1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/Sparc/SparcInstrSelection.cpp
2001-10-14 23:28:43 +00:00

2173 lines
77 KiB
C++

// $Id$
//***************************************************************************
// File:
// SparcInstrSelection.cpp
//
// Purpose:
// BURS instruction selection for SPARC V9 architecture.
//
// History:
// 7/02/01 - Vikram Adve - Created
//**************************************************************************/
#include "SparcInternals.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include "llvm/ConstPoolVals.h"
#include <math.h>
//******************** Internal Data Declarations ************************/
// to be used later
struct BranchPattern {
bool flipCondition; // should the sense of the test be reversed
BasicBlock* targetBB; // which basic block to branch to
MachineInstr* extraBranch; // if neither branch is fall-through, then this
// BA must be inserted after the cond'l one
};
//************************* Forward Declarations ***************************/
static void SetMemOperands_Internal (MachineInstr* minstr,
const InstructionNode* vmInstrNode,
Value* ptrVal,
Value* arrayOffsetVal,
const vector<ConstPoolVal*>& idxVec,
const TargetMachine& target);
//************************ Internal Functions ******************************/
// Convenience function to get the value of an integer constant, for an
// appropriate integer or non-integer type that can be held in an integer.
// The type of the argument must be the following:
// Signed or unsigned integer
// Boolean
// Pointer
//
// isValidConstant is set to true if a valid constant was found.
//
static int64_t
GetConstantValueAsSignedInt(const Value *V,
bool &isValidConstant)
{
if (!isa<ConstPoolVal>(V))
{
isValidConstant = false;
return 0;
}
isValidConstant = true;
if (V->getType() == Type::BoolTy)
return (int64_t) ((ConstPoolBool*)V)->getValue();
if (V->getType()->isIntegral())
{
if (V->getType()->isSigned())
return ((ConstPoolSInt*)V)->getValue();
assert(V->getType()->isUnsigned());
uint64_t Val = ((ConstPoolUInt*)V)->getValue();
if (Val < INT64_MAX) // then safe to cast to signed
return (int64_t)Val;
}
isValidConstant = false;
return 0;
}
//------------------------------------------------------------------------
// External Function: ThisIsAChainRule
//
// Purpose:
// Check if a given BURG rule is a chain rule.
//------------------------------------------------------------------------
extern bool
ThisIsAChainRule(int eruleno)
{
switch(eruleno)
{
case 111: // stmt: reg
case 113: // stmt: bool
case 123:
case 124:
case 125:
case 126:
case 127:
case 128:
case 129:
case 130:
case 131:
case 132:
case 133:
case 155:
case 221:
case 222:
case 241:
case 242:
case 243:
case 244:
return true; break;
default:
return false; break;
}
}
static inline MachineOpCode
ChooseBprInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode;
Instruction* setCCInstr =
((InstructionNode*) instrNode->leftChild())->getInstruction();
switch(setCCInstr->getOpcode())
{
case Instruction::SetEQ: opCode = BRZ; break;
case Instruction::SetNE: opCode = BRNZ; break;
case Instruction::SetLE: opCode = BRLEZ; break;
case Instruction::SetGE: opCode = BRGEZ; break;
case Instruction::SetLT: opCode = BRLZ; break;
case Instruction::SetGT: opCode = BRGZ; break;
default:
assert(0 && "Unrecognized VM instruction!");
opCode = INVALID_OPCODE;
break;
}
return opCode;
}
static inline MachineOpCode
ChooseBpccInstruction(const InstructionNode* instrNode,
const BinaryOperator* setCCInstr)
{
MachineOpCode opCode = INVALID_OPCODE;
bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
if (isSigned)
{
switch(setCCInstr->getOpcode())
{
case Instruction::SetEQ: opCode = BE; break;
case Instruction::SetNE: opCode = BNE; break;
case Instruction::SetLE: opCode = BLE; break;
case Instruction::SetGE: opCode = BGE; break;
case Instruction::SetLT: opCode = BL; break;
case Instruction::SetGT: opCode = BG; break;
default:
assert(0 && "Unrecognized VM instruction!");
break;
}
}
else
{
switch(setCCInstr->getOpcode())
{
case Instruction::SetEQ: opCode = BE; break;
case Instruction::SetNE: opCode = BNE; break;
case Instruction::SetLE: opCode = BLEU; break;
case Instruction::SetGE: opCode = BCC; break;
case Instruction::SetLT: opCode = BCS; break;
case Instruction::SetGT: opCode = BGU; break;
default:
assert(0 && "Unrecognized VM instruction!");
break;
}
}
return opCode;
}
static inline MachineOpCode
ChooseBFpccInstruction(const InstructionNode* instrNode,
const BinaryOperator* setCCInstr)
{
MachineOpCode opCode = INVALID_OPCODE;
switch(setCCInstr->getOpcode())
{
case Instruction::SetEQ: opCode = FBE; break;
case Instruction::SetNE: opCode = FBNE; break;
case Instruction::SetLE: opCode = FBLE; break;
case Instruction::SetGE: opCode = FBGE; break;
case Instruction::SetLT: opCode = FBL; break;
case Instruction::SetGT: opCode = FBG; break;
default:
assert(0 && "Unrecognized VM instruction!");
break;
}
return opCode;
}
static inline MachineOpCode
ChooseBccInstruction(const InstructionNode* instrNode,
bool& isFPBranch)
{
InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
const Type* setCCType = setCCInstr->getOperand(0)->getType();
isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
if (isFPBranch)
return ChooseBFpccInstruction(instrNode, setCCInstr);
else
return ChooseBpccInstruction(instrNode, setCCInstr);
}
static inline MachineOpCode
ChooseMovFpccInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
switch(instrNode->getInstruction()->getOpcode())
{
case Instruction::SetEQ: opCode = MOVFE; break;
case Instruction::SetNE: opCode = MOVFNE; break;
case Instruction::SetLE: opCode = MOVFLE; break;
case Instruction::SetGE: opCode = MOVFGE; break;
case Instruction::SetLT: opCode = MOVFL; break;
case Instruction::SetGT: opCode = MOVFG; break;
default:
assert(0 && "Unrecognized VM instruction!");
break;
}
return opCode;
}
// Assumes that SUBcc v1, v2 -> v3 has been executed.
// In most cases, we want to clear v3 and then follow it by instruction
// MOVcc 1 -> v3.
// Set mustClearReg=false if v3 need not be cleared before conditional move.
// Set valueToMove=0 if we want to conditionally move 0 instead of 1
// (i.e., we want to test inverse of a condition)
// (The latter two cases do not seem to arise because SetNE needs nothing.)
