mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 10:42:39 +01:00
47a51741f3
When working out which instruction defines a value, the instruction-referencing variable location code has a few special cases for physical registers: * Arguments are never defined by instructions, * Constant physical registers always read the same value, are never def'd This patch adds a third case for the llvm.frameaddress intrinsics: you can read the framepointer in any block if you so choose, and use it as a variable location, as shown in the added test. This rather violates one of the assumptions behind instruction referencing, that LLVM-ir shouldn't be able to read from an arbitrary register at some arbitrary point in the program. The solution for now is to just emit a DBG_PHI that reads the register value: this works, but if we wanted to do something clever with DBG_PHIs in the future then this would probably get in the way. As it stands, this patch avoids a crash. Differential Revision: https://reviews.llvm.org/D106659
1493 lines
53 KiB
C++
1493 lines
53 KiB
C++
//===- MachineFunction.cpp ------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Collect native machine code information for a function. This allows
|
|
// target-specific information about the generated code to be stored with each
|
|
// function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/WasmEHFuncInfo.h"
|
|
#include "llvm/CodeGen/WinEHFuncInfo.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSlotTracker.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/SectionKind.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/DOTGraphTraits.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "codegen"
|
|
|
|
static cl::opt<unsigned> AlignAllFunctions(
|
|
"align-all-functions",
|
|
cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
|
|
"means align on 16B boundaries)."),
|
|
cl::init(0), cl::Hidden);
|
|
|
|
static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
|
|
using P = MachineFunctionProperties::Property;
|
|
|
|
switch(Prop) {
|
|
case P::FailedISel: return "FailedISel";
|
|
case P::IsSSA: return "IsSSA";
|
|
case P::Legalized: return "Legalized";
|
|
case P::NoPHIs: return "NoPHIs";
|
|
case P::NoVRegs: return "NoVRegs";
|
|
case P::RegBankSelected: return "RegBankSelected";
|
|
case P::Selected: return "Selected";
|
|
case P::TracksLiveness: return "TracksLiveness";
|
|
case P::TiedOpsRewritten: return "TiedOpsRewritten";
|
|
}
|
|
llvm_unreachable("Invalid machine function property");
|
|
}
|
|
|
|
// Pin the vtable to this file.
|
|
void MachineFunction::Delegate::anchor() {}
|
|
|
|
void MachineFunctionProperties::print(raw_ostream &OS) const {
|
|
const char *Separator = "";
|
|
for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
|
|
if (!Properties[I])
|
|
continue;
|
|
OS << Separator << getPropertyName(static_cast<Property>(I));
|
|
Separator = ", ";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineFunction implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Out-of-line virtual method.
|
|
MachineFunctionInfo::~MachineFunctionInfo() = default;
|
|
|
|
void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
|
|
MBB->getParent()->DeleteMachineBasicBlock(MBB);
|
|
}
|
|
|
|
static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
|
|
const Function &F) {
|
|
if (F.hasFnAttribute(Attribute::StackAlignment))
|
|
return F.getFnStackAlignment();
|
|
return STI->getFrameLowering()->getStackAlign().value();
|
|
}
|
|
|
|
MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
|
|
const TargetSubtargetInfo &STI,
|
|
unsigned FunctionNum, MachineModuleInfo &mmi)
|
|
: F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
|
|
FunctionNumber = FunctionNum;
|
|
init();
|
|
}
|
|
|
|
void MachineFunction::handleInsertion(MachineInstr &MI) {
|
|
if (TheDelegate)
|
|
TheDelegate->MF_HandleInsertion(MI);
|
|
}
|
|
|
|
void MachineFunction::handleRemoval(MachineInstr &MI) {
|
|
if (TheDelegate)
|
|
TheDelegate->MF_HandleRemoval(MI);
|
|
}
|
|
|
|
void MachineFunction::init() {
|
|
// Assume the function starts in SSA form with correct liveness.
|
|
Properties.set(MachineFunctionProperties::Property::IsSSA);
|
|
Properties.set(MachineFunctionProperties::Property::TracksLiveness);
|
|
if (STI->getRegisterInfo())
|
|
RegInfo = new (Allocator) MachineRegisterInfo(this);
|
|
else
|
|
RegInfo = nullptr;
|
|
|
|
MFInfo = nullptr;
|
|
// We can realign the stack if the target supports it and the user hasn't
|
|
// explicitly asked us not to.
|
|
bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
|
|
!F.hasFnAttribute("no-realign-stack");
|
|
FrameInfo = new (Allocator) MachineFrameInfo(
|
|
getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
|
|
/*ForcedRealign=*/CanRealignSP &&
|
|
F.hasFnAttribute(Attribute::StackAlignment));
|
|
|
|
if (F.hasFnAttribute(Attribute::StackAlignment))
|
|
FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
|
|
|
|
ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
|
|
Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
|
|
|
|
// FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
|
|
// FIXME: Use Function::hasOptSize().
|
|
if (!F.hasFnAttribute(Attribute::OptimizeForSize))
|
|
Alignment = std::max(Alignment,
|
|
STI->getTargetLowering()->getPrefFunctionAlignment());
|
|
|
|
if (AlignAllFunctions)
|
|
Alignment = Align(1ULL << AlignAllFunctions);
|
|
|
|
JumpTableInfo = nullptr;
|
|
|
|
if (isFuncletEHPersonality(classifyEHPersonality(
|
|
F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
|
|
WinEHInfo = new (Allocator) WinEHFuncInfo();
|
|
}
|
|
|
|
if (isScopedEHPersonality(classifyEHPersonality(
|
|
F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
|
|
WasmEHInfo = new (Allocator) WasmEHFuncInfo();
|
|
}
|
|
|
|
assert(Target.isCompatibleDataLayout(getDataLayout()) &&
|
|
"Can't create a MachineFunction using a Module with a "
|
|
"Target-incompatible DataLayout attached\n");
|
|
|
|
PSVManager =
|
|
std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
|
|
getInstrInfo()));
|
|
}
|
|
|
|
MachineFunction::~MachineFunction() {
|
|
clear();
|
|
}
|
|
|
|
void MachineFunction::clear() {
|
|
Properties.reset();
|
|
// Don't call destructors on MachineInstr and MachineOperand. All of their
|
|
// memory comes from the BumpPtrAllocator which is about to be purged.
