0] != NULL)
|
|
break;
|
|
// ELSE FALL THROUGH
|
|
|
|
case 34: // reg: Sub(reg, reg)
|
|
mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 135: // reg: Mul(todouble, todouble)
|
|
checkCast = true;
|
|
// FALL THROUGH
|
|
|
|
case 35: // reg: Mul(reg, reg)
|
|
mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 335: // reg: Mul(todouble, todoubleConst)
|
|
checkCast = true;
|
|
// FALL THROUGH
|
|
|
|
case 235: // reg: Mul(reg, Constant)
|
|
mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
|
|
if (mvec[0] == NULL)
|
|
{
|
|
mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
|
|
checkCast));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
}
|
|
else
|
|
if (mvec[1] != NULL)
|
|
++numInstr;
|
|
break;
|
|
|
|
case 236: // reg: Div(reg, Constant)
|
|
mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
|
|
if (mvec[0] != NULL)
|
|
{
|
|
if (mvec[1] != NULL)
|
|
++numInstr;
|
|
}
|
|
else
|
|
// ELSE FALL THROUGH
|
|
|
|
case 36: // reg: Div(reg, reg)
|
|
mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 37: // reg: Rem(reg, reg)
|
|
case 237: // reg: Rem(reg, Constant)
|
|
assert(0 && "REM instruction unimplemented for the SPARC.");
|
|
break;
|
|
|
|
case 38: // reg: And(reg, reg)
|
|
case 238: // reg: And(reg, Constant)
|
|
mvec[0] = new MachineInstr(AND);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 138: // reg: And(reg, not)
|
|
mvec[0] = new MachineInstr(ANDN);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 39: // reg: Or(reg, reg)
|
|
case 239: // reg: Or(reg, Constant)
|
|
mvec[0] = new MachineInstr(ORN);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 139: // reg: Or(reg, not)
|
|
mvec[0] = new MachineInstr(ORN);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 40: // reg: Xor(reg, reg)
|
|
case 240: // reg: Xor(reg, Constant)
|
|
mvec[0] = new MachineInstr(XOR);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 140: // reg: Xor(reg, not)
|
|
mvec[0] = new MachineInstr(XNOR);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 41: // boolconst: SetCC(reg, Constant)
|
|
// Check if this is an integer comparison, and
|
|
// there is a parent, and the parent decided to use
|
|
// a branch-on-integer-register instead of branch-on-condition-code.
|
|
// If so, the SUBcc instruction is not required.
|
|
// (However, we must still check for constants to be loaded from
|
|
// the constant pool so that such a load can be associated with
|
|
// this instruction.)
|
|
//
|
|
// Otherwise this is just the same as case 42, so just fall through.
|
|
//
|
|
if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
|
|
subtreeRoot->parent() != NULL)
|
|
{
|
|
InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
|
|
assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
|
|
const vector<MachineInstr*>&
|
|
minstrVec = parent->getInstruction()->getMachineInstrVec();
|
|
MachineOpCode parentOpCode;
|
|
if (parent->getInstruction()->getOpcode() == Instruction::Br &&
|
|
(parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
|
|
parentOpCode <= BRGEZ)
|
|
{
|
|
numInstr = 0; // don't forward the operand!
|
|
break;
|
|
}
|
|
}
|
|
// ELSE FALL THROUGH
|
|
|
|
case 42: // bool: SetCC(reg, reg):
|
|
{
|
|
// If result of the SetCC is only used for a single branch, we can
|
|
// discard the result. Otherwise, the boolean value must go into
|
|
// an integer register.
|
|
//
|
|
bool keepBoolVal = (subtreeRoot->parent() == NULL ||
|
|
((InstructionNode*) subtreeRoot->parent())
|
|
->getInstruction()->getOpcode() !=Instruction::Br);
|
|
bool subValIsBoolVal =
|
|
subtreeRoot->getInstruction()->getOpcode() == Instruction::SetNE;
|
|
bool keepSubVal = keepBoolVal && subValIsBoolVal;
|
|
bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
|
|
|
|
bool mustClearReg;
|
|
int valueToMove;
|
|
MachineOpCode movOpCode;
|
|
|
|
if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
|
|
subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
|
|
{
|
|
// Integer condition: dest. should be %g0 or an integer register.
|
|
// If result must be saved but condition is not SetEQ then we need
|
|
// a separate instruction to compute the bool result, so discard
|
|
// result of SUBcc instruction anyway.