//
static MachineOpCode
ChooseMovpccAfterSub(const InstructionNode* instrNode,
bool& mustClearReg,
int& valueToMove)
{
MachineOpCode opCode = INVALID_OPCODE;
mustClearReg = true;
valueToMove = 1;
switch(instrNode->getInstruction()->getOpcode())
{
case Instruction::SetEQ: opCode = MOVE; break;
case Instruction::SetLE: opCode = MOVLE; break;
case Instruction::SetGE: opCode = MOVGE; break;
case Instruction::SetLT: opCode = MOVL; break;
case Instruction::SetGT: opCode = MOVG; break;
case Instruction::SetNE: assert(0 && "No move required!"); break;
default: assert(0 && "Unrecognized VM instr!"); break;
}
return opCode;
}
static inline MachineOpCode
ChooseConvertToFloatInstr(const InstructionNode* instrNode,
const Type* opType)
{
MachineOpCode opCode = INVALID_OPCODE;
switch(instrNode->getOpLabel())
{
case ToFloatTy:
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
opCode = FITOS;
else if (opType == Type::LongTy)
opCode = FXTOS;
else if (opType == Type::DoubleTy)
opCode = FDTOS;
else if (opType == Type::FloatTy)
;
else
assert(0 && "Cannot convert this type to FLOAT on SPARC");
break;
case ToDoubleTy:
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
opCode = FITOD;
else if (opType == Type::LongTy)
opCode = FXTOD;
else if (opType == Type::FloatTy)
opCode = FSTOD;
else if (opType == Type::DoubleTy)
;
else
assert(0 && "Cannot convert this type to DOUBLE on SPARC");
break;
default:
break;
}
return opCode;
}
static inline MachineOpCode
ChooseConvertToIntInstr(const InstructionNode* instrNode,
const Type* opType)
{
MachineOpCode opCode = INVALID_OPCODE;;
int instrType = (int) instrNode->getOpLabel();
if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
{
switch (opType->getPrimitiveID())
{
case Type::FloatTyID: opCode = FSTOI; break;
case Type::DoubleTyID: opCode = FDTOI; break;
default:
assert(0 && "Non-numeric non-bool type cannot be converted to Int");
break;
}
}
else if (instrType == ToLongTy)
{
switch (opType->getPrimitiveID())
{
case Type::FloatTyID: opCode = FSTOX; break;
case Type::DoubleTyID: opCode = FDTOX; break;
default:
assert(0 && "Non-numeric non-bool type cannot be converted to Long");
break;
}
}
else
assert(0 && "Should not get here, Mo!");
return opCode;
}
static inline MachineOpCode
ChooseAddInstructionByType(const Type* resultType)
{
MachineOpCode opCode = INVALID_OPCODE;
if (resultType->isIntegral() ||
isa<PointerType>(resultType) ||
isa<MethodType>(resultType) ||
resultType->isLabelType() ||
resultType == Type::BoolTy)
{
opCode = ADD;
}
else
switch(resultType->getPrimitiveID())
{
case Type::FloatTyID: opCode = FADDS; break;
case Type::DoubleTyID: opCode = FADDD; break;
default: assert(0 && "Invalid type for ADD instruction"); break;
}
return opCode;
}
static inline MachineOpCode
ChooseAddInstruction(const InstructionNode* instrNode)
{
return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
}
static inline MachineInstr*
CreateMovFloatInstruction(const InstructionNode* instrNode,
const Type* resultType)
{
MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
? FMOVS : FMOVD);
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
instrNode->leftChild()->getValue());
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
instrNode->getValue());
return minstr;
}
static inline MachineInstr*
CreateAddConstInstruction(const InstructionNode* instrNode)
{
MachineInstr* minstr = NULL;
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
assert(isa<ConstPoolVal>(constOp));
// Cases worth optimizing are:
// (1) Add with 0 for float or double: use an FMOV of appropriate type,
// instead of an FADD (1 vs 3 cycles). There is no integer MOV.
//
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType == Type::FloatTy ||
resultType == Type::DoubleTy)
{
double dval = ((ConstPoolFP*) constOp)->getValue();
if (dval == 0.0)
minstr = CreateMovFloatInstruction(instrNode, resultType);
}
return minstr;
}
static inline MachineOpCode
ChooseSubInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isIntegral() ||
resultType->isPointerType())
{
opCode = SUB;
}
else
switch(resultType->getPrimitiveID())
{
case Type::FloatTyID: opCode = FSUBS; break;
case Type::DoubleTyID: opCode = FSUBD; break;
default: assert(0 && "Invalid type for SUB instruction"); break;
}
return opCode;
}
static inline MachineInstr*
CreateSubConstInstruction(const InstructionNode* instrNode)
{
MachineInstr* minstr = NULL;
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
assert(isa<ConstPoolVal>(constOp));
// Cases worth optimizing are:
// (1) Sub with 0 for float or double: use an FMOV of appropriate type,
// instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
//
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType == Type::FloatTy ||
resultType == Type::DoubleTy)
{
double dval = ((ConstPoolFP*) constOp)->getValue();
if (dval == 0.0)
minstr = CreateMovFloatInstruction(instrNode, resultType);
}
return minstr;
}
static inline MachineOpCode
ChooseFcmpInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
switch(operand->getType()->getPrimitiveID()) {
case Type::FloatTyID: opCode = FCMPS; break;
case Type::DoubleTyID: opCode = FCMPD; break;
default: assert(0 && "Invalid type for FCMP instruction"); break;
}
return opCode;
}
// Assumes that leftArg and rightArg are both cast instructions.