|
|
//
|
|
// Do call MachineBasicBlock destructors, it contains std::vectors.
|
|
for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
|
|
I->Insts.clearAndLeakNodesUnsafely();
|
|
MBBNumbering.clear();
|
|
|
|
InstructionRecycler.clear(Allocator);
|
|
OperandRecycler.clear(Allocator);
|
|
BasicBlockRecycler.clear(Allocator);
|
|
CodeViewAnnotations.clear();
|
|
VariableDbgInfos.clear();
|
|
if (RegInfo) {
|
|
RegInfo->~MachineRegisterInfo();
|
|
Allocator.Deallocate(RegInfo);
|
|
}
|
|
if (MFInfo) {
|
|
MFInfo->~MachineFunctionInfo();
|
|
Allocator.Deallocate(MFInfo);
|
|
}
|
|
|
|
FrameInfo->~MachineFrameInfo();
|
|
Allocator.Deallocate(FrameInfo);
|
|
|
|
ConstantPool->~MachineConstantPool();
|
|
Allocator.Deallocate(ConstantPool);
|
|
|
|
if (JumpTableInfo) {
|
|
JumpTableInfo->~MachineJumpTableInfo();
|
|
Allocator.Deallocate(JumpTableInfo);
|
|
}
|
|
|
|
if (WinEHInfo) {
|
|
WinEHInfo->~WinEHFuncInfo();
|
|
Allocator.Deallocate(WinEHInfo);
|
|
}
|
|
|
|
if (WasmEHInfo) {
|
|
WasmEHInfo->~WasmEHFuncInfo();
|
|
Allocator.Deallocate(WasmEHInfo);
|
|
}
|
|
}
|
|
|
|
const DataLayout &MachineFunction::getDataLayout() const {
|
|
return F.getParent()->getDataLayout();
|
|
}
|
|
|
|
/// Get the JumpTableInfo for this function.
|
|
/// If it does not already exist, allocate one.
|
|
MachineJumpTableInfo *MachineFunction::
|
|
getOrCreateJumpTableInfo(unsigned EntryKind) {
|
|
if (JumpTableInfo) return JumpTableInfo;
|
|
|
|
JumpTableInfo = new (Allocator)
|
|
MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
|
|
return JumpTableInfo;
|
|
}
|
|
|
|
DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
|
|
return F.getDenormalMode(FPType);
|
|
}
|
|
|
|
/// Should we be emitting segmented stack stuff for the function
|
|
bool MachineFunction::shouldSplitStack() const {
|
|
return getFunction().hasFnAttribute("split-stack");
|
|
}
|
|
|
|
LLVM_NODISCARD unsigned
|
|
MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
|
|
FrameInstructions.push_back(Inst);
|
|
return FrameInstructions.size() - 1;
|
|
}
|
|
|
|
/// This discards all of the MachineBasicBlock numbers and recomputes them.
|
|
/// This guarantees that the MBB numbers are sequential, dense, and match the
|
|
/// ordering of the blocks within the function. If a specific MachineBasicBlock
|
|
/// is specified, only that block and those after it are renumbered.
|
|
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
|
|
if (empty()) { MBBNumbering.clear(); return; }
|
|
MachineFunction::iterator MBBI, E = end();
|
|
if (MBB == nullptr)
|
|
MBBI = begin();
|
|
else
|
|
MBBI = MBB->getIterator();
|
|
|
|
// Figure out the block number this should have.
|
|
unsigned BlockNo = 0;
|
|
if (MBBI != begin())
|
|
BlockNo = std::prev(MBBI)->getNumber() + 1;
|
|
|
|
for (; MBBI != E; ++MBBI, ++BlockNo) {
|
|
if (MBBI->getNumber() != (int)BlockNo) {
|
|
// Remove use of the old number.
|
|
if (MBBI->getNumber() != -1) {
|
|
assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
|
|
"MBB number mismatch!");
|
|
MBBNumbering[MBBI->getNumber()] = nullptr;
|
|
}
|
|
|
|
// If BlockNo is already taken, set that block's number to -1.
|
|
if (MBBNumbering[BlockNo])
|
|
MBBNumbering[BlockNo]->setNumber(-1);
|
|
|
|
MBBNumbering[BlockNo] = &*MBBI;
|
|
MBBI->setNumber(BlockNo);
|
|
}
|
|
}
|
|
|
|
// Okay, all the blocks are renumbered. If we have compactified the block
|
|
// numbering, shrink MBBNumbering now.
|
|
assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
|
|
MBBNumbering.resize(BlockNo);
|
|
}
|
|
|
|
/// This method iterates over the basic blocks and assigns their IsBeginSection
|
|
/// and IsEndSection fields. This must be called after MBB layout is finalized
|
|
/// and the SectionID's are assigned to MBBs.
|
|
void MachineFunction::assignBeginEndSections() {
|
|
front().setIsBeginSection();
|
|
auto CurrentSectionID = front().getSectionID();
|
|
for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
|
|
if (MBBI->getSectionID() == CurrentSectionID)
|
|
continue;
|
|
MBBI->setIsBeginSection();
|
|
std::prev(MBBI)->setIsEndSection();
|
|
CurrentSectionID = MBBI->getSectionID();
|
|
}
|
|
back().setIsEndSection();
|
|
}
|
|
|
|
/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
|
|
MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
|
|
const DebugLoc &DL,
|
|
bool NoImplicit) {
|
|
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
|
|
MachineInstr(*this, MCID, DL, NoImplicit);
|
|
}
|
|
|
|
/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
|
|
/// identical in all ways except the instruction has no parent, prev, or next.