|
|
//
|
|
mvec[0] = new MachineInstr(SUBcc);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
|
|
|
|
// mark the 4th operand as being a CC register, and a "result"
|
|
mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
|
|
subtreeRoot->getValue(),/*def*/true);
|
|
|
|
if (computeBoolVal)
|
|
{ // recompute bool using the integer condition codes
|
|
movOpCode =
|
|
ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// FP condition: dest of FCMP should be some FCCn register
|
|
mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
|
|
mvec[0]->SetMachineOperand(0,MachineOperand::MO_CCRegister,
|
|
subtreeRoot->getValue());
|
|
mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->rightChild()->getValue());
|
|
|
|
if (computeBoolVal)
|
|
{// recompute bool using the FP condition codes
|
|
mustClearReg = true;
|
|
valueToMove = 1;
|
|
movOpCode = ChooseMovFpccInstruction(subtreeRoot);
|
|
}
|
|
}
|
|
|
|
if (computeBoolVal)
|
|
{
|
|
if (mustClearReg)
|
|
{// Unconditionally set register to 0
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(SETHI);
|
|
mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
|
|
s0);
|
|
mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->getValue());
|
|
}
|
|
|
|
// Now conditionally move `valueToMove' (0 or 1) into the register
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(movOpCode);
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
subtreeRoot->getValue());
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
|
|
valueToMove);
|
|
mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->getValue());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 43: // boolreg: VReg
|
|
case 44: // boolreg: Constant
|
|
numInstr = 0;
|
|
break;
|
|
|
|
case 51: // reg: Load(reg)
|
|
case 52: // reg: Load(ptrreg)
|
|
case 53: // reg: LoadIdx(reg,reg)
|
|
case 54: // reg: LoadIdx(ptrreg,reg)
|
|
mvec[0] = new MachineInstr(ChooseLoadInstruction(
|
|
subtreeRoot->getValue()->getType()));
|
|
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 55: // reg: GetElemPtr(reg)
|
|
case 56: // reg: GetElemPtrIdx(reg,reg)
|
|
if (subtreeRoot->parent() != NULL)
|
|
{
|
|
// Check if the parent was an array access.
|
|
// If so, we still need to generate this instruction.
|
|
MemAccessInst* memInst = (MemAccessInst*)
|
|
subtreeRoot->getInstruction();
|
|
const PointerType* ptrType =
|
|
(const PointerType*) memInst->getPtrOperand()->getType();
|
|
if (! ptrType->getValueType()->isArrayType())
|
|
{// we don't need a separate instr
|
|
numInstr = 0; // don't forward operand!
|
|
break;
|
|
}
|
|
}
|
|
// else in all other cases we need to a separate ADD instruction
|
|
mvec[0] = new MachineInstr(ADD);
|
|
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 57: // reg: Alloca: Implement as 2 instructions:
|
|
// sub %sp, tmp -> %sp
|
|
{ // add %sp, 0 -> result
|
|
Instruction* instr = subtreeRoot->getInstruction();
|
|
const PointerType* instrType = (const PointerType*) instr->getType();
|
|
assert(instrType->isPointerType());
|
|
int tsize = (int)
|
|
target.findOptimalStorageSize(instrType->getValueType());
|
|
assert(tsize != 0 && "Just to check when this can happen");
|
|
|
|
// Create a temporary Value to hold the constant type-size
|
|
ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
|
|
|
|
// Instruction 1: sub %sp, tsize -> %sp
|
|
// tsize is always constant, but it may have to be put into a
|
|
// register if it doesn't fit in the immediate field.
|
|
//
|
|
mvec[0] = new MachineInstr(SUB);
|
|
mvec[0]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
valueForTSize);
|
|
mvec[0]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
|
|
|
|
// Instruction 2: add %sp, 0 -> result
|
|
numInstr++;
|
|
mvec[1] = new MachineInstr(ADD);
|
|
mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
|
|
mvec[1]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
|
|
mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
instr);
|
|
break;
|
|
}
|
|
|
|
case 58: // reg: Alloca(reg): Implement as 3 instructions:
|
|
// mul num, typeSz -> tmp
|
|
// sub %sp, tmp -> %sp
|
|
{ // add %sp, 0 -> result
|
|
Instruction* instr = subtreeRoot->getInstruction();
|
|
const PointerType* instrType = (const PointerType*) instr->getType();
|
|
assert(instrType->isPointerType() &&
|
|
instrType->getValueType()->isArrayType());
|
|
const Type* eltType =
|
|
((ArrayType*) instrType->getValueType())->getElementType();
|
|
int tsize = (int) target.findOptimalStorageSize(eltType);
|
|
|
|
assert(tsize != 0 && "Just to check when this can happen");
|
|
// if (tsize == 0)
|
|
// {
|
|
// numInstr = 0;
|
|
// break;
|
|
// }
|
|
//else go on to create the instructions needed...