//
static inline bool
BothFloatToDouble(const InstructionNode* instrNode)
{
InstrTreeNode* leftArg = instrNode->leftChild();
InstrTreeNode* rightArg = instrNode->rightChild();
InstrTreeNode* leftArgArg = leftArg->leftChild();
InstrTreeNode* rightArgArg = rightArg->leftChild();
assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
// Check if both arguments are floats cast to double
return (leftArg->getValue()->getType() == Type::DoubleTy &&
leftArgArg->getValue()->getType() == Type::FloatTy &&
rightArgArg->getValue()->getType() == Type::FloatTy);
}
static inline MachineOpCode
ChooseMulInstruction(const InstructionNode* instrNode,
bool checkCasts)
{
MachineOpCode opCode = INVALID_OPCODE;
if (checkCasts && BothFloatToDouble(instrNode))
{
return opCode = FSMULD;
}
// else fall through and use the regular multiply instructions
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isIntegral())
{
opCode = MULX;
}
else
switch(resultType->getPrimitiveID())
{
case Type::FloatTyID: opCode = FMULS; break;
case Type::DoubleTyID: opCode = FMULD; break;
default: assert(0 && "Invalid type for MUL instruction"); break;
}
return opCode;
}
static inline MachineInstr*
CreateIntNegInstruction(TargetMachine& target,
Value* vreg)
{
MachineInstr* minstr = new MachineInstr(SUB);
minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
return minstr;
}
static inline MachineInstr*
CreateMulConstInstruction(TargetMachine &target,
const InstructionNode* instrNode,
MachineInstr*& getMinstr2)
{
MachineInstr* minstr = NULL;
getMinstr2 = NULL;
bool needNeg = false;
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
assert(isa<ConstPoolVal>(constOp));
// Cases worth optimizing are:
// (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
// (2) Multiply by 2^x for integer types: replace with Shift
//
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isIntegral() || resultType->isPointerType())
{
unsigned pow;
bool isValidConst;
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
if (isValidConst)
{
bool needNeg = false;
if (C < 0)
{
needNeg = true;
C = -C;
}
if (C == 0 || C == 1)
{
minstr = new MachineInstr(ADD);
if (C == 0)
minstr->SetMachineOperand(0,
target.getRegInfo().getZeroRegNum());
else
minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
instrNode->leftChild()->getValue());
minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
}
else if (IsPowerOf2(C, pow))
{
minstr = new MachineInstr((resultType == Type::LongTy)
? SLLX : SLL);
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
instrNode->leftChild()->getValue());
minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
pow);
}
if (minstr && needNeg)
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
getMinstr2 = CreateIntNegInstruction(target,
instrNode->getValue());
}
}
}
else
{
if (resultType == Type::FloatTy ||
resultType == Type::DoubleTy)
{
bool isValidConst;
double dval = ((ConstPoolFP*) constOp)->getValue();
if (isValidConst)
{
if (dval == 0)
{
minstr = new MachineInstr((resultType == Type::FloatTy)
? FITOS : FITOD);
minstr->SetMachineOperand(0,
target.getRegInfo().getZeroRegNum());
}
else if (fabs(dval) == 1)
{
bool needNeg = (dval < 0);
MachineOpCode opCode = needNeg
? (resultType == Type::FloatTy? FNEGS : FNEGD)
: (resultType == Type::FloatTy? FMOVS : FMOVD);
minstr = new MachineInstr(opCode);
minstr->SetMachineOperand(0,
MachineOperand::MO_VirtualRegister,
instrNode->leftChild()->getValue());
}
}
}
}
if (minstr != NULL)
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
instrNode->getValue());
return minstr;
}
static inline MachineOpCode
ChooseDivInstruction(TargetMachine &target,
const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isIntegral())
opCode = resultType->isSigned()? SDIVX : UDIVX;
else
switch(resultType->getPrimitiveID())
{
case Type::FloatTyID: opCode = FDIVS; break;
case Type::DoubleTyID: opCode = FDIVD; break;
default: assert(0 && "Invalid type for DIV instruction"); break;
}
return opCode;
}
static inline MachineInstr*
CreateDivConstInstruction(TargetMachine &target,
const InstructionNode* instrNode,
MachineInstr*& getMinstr2)
{
MachineInstr* minstr = NULL;
getMinstr2 = NULL;
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
assert(isa<ConstPoolVal>(constOp));
// Cases worth optimizing are:
// (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
// (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
//
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isIntegral())
{
unsigned pow;
bool isValidConst;
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
if (isValidConst)
{
bool needNeg = false;
if (C < 0)
{
needNeg = true;
C = -C;
}
if (C == 1)
{
minstr = new MachineInstr(ADD);
minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
instrNode->leftChild()->getValue());
minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
}
else if (IsPowerOf2(C, pow))
{
MachineOpCode opCode= ((resultType->isSigned())
? (resultType==Type::LongTy)? SRAX : SRA
: (resultType==Type::LongTy)? SRLX : SRL);
minstr = new MachineInstr(opCode);
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
instrNode->leftChild()->getValue());
minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
pow);
}
if (minstr && needNeg)
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
getMinstr2 = CreateIntNegInstruction(target,
instrNode->getValue());
}
}
}
else
{
if (resultType == Type::FloatTy ||
resultType == Type::DoubleTy)
{
bool isValidConst;
double dval = ((ConstPoolFP*) constOp)->getValue();
if (isValidConst && fabs(dval) == 1)
{
bool needNeg = (dval < 0);
MachineOpCode opCode = needNeg
? (resultType == Type::FloatTy? FNEGS : FNEGD)
: (resultType == Type::FloatTy? FMOVS : FMOVD);
minstr = new MachineInstr(opCode);
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
instrNode->leftChild()->getValue());
}
}
}
if (minstr != NULL)
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
instrNode->getValue());
return minstr;
}
static inline MachineOpCode
ChooseLoadInstruction(const Type *DestTy)
{
switch (DestTy->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID: return LDUB;
case Type::SByteTyID: return LDSB;
case Type::UShortTyID: return LDUH;
case Type::ShortTyID: return LDSH;
case Type::UIntTyID: return LDUW;
case Type::IntTyID: return LDSW;
case Type::PointerTyID:
case Type::ULongTyID:
case Type::LongTyID: return LDX;
case Type::FloatTyID: return LD;
case Type::DoubleTyID: return LDD;
default: assert(0 && "Invalid type for Load instruction");
}
return 0;
}
static inline MachineOpCode
ChooseStoreInstruction(const Type *DestTy)
{
switch (DestTy->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: return STB;
case Type::UShortTyID:
case Type::ShortTyID: return STH;
case Type::UIntTyID:
case Type::IntTyID: return STW;
case Type::PointerTyID:
case Type::ULongTyID:
case Type::LongTyID: return STX;
case Type::FloatTyID: return ST;
case Type::DoubleTyID: return STD;
default: assert(0 && "Invalid type for Store instruction");
}
return 0;
}
//------------------------------------------------------------------------
// Function SetOperandsForMemInstr
//
// Choose addressing mode for the given load or store instruction.
// Use [reg+reg] if it is an indexed reference, and the index offset is
// not a constant or if it cannot fit in the offset field.
// Use [reg+offset] in all other cases.
//
// This assumes that all array refs are "lowered" to one of these forms:
// %x = load (subarray*) ptr, constant ; single constant offset
// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
// Generally, this should happen via strength reduction + LICM.
// Also, strength reduction should take care of using the same register for
// the loop index variable and an array index, when that is profitable.
//------------------------------------------------------------------------
static void
SetOperandsForMemInstr(MachineInstr* minstr,
const InstructionNode* vmInstrNode,
const TargetMachine& target)
{
MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
// Variables to hold the index vector, ptr value, and offset value.
// The major work here is to extract these for all 3 instruction types
// and then call the common function SetMemOperands_Internal().
//
const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
vector<ConstPoolVal*>* newIdxVec = NULL;
Value* ptrVal;
Value* arrayOffsetVal = NULL;
// Test if a GetElemPtr instruction is being folded into this mem instrn.
// If so, it will be in the left child for Load and GetElemPtr,
// and in the right child for Store instructions.