|
|
MachineInstr *
|
|
MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
|
|
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
|
|
MachineInstr(*this, *Orig);
|
|
}
|
|
|
|
MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
|
|
MachineInstr *FirstClone = nullptr;
|
|
MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
|
|
while (true) {
|
|
MachineInstr *Cloned = CloneMachineInstr(&*I);
|
|
MBB.insert(InsertBefore, Cloned);
|
|
if (FirstClone == nullptr) {
|
|
FirstClone = Cloned;
|
|
} else {
|
|
Cloned->bundleWithPred();
|
|
}
|
|
|
|
if (!I->isBundledWithSucc())
|
|
break;
|
|
++I;
|
|
}
|
|
// Copy over call site info to the cloned instruction if needed. If Orig is in
|
|
// a bundle, copyCallSiteInfo takes care of finding the call instruction in
|
|
// the bundle.
|
|
if (Orig.shouldUpdateCallSiteInfo())
|
|
copyCallSiteInfo(&Orig, FirstClone);
|
|
return *FirstClone;
|
|
}
|
|
|
|
/// Delete the given MachineInstr.
|
|
///
|
|
/// This function also serves as the MachineInstr destructor - the real
|
|
/// ~MachineInstr() destructor must be empty.
|
|
void
|
|
MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
|
|
// Verify that a call site info is at valid state. This assertion should
|
|
// be triggered during the implementation of support for the
|
|
// call site info of a new architecture. If the assertion is triggered,
|
|
// back trace will tell where to insert a call to updateCallSiteInfo().
|
|
assert((!MI->isCandidateForCallSiteEntry() ||
|
|
CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
|
|
"Call site info was not updated!");
|
|
// Strip it for parts. The operand array and the MI object itself are
|
|
// independently recyclable.
|
|
if (MI->Operands)
|
|
deallocateOperandArray(MI->CapOperands, MI->Operands);
|
|
// Don't call ~MachineInstr() which must be trivial anyway because
|
|
// ~MachineFunction drops whole lists of MachineInstrs wihout calling their
|
|
// destructors.
|
|
InstructionRecycler.Deallocate(Allocator, MI);
|
|
}
|
|
|
|
/// Allocate a new MachineBasicBlock. Use this instead of
|
|
/// `new MachineBasicBlock'.
|
|
MachineBasicBlock *
|
|
MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
|
|
return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
|
|
MachineBasicBlock(*this, bb);
|
|
}
|
|
|
|
/// Delete the given MachineBasicBlock.
|
|
void
|
|
MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
|
|
assert(MBB->getParent() == this && "MBB parent mismatch!");
|
|
// Clean up any references to MBB in jump tables before deleting it.
|
|
if (JumpTableInfo)
|
|
JumpTableInfo->RemoveMBBFromJumpTables(MBB);
|
|
MBB->~MachineBasicBlock();
|
|
BasicBlockRecycler.Deallocate(Allocator, MBB);
|
|
}
|
|
|
|
MachineMemOperand *MachineFunction::getMachineMemOperand(
|
|
MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
|
|
Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
|
|
SyncScope::ID SSID, AtomicOrdering Ordering,
|
|
AtomicOrdering FailureOrdering) {
|
|
return new (Allocator)
|
|
MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
|
|
SSID, Ordering, FailureOrdering);
|
|
}
|
|
|
|
MachineMemOperand *MachineFunction::getMachineMemOperand(
|
|
MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
|
|
Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
|
|
SyncScope::ID SSID, AtomicOrdering Ordering,
|
|
AtomicOrdering FailureOrdering) {
|
|
return new (Allocator)
|
|
MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
|
|
Ordering, FailureOrdering);
|
|
}
|
|
|
|
MachineMemOperand *MachineFunction::getMachineMemOperand(
|
|
const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
|
|
return new (Allocator)
|
|
MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
|
|
AAMDNodes(), nullptr, MMO->getSyncScopeID(),
|
|
MMO->getSuccessOrdering(), MMO->getFailureOrdering());
|
|
}
|
|
|
|
MachineMemOperand *MachineFunction::getMachineMemOperand(
|
|
const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
|
|
return new (Allocator)
|
|
MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
|
|
AAMDNodes(), nullptr, MMO->getSyncScopeID(),
|
|
MMO->getSuccessOrdering(), MMO->getFailureOrdering());
|
|
}
|
|
|
|
MachineMemOperand *
|
|
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
|
|
int64_t Offset, LLT Ty) {
|
|
const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
|
|
|
|
// If there is no pointer value, the offset isn't tracked so we need to adjust
|
|
// the base alignment.
|
|
Align Alignment = PtrInfo.V.isNull()
|
|
? commonAlignment(MMO->getBaseAlign(), Offset)
|
|
: MMO->getBaseAlign();
|
|
|
|
// Do not preserve ranges, since we don't necessarily know what the high bits
|
|
// are anymore.
|
|
return new (Allocator) MachineMemOperand(
|
|
PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
|
|
MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
|
|
MMO->getSuccessOrdering(), MMO->getFailureOrdering());
|
|
}
|
|
|
|
MachineMemOperand *
|
|
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
|
|
const AAMDNodes &AAInfo) {
|
|
MachinePointerInfo MPI = MMO->getValue() ?