|
|
|
|
// Create a temporary Value to hold the constant type-size
|
|
ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
|
|
|
|
// Create a temporary value to hold `tmp'
|
|
Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
|
|
subtreeRoot->leftChild()->getValue(),
|
|
NULL /*could insert tsize here*/);
|
|
subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
|
|
|
|
// Instruction 1: mul numElements, typeSize -> tmp
|
|
mvec[0] = new MachineInstr(MULX);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
valueForTSize);
|
|
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
tmpInstr);
|
|
|
|
tmpInstr->addMachineInstruction(mvec[0]);
|
|
|
|
// Instruction 2: sub %sp, tmp -> %sp
|
|
numInstr++;
|
|
mvec[1] = new MachineInstr(SUB);
|
|
mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
|
|
mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
tmpInstr);
|
|
mvec[1]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
|
|
|
|
// Instruction 3: add %sp, 0 -> result
|
|
numInstr++;
|
|
mvec[2] = new MachineInstr(ADD);
|
|
mvec[2]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
|
|
mvec[2]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
|
|
mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
instr);
|
|
break;
|
|
}
|
|
|
|
case 61: // reg: Call
|
|
// Generate a call-indirect (i.e., JMPL) for now to expose
|
|
// the potential need for registers. If an absolute address
|
|
// is available, replace this with a CALL instruction.
|
|
// Mark both the indirection register and the return-address
|
|
// register as hidden virtual registers.
|
|
// Also, mark the operands of the Call and return value (if
|
|
// any) as implicit operands of the CALL machine instruction.
|
|
{
|
|
CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
|
|
Value *callee = callInstr->getCalledValue();
|
|
|
|
Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
|
|
callee, NULL);
|
|
Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
|
|
callInstr, NULL);
|
|
|
|
// Note temporary values in the machineInstrVec for the VM instr.
|
|
//
|
|
// WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses.
|
|
// The result value must go in slot N. This is assumed
|
|
// in register allocation.
|
|
//
|
|
callInstr->getMachineInstrVec().addTempValue(jmpAddrReg);
|
|
callInstr->getMachineInstrVec().addTempValue(retAddrReg);
|
|
|
|
// Generate the machine instruction and its operands
|
|
mvec[0] = new MachineInstr(JMPL);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
jmpAddrReg);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
|
|
(int64_t) 0);
|
|
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
retAddrReg);
|
|
|
|
// Add the call operands and return value as implicit refs
|
|
for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
|
|
if (callInstr->getOperand(i) != callee)
|
|
mvec[0]->addImplicitRef(callInstr->getOperand(i));
|
|
|
|
if (callInstr->getCalledMethod()->getReturnType() != Type::VoidTy)
|
|
mvec[0]->addImplicitRef(callInstr, /*isDef*/ true);
|
|
|
|
// NOTE: jmpAddrReg will be loaded by a different instruction generated
|
|
// by the final code generator, so we just mark the CALL instruction
|
|
// as computing that value.
|
|
// The retAddrReg is actually computed by the CALL instruction.
|
|
//
|
|
jmpAddrReg->addMachineInstruction(mvec[0]);
|
|
retAddrReg->addMachineInstruction(mvec[0]);
|
|
|
|
mvec[numInstr++] = new MachineInstr(NOP); // delay slot
|
|
break;
|
|
}
|
|
|
|
case 62: // reg: Shl(reg, reg)
|
|
opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral()
|
|
|| opType == Type::BoolTy
|
|
|| opType->isPointerType()&& "Shl unsupported for other types");
|
|
mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 63: // reg: Shr(reg, reg)
|
|
opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral()
|
|
|| opType == Type::BoolTy
|
|
|| opType->isPointerType() &&"Shr unsupported for other types");
|
|
mvec[0] = new MachineInstr((opType->isSigned()
|
|
? ((opType == Type::LongTy)? SRAX : SRA)
|
|
: ((opType == Type::LongTy)? SRLX : SRL)));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 64: // reg: Phi(reg,reg)
|
|
{ // This instruction has variable #operands, so resultPos is 0.
|
|
Instruction* phi = subtreeRoot->getInstruction();
|
|
mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->getValue());
|
|
for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
|
|
mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
|
|
phi->getOperand(i));
|
|
break;
|
|
}
|
|
case 71: // reg: VReg
|
|
case 72: // reg: Constant
|
|
numInstr = 0; // don't forward the value
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Unrecognized BURG rule");
|
|
numInstr = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (forwardOperandNum >= 0)
|
|
{ // We did not generate a machine instruction but need to use operand.
|
|
// If user is in the same tree, replace Value in its machine operand.
|
|
// If not, insert a copy instruction which should get coalesced away
|
|
// by register allocation.
|
|
if (subtreeRoot->parent() != NULL)
|
|
ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
|
|
else
|
|
{
|
|
MachineInstr *minstr1 = NULL, *minstr2 = NULL;
|
|
minstr1 = CreateCopyInstructionsByType(target,
|
|
subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
|
|
subtreeRoot->getInstruction(), minstr2);
|
|
assert(minstr1);
|
|
mvec[numInstr++] = minstr1;
|
|
if (minstr2 != NULL)
|
|
mvec[numInstr++] = minstr2;
|
|
}
|
|
}
|
|
|
|
if (! ThisIsAChainRule(ruleForNode))
|
|
numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
|
|
|
|
return numInstr;
|
|
}
|
|
|
|
|