//
InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
? vmInstrNode->rightChild()
: vmInstrNode->leftChild());
if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
ptrChild->getOpLabel() == GetElemPtrIdx)
{
// There is a GetElemPtr instruction and there may be a chain of
// more than one. Use the pointer value of the last one in the chain.
// Fold the index vectors from the entire chain and from the mem
// instruction into one single index vector.
// Finally, we never fold for an array instruction so make that NULL.
newIdxVec = new vector<ConstPoolVal*>;
ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
idxVec = newIdxVec;
assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
&& "GetElemPtr cannot be folded into array refs in selection");
}
else
{
// There is no GetElemPtr instruction.
// Use the pointer value and the index vector from the Mem instruction.
// If it is an array reference, get the array offset value.
//
ptrVal = memInst->getPtrOperand();
const Type* opType =
((const PointerType*) ptrVal->getType())->getValueType();
if (opType->isArrayType())
{
assert((memInst->getNumOperands()
== (unsigned) 1 + memInst->getFirstOffsetIdx())
&& "Array refs must be lowered before Instruction Selection");
arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
}
}
SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
*idxVec, target);
if (newIdxVec != NULL)
delete newIdxVec;
}
static void
SetMemOperands_Internal(MachineInstr* minstr,
const InstructionNode* vmInstrNode,
Value* ptrVal,
Value* arrayOffsetVal,
const vector<ConstPoolVal*>& idxVec,
const TargetMachine& target)
{
MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
// Initialize so we default to storing the offset in a register.
int64_t smallConstOffset;
Value* valueForRegOffset = NULL;
MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
// Check if there is an index vector and if so, if it translates to
// a small enough constant to fit in the immediate-offset field.
//
if (idxVec.size() > 0)
{
bool isConstantOffset = false;
unsigned offset;
const PointerType* ptrType = (PointerType*) ptrVal->getType();
if (ptrType->getValueType()->isStructType())
{
// the offset is always constant for structs
isConstantOffset = true;
// Compute the offset value using the index vector
offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
}
else
{
// It must be an array ref. Check if the offset is a constant,
// and that the indexing has been lowered to a single offset.
//
assert(ptrType->getValueType()->isArrayType());
assert(arrayOffsetVal != NULL
&& "Expect to be given Value* for array offsets");
if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(arrayOffsetVal))
{
isConstantOffset = true; // always constant for structs
assert(arrayOffsetVal->getType()->isIntegral());
offset = (CPV->getType()->isSigned()
? ((ConstPoolSInt*)CPV)->getValue()
: (int64_t) ((ConstPoolUInt*)CPV)->getValue());
}
else
{
valueForRegOffset = arrayOffsetVal;
}
}
if (isConstantOffset)
{
// create a virtual register for the constant
valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
}
}
else
{
offsetOpType = MachineOperand::MO_SignExtendedImmed;
smallConstOffset = 0;
}
// Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
// It is the left child in the instruction tree in all cases.
Value* leftVal = vmInstrNode->leftChild()->getValue();
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
// Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
// Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
//
unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
if (offsetOpType == MachineOperand::MO_VirtualRegister)
{
assert(valueForRegOffset != NULL);
minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
}
else
minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
if (memInst->getOpcode() == Instruction::Store)
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
else
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
vmInstrNode->getValue());
}
static inline MachineInstr*
CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest)
{
MachineInstr* minstr;
if (isSigned)
{
minstr = new MachineInstr(SETSW);
minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
}
else
{
minstr = new MachineInstr(SETUW);
minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
}
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
return minstr;
}
// Create an instruction sequence to load a constant into a register.
// This always creates either one or two instructions.
// If two instructions are created, the second one is returned in getMinstr2
//
static MachineInstr*
CreateLoadConstInstr(const TargetMachine &target,
Instruction* vmInstr,
Value* val,
Instruction* dest,
MachineInstr*& getMinstr2)
{
assert(isa<ConstPoolVal>(val));
MachineInstr* minstr1 = NULL;
getMinstr2 = NULL;
// Use a "set" instruction for known constants that can go in an integer reg.
// Use a "set" instruction followed by a int-to-float conversion for known
// constants that must go in a floating point reg but have an integer value.
// Use a "load" instruction for all other constants, in particular,
// floating point constants.
//
const Type* valType = val->getType();
if (valType->isIntegral() || valType == Type::BoolTy)
{
bool isValidConstant;
int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
assert(isValidConstant && "Unrecognized constant");
minstr1 = CreateIntSetInstruction(C, valType->isSigned(), dest);
}
else
{
#undef MOVE_INT_TO_FP_REG_AVAILABLE
#ifdef MOVE_INT_TO_FP_REG_AVAILABLE
//
// This code was written to generate the following sequence:
// SET[SU]W <int-const> <int-reg>
// FITO[SD] <int-reg> <fp-reg>
// (it really should have moved the int-reg to an fp-reg and then FITOS).
// But for now the only way to move a value from an int-reg to an fp-reg
// is via memory. Leave this code here but unused.
//
assert(valType == Type::FloatTy || valType == Type::DoubleTy);
double dval = ((ConstPoolFP*) val)->getValue();
if (dval == (int64_t) dval)
{
// The constant actually has an integer value, so use a
// [set; int-to-float] sequence instead of a load instruction.
//
TmpInstruction* addrReg = NULL;
if (dval != 0.0)
{ // First, create an integer constant of the same value as dval
ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
(int64_t) dval);
// Create another TmpInstruction for the hidden integer register
addrReg = new TmpInstruction(Instruction::UserOp1, ival, NULL);
vmInstr->getMachineInstrVec().addTempValue(addrReg);
// Create the `SET' instruction
minstr1 = CreateIntSetInstruction((int64_t)dval, true, addrReg);
addrReg->addMachineInstruction(minstr1);
}
// In which variable do we put the second instruction?
MachineInstr*& instr2 = (minstr1)? getMinstr2 : minstr1;
// Create the int-to-float instruction
instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
if (dval == 0.0)
instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
else
instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
addrReg);
instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
dest);
}
else
#endif /*MOVE_INT_TO_FP_REG_AVAILABLE*/
{
// Make an instruction sequence to load the constant, viz:
// SETSW <addr-of-constant>, addrReg
// LOAD /*addr*/ addrReg, /*offset*/ 0, dest
// set the offset field to 0.
//
int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
// Create another TmpInstruction for the hidden integer register
TmpInstruction* addrReg =
new TmpInstruction(Instruction::UserOp1, val, NULL);
vmInstr->getMachineInstrVec().addTempValue(addrReg);
minstr1 = new MachineInstr(SETUW);
minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val);
minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
addrReg);
addrReg->addMachineInstruction(minstr1);
getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType()));
getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
addrReg);
getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed,
zeroOffset);
getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
dest);
}
}
assert(minstr1);
return minstr1;
}
TmpInstruction*
InsertCodeToLoadConstant(ConstPoolVal* opValue,
Instruction* vmInstr,
vector<MachineInstr*>& loadConstVec,
TargetMachine& target)
{
// value is constant and must be loaded into a register.