|
|
MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
|
|
MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
|
|
|
|
return new (Allocator) MachineMemOperand(
|
|
MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
|
|
MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
|
|
MMO->getFailureOrdering());
|
|
}
|
|
|
|
MachineMemOperand *
|
|
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
|
|
MachineMemOperand::Flags Flags) {
|
|
return new (Allocator) MachineMemOperand(
|
|
MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
|
|
MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
|
|
MMO->getSuccessOrdering(), MMO->getFailureOrdering());
|
|
}
|
|
|
|
MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
|
|
ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
|
|
MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
|
|
return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
|
|
PostInstrSymbol, HeapAllocMarker);
|
|
}
|
|
|
|
const char *MachineFunction::createExternalSymbolName(StringRef Name) {
|
|
char *Dest = Allocator.Allocate<char>(Name.size() + 1);
|
|
llvm::copy(Name, Dest);
|
|
Dest[Name.size()] = 0;
|
|
return Dest;
|
|
}
|
|
|
|
uint32_t *MachineFunction::allocateRegMask() {
|
|
unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
|
|
unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
|
|
uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
|
|
memset(Mask, 0, Size * sizeof(Mask[0]));
|
|
return Mask;
|
|
}
|
|
|
|
ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
|
|
int* AllocMask = Allocator.Allocate<int>(Mask.size());
|
|
copy(Mask, AllocMask);
|
|
return {AllocMask, Mask.size()};
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MachineFunction::dump() const {
|
|
print(dbgs());
|
|
}
|
|
#endif
|
|
|
|
StringRef MachineFunction::getName() const {
|
|
return getFunction().getName();
|
|
}
|
|
|
|
void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
|
|
OS << "# Machine code for function " << getName() << ": ";
|
|
getProperties().print(OS);
|
|
OS << '\n';
|
|
|
|
// Print Frame Information
|
|
FrameInfo->print(*this, OS);
|
|
|
|
// Print JumpTable Information
|
|
if (JumpTableInfo)
|
|
JumpTableInfo->print(OS);
|
|
|
|
// Print Constant Pool
|
|
ConstantPool->print(OS);
|
|
|
|
const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
|
|
|
|
if (RegInfo && !RegInfo->livein_empty()) {
|
|
OS << "Function Live Ins: ";
|
|
for (MachineRegisterInfo::livein_iterator
|
|
I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
|
|
OS << printReg(I->first, TRI);
|
|
if (I->second)
|
|
OS << " in " << printReg(I->second, TRI);
|
|
if (std::next(I) != E)
|
|
OS << ", ";
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
ModuleSlotTracker MST(getFunction().getParent());
|
|
MST.incorporateFunction(getFunction());
|
|
for (const auto &BB : *this) {
|
|
OS << '\n';
|
|
// If we print the whole function, print it at its most verbose level.
|
|
BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
|
|
}
|
|
|
|
OS << "\n# End machine code for function " << getName() << ".\n\n";
|
|
}
|
|
|
|
/// True if this function needs frame moves for debug or exceptions.
|
|
bool MachineFunction::needsFrameMoves() const {
|
|
return getMMI().hasDebugInfo() ||
|
|
getTarget().Options.ForceDwarfFrameSection ||
|
|
F.needsUnwindTableEntry();
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
template<>
|
|
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
|
|
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
|
|
|
|
static std::string getGraphName(const MachineFunction *F) {
|
|
return ("CFG for '" + F->getName() + "' function").str();
|
|
}
|
|
|
|
std::string getNodeLabel(const MachineBasicBlock *Node,
|
|
const MachineFunction *Graph) {
|
|
std::string OutStr;
|
|
{
|
|
raw_string_ostream OSS(OutStr);
|
|
|
|
if (isSimple()) {
|
|
OSS << printMBBReference(*Node);
|
|
if (const BasicBlock *BB = Node->getBasicBlock())
|
|
OSS << ": " << BB->getName();
|
|
} else
|
|
Node->print(OSS);
|
|
}
|
|
|
|
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
|
|
|
|
// Process string output to make it nicer...
|
|
for (unsigned i = 0; i != OutStr.length(); ++i)
|
|
if (OutStr[i] == '\n') { // Left justify
|
|
OutStr[i] = '\\';
|
|
OutStr.insert(OutStr.begin()+i+1, 'l');
|
|
}
|
|
return OutStr;
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
void MachineFunction::viewCFG() const
|
|
{
|
|
#ifndef NDEBUG
|
|
ViewGraph(this, "mf" + getName());
|
|
#else
|
|
errs() << "MachineFunction::viewCFG is only available in debug builds on "
|
|
<< "systems with Graphviz or gv!\n";
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
void MachineFunction::viewCFGOnly() const
|
|
{
|
|
#ifndef NDEBUG
|
|
ViewGraph(this, "mf" + getName(), true);
|
|
#else
|
|
errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
|
|
<< "systems with Graphviz or gv!\n";
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/// Add the specified physical register as a live-in value and
|
|
/// create a corresponding virtual register for it.
|
|
Register MachineFunction::addLiveIn(MCRegister PReg,
|
|
const TargetRegisterClass *RC) {
|
|
MachineRegisterInfo &MRI = getRegInfo();
|
|
Register VReg = MRI.getLiveInVirtReg(PReg);
|
|
if (VReg) {
|
|
const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
|
|
(void)VRegRC;
|
|
// A physical register can be added several times.
|
|
// Between two calls, the register class of the related virtual register
|
|
// may have been constrained to match some operation constraints.
|
|
// In that case, check that the current register class includes the
|
|
// physical register and is a sub class of the specified RC.
|
|
assert((VRegRC == RC || (VRegRC->contains(PReg) &&
|
|
RC->hasSubClassEq(VRegRC))) &&
|
|
"Register class mismatch!");
|
|
return VReg;
|
|
}
|
|
VReg = MRI.createVirtualRegister(RC);
|
|
MRI.addLiveIn(PReg, VReg);
|
|
return VReg;
|
|
}
|
|
|
|
/// Return the MCSymbol for the specified non-empty jump table.
|
|
/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
|
|
/// normal 'L' label is returned.
|
|
MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
|
|
bool isLinkerPrivate) const {
|
|
const DataLayout &DL = getDataLayout();
|
|
assert(JumpTableInfo && "No jump tables");
|
|
assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
|
|
|
|
StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
|
|
: DL.getPrivateGlobalPrefix();
|
|
SmallString<60> Name;
|
|
raw_svector_ostream(Name)
|
|
<< Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
|
|
return Ctx.getOrCreateSymbol(Name);
|
|
}
|
|
|
|
/// Return a function-local symbol to represent the PIC base.