// First, create a tmp virtual register (TmpInstruction)
// to hold the constant.
// This will replace the constant operand in `minstr'.
TmpInstruction* tmpReg =
new TmpInstruction(Instruction::UserOp1, opValue, NULL);
vmInstr->getMachineInstrVec().addTempValue(tmpReg);
MachineInstr *minstr1, *minstr2;
minstr1 = CreateLoadConstInstr(target, vmInstr,
opValue, tmpReg, minstr2);
loadConstVec.push_back(minstr1);
if (minstr2 != NULL)
loadConstVec.push_back(minstr2);
tmpReg->addMachineInstruction(loadConstVec.back());
return tmpReg;
}
// Special handling for constant operands:
// -- if the constant is 0, use the hardwired 0 register, if any;
// -- if the constant is of float or double type but has an integer value,
// use int-to-float conversion instruction instead of generating a load;
// -- if the constant fits in the IMMEDIATE field, use that field;
// -- else insert instructions to put the constant into a register, either
// directly or by loading explicitly from the constant pool.
//
static unsigned
FixConstantOperands(const InstructionNode* vmInstrNode,
MachineInstr** mvec,
unsigned numInstr,
TargetMachine& target)
{
vector<MachineInstr*> loadConstVec;
loadConstVec.reserve(MAX_INSTR_PER_VMINSTR);
Instruction* vmInstr = vmInstrNode->getInstruction();
for (unsigned i=0; i < numInstr; i++)
{
MachineInstr* minstr = mvec[i];
const MachineInstrDescriptor& instrDesc =
target.getInstrInfo().getDescriptor(minstr->getOpCode());
for (unsigned op=0; op < minstr->getNumOperands(); op++)
{
const MachineOperand& mop = minstr->getOperand(op);
// skip the result position (for efficiency below) and any other
// positions already marked as not a virtual register
if (instrDesc.resultPos == (int) op ||
mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
mop.getVRegValue() == NULL)
{
continue;
}
Value* opValue = mop.getVRegValue();
if (isa<ConstPoolVal>(opValue))
{
unsigned int machineRegNum;
int64_t immedValue;
MachineOperand::MachineOperandType opType =
ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
/*canUseImmed*/ (op == 1),
machineRegNum, immedValue);
if (opType == MachineOperand::MO_MachineRegister)
minstr->SetMachineOperand(op, machineRegNum);
else if (opType == MachineOperand::MO_VirtualRegister)
{
TmpInstruction* tmpReg =
InsertCodeToLoadConstant((ConstPoolVal*) opValue,
vmInstr, loadConstVec, target);
minstr->SetMachineOperand(op, opType, tmpReg);
}
else
minstr->SetMachineOperand(op, opType, immedValue);
}
}
//
// Also, check for implicit operands used (not those defined) by the
// machine instruction. These include:
// -- arguments to a Call
// -- return value of a Return
// Any such operand that is a constant value needs to be fixed also.
// The current instructions with implicit refs (viz., Call and Return)
// have no immediate fields, so the constant always needs to be loaded
// into a register.
//
for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
if (isa<ConstPoolVal>(minstr->getImplicitRef(i)))
{
TmpInstruction* tmpReg = InsertCodeToLoadConstant((ConstPoolVal*)
minstr->getImplicitRef(i),
vmInstr, loadConstVec, target);
minstr->setImplicitRef(i, tmpReg);
}
}
//
// Finally, inserted the generated instructions in the vector
// to be returned.
//
unsigned numNew = loadConstVec.size();
if (numNew > 0)
{
// Insert the new instructions *before* the old ones by moving
// the old ones over `numNew' positions (last-to-first, of course!).
// We do check *after* returning that we did not exceed the vector mvec.
for (int i=numInstr-1; i >= 0; i--)
mvec[i+numNew] = mvec[i];
for (unsigned i=0; i < numNew; i++)
mvec[i] = loadConstVec[i];
}
return (numInstr + numNew);
}
//
// Substitute operand `operandNum' of the instruction in node `treeNode'
// in place of the use(s) of that instruction in node `parent'.
// Check both explicit and implicit operands!
//
static void
ForwardOperand(InstructionNode* treeNode,
InstrTreeNode* parent,
int operandNum)
{
assert(treeNode && parent && "Invalid invocation of ForwardOperand");
Instruction* unusedOp = treeNode->getInstruction();
Value* fwdOp = unusedOp->getOperand(operandNum);
// The parent itself may be a list node, so find the real parent instruction
while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
{
parent = parent->parent();
assert(parent && "ERROR: Non-instruction node has no parent in tree.");
}
InstructionNode* parentInstrNode = (InstructionNode*) parent;
Instruction* userInstr = parentInstrNode->getInstruction();
MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
{
MachineInstr* minstr = mvec[i];
for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
{
const MachineOperand& mop = minstr->getOperand(i);
if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
mop.getVRegValue() == unusedOp)
{
minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
fwdOp);
}
}
for (unsigned i=0, numOps=minstr->getNumImplicitRefs(); i < numOps; ++i)
if (minstr->getImplicitRef(i) == unusedOp)
minstr->setImplicitRef(i, fwdOp, minstr->implicitRefIsDefined(i));
}
}
MachineInstr*
CreateCopyInstructionsByType(const TargetMachine& target,
Value* src,
Instruction* dest,
MachineInstr*& getMinstr2)
{
getMinstr2 = NULL; // initialize second return value
MachineInstr* minstr1 = NULL;
const Type* resultType = dest->getType();
MachineOpCode opCode = ChooseAddInstructionByType(resultType);
if (opCode == INVALID_OPCODE)
{
assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
return NULL;
}
// if `src' is a constant that doesn't fit in the immed field, generate
// a load instruction instead of an add
if (isa<ConstPoolVal>(src))
{
unsigned int machineRegNum;
int64_t immedValue;
MachineOperand::MachineOperandType opType =
ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
machineRegNum, immedValue);
if (opType == MachineOperand::MO_VirtualRegister)
{ // value is constant and cannot fit in immed field for the ADD
minstr1 = CreateLoadConstInstr(target, dest, src, dest, getMinstr2);
}
}
if (minstr1 == NULL)
{ // Create the appropriate add instruction.
// Make `src' the second operand, in case it is a constant
// Use (unsigned long) 0 for a NULL pointer value.
//
const Type* nullValueType =
(resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
: resultType;
minstr1 = new MachineInstr(opCode);
minstr1->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
ConstPoolVal::getNullConstant(nullValueType));
minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
minstr1->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
}
return minstr1;
}
// This function is currently unused and incomplete but will be
// used if we have a linear layout of basic blocks in LLVM code.
// It decides which branch should fall-through, and whether an
// extra unconditional branch is needed (when neither falls through).