|
|
MCSymbol *MachineFunction::getPICBaseSymbol() const {
|
|
const DataLayout &DL = getDataLayout();
|
|
return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
|
|
Twine(getFunctionNumber()) + "$pb");
|
|
}
|
|
|
|
/// \name Exception Handling
|
|
/// \{
|
|
|
|
LandingPadInfo &
|
|
MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
|
|
unsigned N = LandingPads.size();
|
|
for (unsigned i = 0; i < N; ++i) {
|
|
LandingPadInfo &LP = LandingPads[i];
|
|
if (LP.LandingPadBlock == LandingPad)
|
|
return LP;
|
|
}
|
|
|
|
LandingPads.push_back(LandingPadInfo(LandingPad));
|
|
return LandingPads[N];
|
|
}
|
|
|
|
void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
|
|
MCSymbol *BeginLabel, MCSymbol *EndLabel) {
|
|
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
|
|
LP.BeginLabels.push_back(BeginLabel);
|
|
LP.EndLabels.push_back(EndLabel);
|
|
}
|
|
|
|
MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
|
|
MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
|
|
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
|
|
LP.LandingPadLabel = LandingPadLabel;
|
|
|
|
const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
|
|
if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
|
|
if (const auto *PF =
|
|
dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
|
|
getMMI().addPersonality(PF);
|
|
|
|
if (LPI->isCleanup())
|
|
addCleanup(LandingPad);
|
|
|
|
// FIXME: New EH - Add the clauses in reverse order. This isn't 100%
|
|
// correct, but we need to do it this way because of how the DWARF EH
|
|
// emitter processes the clauses.
|
|
for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
|
|
Value *Val = LPI->getClause(I - 1);
|
|
if (LPI->isCatch(I - 1)) {
|
|
addCatchTypeInfo(LandingPad,
|
|
dyn_cast<GlobalValue>(Val->stripPointerCasts()));
|
|
} else {
|
|
// Add filters in a list.
|
|
auto *CVal = cast<Constant>(Val);
|
|
SmallVector<const GlobalValue *, 4> FilterList;
|
|
for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
|
|
II != IE; ++II)
|
|
FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
|
|
|
|
addFilterTypeInfo(LandingPad, FilterList);
|
|
}
|
|
}
|
|
|
|
} else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
|
|
for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
|
|
Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
|
|
addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
|
|
}
|
|
|
|
} else {
|
|
assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
|
|
}
|
|
|
|
return LandingPadLabel;
|
|
}
|
|
|
|
void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
|
|
ArrayRef<const GlobalValue *> TyInfo) {
|
|
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
|
|
for (unsigned N = TyInfo.size(); N; --N)
|
|
LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
|
|
}
|
|
|
|
void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
|
|
ArrayRef<const GlobalValue *> TyInfo) {
|
|
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
|
|
std::vector<unsigned> IdsInFilter(TyInfo.size());
|
|
for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
|
|
IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
|
|
LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
|
|
}
|
|
|
|
void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
|
|
bool TidyIfNoBeginLabels) {
|
|
for (unsigned i = 0; i != LandingPads.size(); ) {
|
|
LandingPadInfo &LandingPad = LandingPads[i];
|
|
if (LandingPad.LandingPadLabel &&
|
|
!LandingPad.LandingPadLabel->isDefined() &&
|
|
(!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
|
|
LandingPad.LandingPadLabel = nullptr;
|
|
|
|
// Special case: we *should* emit LPs with null LP MBB. This indicates
|
|
// "nounwind" case.
|
|
if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
|
|
LandingPads.erase(LandingPads.begin() + i);
|
|
continue;
|
|
}
|
|
|
|
if (TidyIfNoBeginLabels) {
|
|
for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
|
|
MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
|
|
MCSymbol *EndLabel = LandingPad.EndLabels[j];
|
|
if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
|
|
(EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
|
|
continue;
|
|
|
|
LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
|
|
LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
|
|
--j;
|
|
--e;
|
|
}
|
|
|
|
// Remove landing pads with no try-ranges.
|
|
if (LandingPads[i].BeginLabels.empty()) {
|
|
LandingPads.erase(LandingPads.begin() + i);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If there is no landing pad, ensure that the list of typeids is empty.
|
|
// If the only typeid is a cleanup, this is the same as having no typeids.
|
|
if (!LandingPad.LandingPadBlock ||
|
|
(LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
|
|
LandingPad.TypeIds.clear();
|
|
++i;
|
|
}
|
|
}
|
|
|
|
void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
|
|
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
|
|
LP.TypeIds.push_back(0);
|
|
}
|
|
|
|
void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
|
|
const Function *Filter,
|
|
const BlockAddress *RecoverBA) {
|
|
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
|
|
SEHHandler Handler;
|
|
Handler.FilterOrFinally = Filter;
|
|
Handler.RecoverBA = RecoverBA;
|
|
LP.SEHHandlers.push_back(Handler);
|
|
}
|
|
|
|
void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
|
|
const Function *Cleanup) {
|
|
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
|
|
SEHHandler Handler;
|
|
Handler.FilterOrFinally = Cleanup;
|
|
Handler.RecoverBA = nullptr;
|
|
LP.SEHHandlers.push_back(Handler);
|
|
}
|
|
|
|
void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
|
|
ArrayRef<unsigned> Sites) {
|
|
LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
|
|
}
|
|
|
|
unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
|
|
for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
|
|
if (TypeInfos[i] == TI) return i + 1;
|
|
|
|
TypeInfos.push_back(TI);
|
|
return TypeInfos.size();
|
|
}
|
|
|
|
int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
|
|
// If the new filter coincides with the tail of an existing filter, then
|
|
// re-use the existing filter. Folding filters more than this requires
|
|
// re-ordering filters and/or their elements - probably not worth it.
|
|
for (unsigned i : FilterEnds) {
|
|
unsigned j = TyIds.size();
|
|
|
|
while (i && j)
|
|
if (FilterIds[--i] != TyIds[--j])
|
|
goto try_next;
|
|
|
|
if (!j)
|
|
// The new filter coincides with range [i, end) of the existing filter.
|
|
return -(1 + i);
|
|
|
|
try_next:;
|
|
}
|
|
|
|
// Add the new filter.