//
void
ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
{
BranchInst* brInstr = (BranchInst*) vmInstr;
brPattern.flipCondition = false;
brPattern.targetBB = brInstr->getSuccessor(0);
brPattern.extraBranch = NULL;
assert(brInstr->getNumSuccessors() > 1 &&
"Unnecessary analysis for unconditional branch");
assert(0 && "Fold branches in peephole optimization");
}
//******************* Externally Visible Functions *************************/
//------------------------------------------------------------------------
// External Function: GetInstructionsByRule
//
// Purpose:
// Choose machine instructions for the SPARC according to the
// patterns chosen by the BURG-generated parser.
//------------------------------------------------------------------------
unsigned
GetInstructionsByRule(InstructionNode* subtreeRoot,
int ruleForNode,
short* nts,
TargetMachine &target,
MachineInstr** mvec)
{
int numInstr = 1; // initialize for common case
bool checkCast = false; // initialize here to use fall-through
Value *leftVal, *rightVal;
const Type* opType;
int nextRule;
int forwardOperandNum = -1;
int64_t s0=0, s8=8; // variables holding constants to avoid
uint64_t u0=0; // overloading ambiguities below
mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
//
// Let's check for chain rules outside the switch so that we don't have
// to duplicate the list of chain rule production numbers here again
//
if (ThisIsAChainRule(ruleForNode))
{
// Chain rules have a single nonterminal on the RHS.
// Get the rule that matches the RHS non-terminal and use that instead.
//
assert(nts[0] && ! nts[1]
&& "A chain rule should have only one RHS non-terminal!");
nextRule = burm_rule(subtreeRoot->state, nts[0]);
nts = burm_nts[nextRule];
numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
}
else
{
switch(ruleForNode) {
case 1: // stmt: Ret
case 2: // stmt: RetValue(reg)
// NOTE: Prepass of register allocation is responsible
// for moving return value to appropriate register.
// Mark the return-address register as a hidden virtual reg.
// Mark the return value register as an implicit ref of
// the machine instruction.
{
ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction();
assert(returnInstr->getOpcode() == Instruction::Ret);
Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
returnInstr, NULL);
returnInstr->getMachineInstrVec().addTempValue(returnReg);
mvec[0] = new MachineInstr(RETURN);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
returnReg);
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s8);
if (returnInstr->getReturnValue() != NULL)
mvec[0]->addImplicitRef(returnInstr->getReturnValue());
returnReg->addMachineInstruction(mvec[0]);
mvec[numInstr++] = new MachineInstr(NOP); // delay slot
break;
}
case 3: // stmt: Store(reg,reg)
case 4: // stmt: Store(reg,ptrreg)
mvec[0] = new MachineInstr(
ChooseStoreInstruction(
subtreeRoot->leftChild()->getValue()->getType()));
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
break;
case 5: // stmt: BrUncond
mvec[0] = new MachineInstr(BA);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
(Value*)NULL);
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
// delay slot
mvec[numInstr++] = new MachineInstr(NOP);
break;
case 206: // stmt: BrCond(setCCconst)
// setCCconst => boolean was computed with `%b = setCC type reg1 const'
// If the constant is ZERO, we can use the branch-on-integer-register
// instructions and avoid the SUBcc instruction entirely.
// Otherwise this is just the same as case 5, so just fall through.
{
InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
assert(constNode &&
constNode->getNodeType() ==InstrTreeNode::NTConstNode);
ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
bool isValidConst;
if ((constVal->getType()->isIntegral()
|| constVal->getType()->isPointerType())
&& GetConstantValueAsSignedInt(constVal, isValidConst) == 0
&& isValidConst)
{
// That constant is a zero after all...
// Use the left child of setCC as the first argument!
mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
subtreeRoot->leftChild()->leftChild()->getValue());
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
// delay slot
mvec[numInstr++] = new MachineInstr(NOP);
// false branch
int n = numInstr++;
mvec[n] = new MachineInstr(BA);
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
(Value*) NULL);
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
// delay slot
mvec[numInstr++] = new MachineInstr(NOP);
break;
}
// ELSE FALL THROUGH
}
case 6: // stmt: BrCond(bool)
// bool => boolean was computed with some boolean operator
// (SetCC, Not, ...). We need to check whether the type was a FP,
// signed int or unsigned int, and check the branching condition in
// order to choose the branch to use.
//
{
bool isFPBranch;
mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
isFPBranch));
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
subtreeRoot->leftChild()->getValue());
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
// delay slot
mvec[numInstr++] = new MachineInstr(NOP);
// false branch
int n = numInstr++;
mvec[n] = new MachineInstr(BA);
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
(Value*) NULL);
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
// delay slot
mvec[numInstr++] = new MachineInstr(NOP);
break;
}
case 208: // stmt: BrCond(boolconst)
{
// boolconst => boolean is a constant; use BA to first or second label
ConstPoolVal* constVal =
cast<ConstPoolVal>(subtreeRoot->leftChild()->getValue());
unsigned dest = ((ConstPoolBool*) constVal)->getValue()? 0 : 1;
mvec[0] = new MachineInstr(BA);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
(Value*) NULL);
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
// delay slot
mvec[numInstr++] = new MachineInstr(NOP);
break;
}
case 8: // stmt: BrCond(boolreg)
// boolreg => boolean is stored in an existing register.
// Just use the branch-on-integer-register instruction!
//
{
mvec[0] = new MachineInstr(BRNZ);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
subtreeRoot->leftChild()->getValue());
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
// delay slot
mvec[numInstr++] = new MachineInstr(NOP); // delay slot
// false branch
int n = numInstr++;
mvec[n] = new MachineInstr(BA);
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
(Value*) NULL);
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
// delay slot
mvec[numInstr++] = new MachineInstr(NOP);
break;
}
case 9: // stmt: Switch(reg)
assert(0 && "*** SWITCH instruction is not implemented yet.");
numInstr = 0;
break;
case 10: // reg: VRegList(reg, reg)
assert(0 && "VRegList should never be the topmost non-chain rule");
break;
case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
mvec[0] = new MachineInstr(XNOR);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
subtreeRoot->leftChild()->getValue());
mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
subtreeRoot->getValue());
break;
case 322: // reg: ToBoolTy(bool):
case 22: // reg: ToBoolTy(reg):
opType = subtreeRoot->leftChild()->getValue()->getType();
assert(opType->isIntegral() || opType == Type::BoolTy);
numInstr = 0;
forwardOperandNum = 0;
break;
case 23: // reg: ToUByteTy(reg)
case 25: // reg: ToUShortTy(reg)
case 27: // reg: ToUIntTy(reg)
case 29: // reg: ToULongTy(reg)
opType = subtreeRoot->leftChild()->getValue()->getType();
assert(opType->isIntegral() ||
opType->isPointerType() ||
opType == Type::BoolTy && "Cast is illegal for other types");
numInstr = 0;
forwardOperandNum = 0;
break;
case 24: // reg: ToSByteTy(reg)
case 26: // reg: ToShortTy(reg)
case 28: // reg: ToIntTy(reg)
case 30: // reg: ToLongTy(reg)
opType = subtreeRoot->leftChild()->getValue()->getType();
if (opType->isIntegral() || opType == Type::BoolTy)
{
numInstr = 0;
forwardOperandNum = 0;
}
else
{
mvec[0] = new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,
opType));
Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
}
break;
case 31: // reg: ToFloatTy(reg):
case 32: // reg: ToDoubleTy(reg):
case 232: // reg: ToDoubleTy(Constant):
// If this instruction has a parent (a user) in the tree
// and the user is translated as an FsMULd instruction,
// then the cast is unnecessary. So check that first.