|
|
int FilterID = -(1 + FilterIds.size());
|
|
FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
|
|
llvm::append_range(FilterIds, TyIds);
|
|
FilterEnds.push_back(FilterIds.size());
|
|
FilterIds.push_back(0); // terminator
|
|
return FilterID;
|
|
}
|
|
|
|
MachineFunction::CallSiteInfoMap::iterator
|
|
MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
|
|
assert(MI->isCandidateForCallSiteEntry() &&
|
|
"Call site info refers only to call (MI) candidates");
|
|
|
|
if (!Target.Options.EmitCallSiteInfo)
|
|
return CallSitesInfo.end();
|
|
return CallSitesInfo.find(MI);
|
|
}
|
|
|
|
/// Return the call machine instruction or find a call within bundle.
|
|
static const MachineInstr *getCallInstr(const MachineInstr *MI) {
|
|
if (!MI->isBundle())
|
|
return MI;
|
|
|
|
for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
|
|
getBundleEnd(MI->getIterator())))
|
|
if (BMI.isCandidateForCallSiteEntry())
|
|
return &BMI;
|
|
|
|
llvm_unreachable("Unexpected bundle without a call site candidate");
|
|
}
|
|
|
|
void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
|
|
assert(MI->shouldUpdateCallSiteInfo() &&
|
|
"Call site info refers only to call (MI) candidates or "
|
|
"candidates inside bundles");
|
|
|
|
const MachineInstr *CallMI = getCallInstr(MI);
|
|
CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
|
|
if (CSIt == CallSitesInfo.end())
|
|
return;
|
|
CallSitesInfo.erase(CSIt);
|
|
}
|
|
|
|
void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
|
|
const MachineInstr *New) {
|
|
assert(Old->shouldUpdateCallSiteInfo() &&
|
|
"Call site info refers only to call (MI) candidates or "
|
|
"candidates inside bundles");
|
|
|
|
if (!New->isCandidateForCallSiteEntry())
|
|
return eraseCallSiteInfo(Old);
|
|
|
|
const MachineInstr *OldCallMI = getCallInstr(Old);
|
|
CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
|
|
if (CSIt == CallSitesInfo.end())
|
|
return;
|
|
|
|
CallSiteInfo CSInfo = CSIt->second;
|
|
CallSitesInfo[New] = CSInfo;
|
|
}
|
|
|
|
void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
|
|
const MachineInstr *New) {
|
|
assert(Old->shouldUpdateCallSiteInfo() &&
|
|
"Call site info refers only to call (MI) candidates or "
|
|
"candidates inside bundles");
|
|
|
|
if (!New->isCandidateForCallSiteEntry())
|
|
return eraseCallSiteInfo(Old);
|
|
|
|
const MachineInstr *OldCallMI = getCallInstr(Old);
|
|
CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
|
|
if (CSIt == CallSitesInfo.end())
|
|
return;
|
|
|
|
CallSiteInfo CSInfo = std::move(CSIt->second);
|
|
CallSitesInfo.erase(CSIt);
|
|
CallSitesInfo[New] = CSInfo;
|
|
}
|
|
|
|
void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
|
|
DebugInstrNumberingCount = Num;
|
|
}
|
|
|
|
void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
|
|
DebugInstrOperandPair B,
|
|
unsigned Subreg) {
|
|
// Catch any accidental self-loops.
|
|
assert(A.first != B.first);
|
|
DebugValueSubstitutions.push_back({A, B, Subreg});
|
|
}
|
|
|
|
void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
|
|
MachineInstr &New,
|
|
unsigned MaxOperand) {
|
|
// If the Old instruction wasn't tracked at all, there is no work to do.
|
|
unsigned OldInstrNum = Old.peekDebugInstrNum();
|
|
if (!OldInstrNum)
|
|
return;
|
|
|
|
// Iterate over all operands looking for defs to create substitutions for.
|
|
// Avoid creating new instr numbers unless we create a new substitution.
|
|
// While this has no functional effect, it risks confusing someone reading
|
|
// MIR output.
|
|
// Examine all the operands, or the first N specified by the caller.
|
|
MaxOperand = std::min(MaxOperand, Old.getNumOperands());
|
|
for (unsigned int I = 0; I < MaxOperand; ++I) {
|
|
const auto &OldMO = Old.getOperand(I);
|
|
auto &NewMO = New.getOperand(I);
|
|
(void)NewMO;
|
|
|
|
if (!OldMO.isReg() || !OldMO.isDef())
|
|
continue;
|
|
assert(NewMO.isDef());
|
|
|
|
unsigned NewInstrNum = New.getDebugInstrNum();
|
|
makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
|
|
std::make_pair(NewInstrNum, I));
|
|
}
|
|
}
|
|
|
|
auto MachineFunction::salvageCopySSA(MachineInstr &MI)
|
|
-> DebugInstrOperandPair {
|
|
MachineRegisterInfo &MRI = getRegInfo();
|
|
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
|
|
const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
|
|
|
|
// Chase the value read by a copy-like instruction back to the instruction
|
|
// that ultimately _defines_ that value. This may pass:
|
|
// * Through multiple intermediate copies, including subregister moves /
|
|
// copies,
|
|
// * Copies from physical registers that must then be traced back to the
|
|
// defining instruction,
|
|
// * Or, physical registers may be live-in to (only) the entry block, which
|
|
// requires a DBG_PHI to be created.
|
|
// We can pursue this problem in that order: trace back through copies,
|
|
// optionally through a physical register, to a defining instruction. We
|
|
// should never move from physreg to vreg. As we're still in SSA form, no need
|
|
// to worry about partial definitions of registers.
|
|
|
|
// Helper lambda to interpret a copy-like instruction. Takes instruction,
|
|
// returns the register read and any subregister identifying which part is
|
|
// read.
|
|
auto GetRegAndSubreg =
|
|
[&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
|
|
Register NewReg, OldReg;
|
|
unsigned SubReg;
|
|
if (Cpy.isCopy()) {
|
|
OldReg = Cpy.getOperand(0).getReg();
|
|
NewReg = Cpy.getOperand(1).getReg();
|
|
SubReg = Cpy.getOperand(1).getSubReg();
|
|
} else if (Cpy.isSubregToReg()) {
|
|
OldReg = Cpy.getOperand(0).getReg();
|
|
NewReg = Cpy.getOperand(2).getReg();
|
|
SubReg = Cpy.getOperand(3).getImm();
|
|
} else {
|
|
auto CopyDetails = *TII.isCopyInstr(Cpy);
|
|
const MachineOperand &Src = *CopyDetails.Source;
|
|
const MachineOperand &Dest = *CopyDetails.Destination;
|
|
OldReg = Dest.getReg();
|
|
NewReg = Src.getReg();
|
|
SubReg = Src.getSubReg();
|
|
}
|
|
|
|
return {NewReg, SubReg};
|
|
};
|
|
|
|
// First seek either the defining instruction, or a copy from a physreg.
|
|
// During search, the current state is the current copy instruction, and which
|
|
// register we've read. Accumulate qualifying subregisters into SubregsSeen;
|
|
// deal with those later.
|
|
auto State = GetRegAndSubreg(MI);
|
|
auto CurInst = MI.getIterator();
|
|
SmallVector<unsigned, 4> SubregsSeen;
|
|
while (true) {
|
|
// If we've found a copy from a physreg, first portion of search is over.
|
|
if (!State.first.isVirtual())
|
|
break;
|
|
|
|
// Record any subregister qualifier.
|
|
if (State.second)
|
|
SubregsSeen.push_back(State.second);
|
|
|
|
assert(MRI.hasOneDef(State.first));
|
|
MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
|
|
CurInst = Inst.getIterator();
|
|
|
|
// Any non-copy instruction is the defining instruction we're seeking.
|
|
if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
|
|
break;
|
|
State = GetRegAndSubreg(Inst);
|
|
};
|
|
|
|
// Helper lambda to apply additional subregister substitutions to a known
|
|
// instruction/operand pair. Adds new (fake) substitutions so that we can
|
|
// record the subregister. FIXME: this isn't very space efficient if multiple
|
|
// values are tracked back through the same copies; cache something later.
|
|
auto ApplySubregisters =
|
|
[&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
|
|
for (unsigned Subreg : reverse(SubregsSeen)) {
|
|
// Fetch a new instruction number, not attached to an actual instruction.
|
|
unsigned NewInstrNumber = getNewDebugInstrNum();
|
|
// Add a substitution from the "new" number to the known one, with a
|
|
// qualifying subreg.
|
|
makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
|
|
// Return the new number; to find the underlying value, consumers need to
|
|
// deal with the qualifying subreg.
|
|
P = {NewInstrNumber, 0};
|
|
}
|
|
return P;
|
|
};
|
|
|
|
// If we managed to find the defining instruction after COPYs, return an
|
|
// instruction / operand pair after adding subregister qualifiers.
|
|
if (State.first.isVirtual()) {
|
|
// Virtual register def -- we can just look up where this happens.
|
|
MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
|
|
for (auto &MO : Inst->operands()) {
|
|
if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
|
|
continue;
|
|
return ApplySubregisters(
|
|
{Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
|
|
}
|
|
|
|
llvm_unreachable("Vreg def with no corresponding operand?");
|
|
}
|
|
|
|
// Our search ended in a copy from a physreg: walk back up the function
|
|
// looking for whatever defines the physreg.
|
|
assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
|
|
State = GetRegAndSubreg(*CurInst);
|
|
Register RegToSeek = State.first;
|
|
|
|
auto RMII = CurInst->getReverseIterator();
|
|
auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
|
|
for (auto &ToExamine : PrevInstrs) {
|
|
for (auto &MO : ToExamine.operands()) {
|
|
// Test for operand that defines something aliasing RegToSeek.
|
|
if (!MO.isReg() || !MO.isDef() ||
|
|
!TRI.regsOverlap(RegToSeek, MO.getReg()))
|
|
continue;
|
|
|
|
return ApplySubregisters(
|
|
{ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock &InsertBB = *CurInst->getParent();
|
|
|
|
// We reached the start of the block before finding a defining instruction.
|
|
// It could be from a constant register, otherwise it must be an argument.
|
|
if (TRI.isConstantPhysReg(State.first)) {
|
|
// We can produce a DBG_PHI that identifies the constant physreg. Doesn't
|
|
// matter where we put it, as it's constant valued.
|
|
assert(CurInst->isCopy());
|
|
} else if (State.first == TRI.getFrameRegister(*this)) {
|
|
// LLVM IR is allowed to read the framepointer by calling a
|
|
// llvm.frameaddress.* intrinsic. We can support this by emitting a
|
|
// DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
|
|
// position that DBG_PHIs appear at, limiting what can be done later.
|
|
// TODO: see if there's a better way of expressing these variable
|
|
// locations.
|
|
;
|
|
} else {
|
|
// Assert that this is the entry block. If it isn't, then there is some
|
|
// code construct we don't recognise that deals with physregs across
|
|
// blocks.
|
|
assert(!State.first.isVirtual());
|
|
assert(&*InsertBB.getParent()->begin() == &InsertBB);
|
|
}
|
|
|
|
// Create DBG_PHI for specified physreg.
|
|
auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
|
|
TII.get(TargetOpcode::DBG_PHI));
|
|
Builder.addReg(State.first, RegState::Debug);
|
|
unsigned NewNum = getNewDebugInstrNum();
|
|
Builder.addImm(NewNum);
|
|
return ApplySubregisters({NewNum, 0u});
|
|
}
|
|
|
|
void MachineFunction::finalizeDebugInstrRefs() {
|
|
auto *TII = getSubtarget().getInstrInfo();
|
|
|
|
auto MakeDbgValue = [&](MachineInstr &MI) {
|
|
const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE);
|
|
MI.setDesc(RefII);
|
|
MI.getOperand(1).ChangeToRegister(0, false);
|
|
MI.getOperand(0).setIsDebug();
|
|
};
|
|
|
|
if (!getTarget().Options.ValueTrackingVariableLocations)
|
|
return;
|
|
|
|
for (auto &MBB : *this) {
|
|
for (auto &MI : MBB) {
|
|
if (!MI.isDebugRef() || !MI.getOperand(0).isReg())
|
|
continue;
|
|
|
|
Register Reg = MI.getOperand(0).getReg();
|
|
|
|
// Some vregs can be deleted as redundant in the meantime. Mark those
|
|
// as DBG_VALUE $noreg.