// In the future, we'll want to do the same for the FdMULq instruction,
// so do the check here instead of only for ToFloatTy(reg).
//
if (subtreeRoot->parent() != NULL &&
((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
{
numInstr = 0;
forwardOperandNum = 0;
}
else
{
opType = subtreeRoot->leftChild()->getValue()->getType();
MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
if (opCode == INVALID_OPCODE) // no conversion needed
{
numInstr = 0;
forwardOperandNum = 0;
}
else
{
mvec[0] = new MachineInstr(opCode);
Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
}
}
break;
case 19: // reg: ToArrayTy(reg):
case 20: // reg: ToPointerTy(reg):
numInstr = 0;
forwardOperandNum = 0;
break;
case 233: // reg: Add(reg, Constant)
mvec[0] = CreateAddConstInstruction(subtreeRoot);
if (mvec[0] != NULL)
break;
// ELSE FALL THROUGH
case 33: // reg: Add(reg, reg)
mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 234: // reg: Sub(reg, Constant)
mvec[0] = CreateSubConstInstruction(subtreeRoot);
if (mvec[0] != NULL)
break;
// ELSE FALL THROUGH
case 34: // reg: Sub(reg, reg)
mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 135: // reg: Mul(todouble, todouble)
checkCast = true;
// FALL THROUGH
case 35: // reg: Mul(reg, reg)
mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 335: // reg: Mul(todouble, todoubleConst)
checkCast = true;
// FALL THROUGH
case 235: // reg: Mul(reg, Constant)
mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
if (mvec[0] == NULL)
{
mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
checkCast));
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
}
else
if (mvec[1] != NULL)
++numInstr;
break;
case 236: // reg: Div(reg, Constant)
mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
if (mvec[0] != NULL)
{
if (mvec[1] != NULL)
++numInstr;
}
else
// ELSE FALL THROUGH
case 36: // reg: Div(reg, reg)
mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 37: // reg: Rem(reg, reg)
case 237: // reg: Rem(reg, Constant)
assert(0 && "REM instruction unimplemented for the SPARC.");
break;
case 38: // reg: And(reg, reg)
case 238: // reg: And(reg, Constant)
mvec[0] = new MachineInstr(AND);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 138: // reg: And(reg, not)
mvec[0] = new MachineInstr(ANDN);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 39: // reg: Or(reg, reg)
case 239: // reg: Or(reg, Constant)
mvec[0] = new MachineInstr(ORN);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 139: // reg: Or(reg, not)
mvec[0] = new MachineInstr(ORN);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 40: // reg: Xor(reg, reg)
case 240: // reg: Xor(reg, Constant)
mvec[0] = new MachineInstr(XOR);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 140: // reg: Xor(reg, not)
mvec[0] = new MachineInstr(XNOR);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 41: // boolconst: SetCC(reg, Constant)
// Check if this is an integer comparison, and
// there is a parent, and the parent decided to use
// a branch-on-integer-register instead of branch-on-condition-code.
// If so, the SUBcc instruction is not required.
// (However, we must still check for constants to be loaded from
// the constant pool so that such a load can be associated with
// this instruction.)
//
// Otherwise this is just the same as case 42, so just fall through.
//
if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
subtreeRoot->parent() != NULL)
{
InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
const vector<MachineInstr*>&
minstrVec = parent->getInstruction()->getMachineInstrVec();
MachineOpCode parentOpCode;
if (parent->getInstruction()->getOpcode() == Instruction::Br &&
(parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
parentOpCode <= BRGEZ)
{
numInstr = 0; // don't forward the operand!
break;
}
}
// ELSE FALL THROUGH
case 42: // bool: SetCC(reg, reg):
{
// If result of the SetCC is only used for a single branch, we can
// discard the result. Otherwise, the boolean value must go into
// an integer register.
//
bool keepBoolVal = (subtreeRoot->parent() == NULL ||
((InstructionNode*) subtreeRoot->parent())
->getInstruction()->getOpcode() !=Instruction::Br);
bool subValIsBoolVal =
subtreeRoot->getInstruction()->getOpcode() == Instruction::SetNE;
bool keepSubVal = keepBoolVal && subValIsBoolVal;
bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
bool mustClearReg;
int valueToMove;
MachineOpCode movOpCode;
if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
{
// Integer condition: dest. should be %g0 or an integer register.
// If result must be saved but condition is not SetEQ then we need
// a separate instruction to compute the bool result, so discard
// result of SUBcc instruction anyway.
//
mvec[0] = new MachineInstr(SUBcc);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
// mark the 4th operand as being a CC register, and a "result"
mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
subtreeRoot->getValue(),/*def*/true);
if (computeBoolVal)
{ // recompute bool using the integer condition codes
movOpCode =
ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
}
}
else
{
// FP condition: dest of FCMP should be some FCCn register
mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
mvec[0]->SetMachineOperand(0,MachineOperand::MO_CCRegister,
subtreeRoot->getValue());
mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
subtreeRoot->leftChild()->getValue());
mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
subtreeRoot->rightChild()->getValue());
if (computeBoolVal)
{// recompute bool using the FP condition codes
mustClearReg = true;
valueToMove = 1;
movOpCode = ChooseMovFpccInstruction(subtreeRoot);
}
}
if (computeBoolVal)
{
if (mustClearReg)
{// Unconditionally set register to 0
int n = numInstr++;
mvec[n] = new MachineInstr(SETHI);
mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
s0);
mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
subtreeRoot->getValue());
}
// Now conditionally move `valueToMove' (0 or 1) into the register
int n = numInstr++;
mvec[n] = new MachineInstr(movOpCode);
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
subtreeRoot->getValue());
mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
valueToMove);
mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
subtreeRoot->getValue());
}
break;
}
case 43: // boolreg: VReg
case 44: // boolreg: Constant
numInstr = 0;
break;
case 51: // reg: Load(reg)
case 52: // reg: Load(ptrreg)
case 53: // reg: LoadIdx(reg,reg)
case 54: // reg: LoadIdx(ptrreg,reg)
mvec[0] = new MachineInstr(ChooseLoadInstruction(
subtreeRoot->getValue()->getType()));
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
break;
case 55: // reg: GetElemPtr(reg)
case 56: // reg: GetElemPtrIdx(reg,reg)
if (subtreeRoot->parent() != NULL)
{
// Check if the parent was an array access.
// If so, we still need to generate this instruction.
MemAccessInst* memInst = (MemAccessInst*)
subtreeRoot->getInstruction();
const PointerType* ptrType =
(const PointerType*) memInst->getPtrOperand()->getType();
if (! ptrType->getValueType()->isArrayType())
{// we don't need a separate instr
numInstr = 0; // don't forward operand!
break;
}
}
// else in all other cases we need to a separate ADD instruction
mvec[0] = new MachineInstr(ADD);
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
break;
case 57: // reg: Alloca: Implement as 2 instructions:
// sub %sp, tmp -> %sp
{ // add %sp, 0 -> result
Instruction* instr = subtreeRoot->getInstruction();
const PointerType* instrType = (const PointerType*) instr->getType();
assert(instrType->isPointerType());
int tsize = (int)
target.findOptimalStorageSize(instrType->getValueType());
assert(tsize != 0 && "Just to check when this can happen");
// Create a temporary Value to hold the constant type-size
ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
// Instruction 1: sub %sp, tsize -> %sp
// tsize is always constant, but it may have to be put into a
// register if it doesn't fit in the immediate field.
//
mvec[0] = new MachineInstr(SUB);
mvec[0]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
valueForTSize);
mvec[0]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
// Instruction 2: add %sp, 0 -> result
numInstr++;
mvec[1] = new MachineInstr(ADD);
mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
mvec[1]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
instr);
break;
}
case 58: // reg: Alloca(reg): Implement as 3 instructions:
// mul num, typeSz -> tmp
// sub %sp, tmp -> %sp
{ // add %sp, 0 -> result
Instruction* instr = subtreeRoot->getInstruction();
const PointerType* instrType = (const PointerType*) instr->getType();
assert(instrType->isPointerType() &&
instrType->getValueType()->isArrayType());
const Type* eltType =
((ArrayType*) instrType->getValueType())->getElementType();
int tsize = (int) target.findOptimalStorageSize(eltType);
assert(tsize != 0 && "Just to check when this can happen");
// if (tsize == 0)
// {
// numInstr = 0;
// break;
// }
//else go on to create the instructions needed...
// Create a temporary Value to hold the constant type-size
ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
// Create a temporary value to hold `tmp'
Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
subtreeRoot->leftChild()->getValue(),
NULL /*could insert tsize here*/);
subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
// Instruction 1: mul numElements, typeSize -> tmp
mvec[0] = new MachineInstr(MULX);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
subtreeRoot->leftChild()->getValue());
mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
valueForTSize);
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
tmpInstr);
tmpInstr->addMachineInstruction(mvec[0]);
// Instruction 2: sub %sp, tmp -> %sp
numInstr++;
mvec[1] = new MachineInstr(SUB);
mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
tmpInstr);
mvec[1]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
// Instruction 3: add %sp, 0 -> result
numInstr++;
mvec[2] = new MachineInstr(ADD);
mvec[2]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
mvec[2]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
instr);
break;
}
case 61: // reg: Call
// Generate a call-indirect (i.e., JMPL) for now to expose
// the potential need for registers. If an absolute address
// is available, replace this with a CALL instruction.
// Mark both the indirection register and the return-address
// register as hidden virtual registers.
// Also, mark the operands of the Call and return value (if
// any) as implicit operands of the CALL machine instruction.
{
CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
Value *callee = callInstr->getCalledValue();
Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
callee, NULL);
Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
callInstr, NULL);
// Note temporary values in the machineInstrVec for the VM instr.
//
// WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses.
// The result value must go in slot N. This is assumed
// in register allocation.
//
callInstr->getMachineInstrVec().addTempValue(jmpAddrReg);
callInstr->getMachineInstrVec().addTempValue(retAddrReg);
// Generate the machine instruction and its operands
mvec[0] = new MachineInstr(JMPL);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
jmpAddrReg);
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
(int64_t) 0);
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
retAddrReg);
// Add the call operands and return value as implicit refs
for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
if (callInstr->getOperand(i) != callee)
mvec[0]->addImplicitRef(callInstr->getOperand(i));
if (callInstr->getCalledMethod()->getReturnType() != Type::VoidTy)
mvec[0]->addImplicitRef(callInstr, /*isDef*/ true);
// NOTE: jmpAddrReg will be loaded by a different instruction generated
// by the final code generator, so we just mark the CALL instruction
// as computing that value.
// The retAddrReg is actually computed by the CALL instruction.
//
jmpAddrReg->addMachineInstruction(mvec[0]);
retAddrReg->addMachineInstruction(mvec[0]);
mvec[numInstr++] = new MachineInstr(NOP); // delay slot
break;
}
case 62: // reg: Shl(reg, reg)
opType = subtreeRoot->leftChild()->getValue()->getType();
assert(opType->isIntegral()
|| opType == Type::BoolTy
|| opType->isPointerType()&& "Shl unsupported for other types");
mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 63: // reg: Shr(reg, reg)
opType = subtreeRoot->leftChild()->getValue()->getType();
assert(opType->isIntegral()
|| opType == Type::BoolTy
|| opType->isPointerType() &&"Shr unsupported for other types");
mvec[0] = new MachineInstr((opType->isSigned()
? ((opType == Type::LongTy)? SRAX : SRA)
: ((opType == Type::LongTy)? SRLX : SRL)));
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 64: // reg: Phi(reg,reg)
{ // This instruction has variable #operands, so resultPos is 0.
Instruction* phi = subtreeRoot->getInstruction();
mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
subtreeRoot->getValue());
for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
phi->getOperand(i));
break;
}
case 71: // reg: VReg
case 72: // reg: Constant
numInstr = 0; // don't forward the value
break;
default:
assert(0 && "Unrecognized BURG rule");
numInstr = 0;
break;
}
}
if (forwardOperandNum >= 0)
{ // We did not generate a machine instruction but need to use operand.
// If user is in the same tree, replace Value in its machine operand.
// If not, insert a copy instruction which should get coalesced away
// by register allocation.
if (subtreeRoot->parent() != NULL)
ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
else
{
MachineInstr *minstr1 = NULL, *minstr2 = NULL;
minstr1 = CreateCopyInstructionsByType(target,
subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
subtreeRoot->getInstruction(), minstr2);
assert(minstr1);
mvec[numInstr++] = minstr1;
if (minstr2 != NULL)
mvec[numInstr++] = minstr2;
}
}
if (! ThisIsAChainRule(ruleForNode))
numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
return numInstr;
}