|
|
if (Reg == 0) {
|
|
MakeDbgValue(MI);
|
|
continue;
|
|
}
|
|
|
|
assert(Reg.isVirtual());
|
|
MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
|
|
assert(RegInfo->hasOneDef(Reg));
|
|
|
|
// If we've found a copy-like instruction, follow it back to the
|
|
// instruction that defines the source value, see salvageCopySSA docs
|
|
// for why this is important.
|
|
if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
|
|
auto Result = salvageCopySSA(DefMI);
|
|
MI.getOperand(0).ChangeToImmediate(Result.first);
|
|
MI.getOperand(1).setImm(Result.second);
|
|
} else {
|
|
// Otherwise, identify the operand number that the VReg refers to.
|
|
unsigned OperandIdx = 0;
|
|
for (const auto &MO : DefMI.operands()) {
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
|
|
break;
|
|
++OperandIdx;
|
|
}
|
|
assert(OperandIdx < DefMI.getNumOperands());
|
|
|
|
// Morph this instr ref to point at the given instruction and operand.
|
|
unsigned ID = DefMI.getDebugInstrNum();
|
|
MI.getOperand(0).ChangeToImmediate(ID);
|
|
MI.getOperand(1).setImm(OperandIdx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineJumpTableInfo implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return the size of each entry in the jump table.
|
|
unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
|
|
// The size of a jump table entry is 4 bytes unless the entry is just the
|
|
// address of a block, in which case it is the pointer size.
|
|
switch (getEntryKind()) {
|
|
case MachineJumpTableInfo::EK_BlockAddress:
|
|
return TD.getPointerSize();
|
|
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
|
|
return 8;
|
|
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
|
|
case MachineJumpTableInfo::EK_LabelDifference32:
|
|
case MachineJumpTableInfo::EK_Custom32:
|
|
return 4;
|
|
case MachineJumpTableInfo::EK_Inline:
|
|
return 0;
|
|
}
|
|
llvm_unreachable("Unknown jump table encoding!");
|
|
}
|
|
|
|
/// Return the alignment of each entry in the jump table.
|
|
unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
|
|
// The alignment of a jump table entry is the alignment of int32 unless the
|
|
// entry is just the address of a block, in which case it is the pointer
|
|
// alignment.
|
|
switch (getEntryKind()) {
|
|
case MachineJumpTableInfo::EK_BlockAddress:
|
|
return TD.getPointerABIAlignment(0).value();
|
|
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
|
|
return TD.getABIIntegerTypeAlignment(64).value();
|
|
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
|
|
case MachineJumpTableInfo::EK_LabelDifference32:
|
|
case MachineJumpTableInfo::EK_Custom32:
|
|
return TD.getABIIntegerTypeAlignment(32).value();
|
|
case MachineJumpTableInfo::EK_Inline:
|
|
return 1;
|
|
}
|
|
llvm_unreachable("Unknown jump table encoding!");
|
|
}
|
|
|
|
/// Create a new jump table entry in the jump table info.
|
|
unsigned MachineJumpTableInfo::createJumpTableIndex(
|
|
const std::vector<MachineBasicBlock*> &DestBBs) {
|
|
assert(!DestBBs.empty() && "Cannot create an empty jump table!");
|
|
JumpTables.push_back(MachineJumpTableEntry(DestBBs));
|
|
return JumpTables.size()-1;
|
|
}
|
|
|
|
/// If Old is the target of any jump tables, update the jump tables to branch
|
|
/// to New instead.
|
|
bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
|
|
MachineBasicBlock *New) {
|
|
assert(Old != New && "Not making a change?");
|
|
bool MadeChange = false;
|
|
for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
|
|
ReplaceMBBInJumpTable(i, Old, New);
|
|
return MadeChange;
|
|
}
|
|
|
|
/// If MBB is present in any jump tables, remove it.
|
|
bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
|
|
bool MadeChange = false;
|
|
for (MachineJumpTableEntry &JTE : JumpTables) {
|
|
auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
|
|
MadeChange |= (removeBeginItr != JTE.MBBs.end());
|
|
JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
/// If Old is a target of the jump tables, update the jump table to branch to
|
|
/// New instead.
|
|
bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
|
|
MachineBasicBlock *Old,
|
|
MachineBasicBlock *New) {
|
|
assert(Old != New && "Not making a change?");
|
|
bool MadeChange = false;
|
|
MachineJumpTableEntry &JTE = JumpTables[Idx];
|
|
for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
|
|
if (JTE.MBBs[j] == Old) {
|
|
JTE.MBBs[j] = New;
|
|
MadeChange = true;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
void MachineJumpTableInfo::print(raw_ostream &OS) const {
|
|
if (JumpTables.empty()) return;
|
|
|
|
OS << "Jump Tables:\n";
|
|
|
|
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
|
|
OS << printJumpTableEntryReference(i) << ':';
|
|
for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
|
|
OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
|
|
if (i != e)
|
|
OS << '\n';
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
Printable llvm::printJumpTableEntryReference(unsigned Idx) {
|
|
return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineConstantPool implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void MachineConstantPoolValue::anchor() {}
|
|
|
|
unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
|
|
return DL.getTypeAllocSize(Ty);
|
|
}
|
|
|
|
unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
|
|
if (isMachineConstantPoolEntry())
|
|
return Val.MachineCPVal->getSizeInBytes(DL);
|
|
return DL.getTypeAllocSize(Val.ConstVal->getType());
|
|
}
|
|
|
|
bool MachineConstantPoolEntry::needsRelocation() const {
|
|
if (isMachineConstantPoolEntry())
|
|
return true;
|
|
return Val.ConstVal->needsDynamicRelocation();
|
|
}
|
|
|
|
SectionKind
|
|
MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
|
|
if (needsRelocation())
|
|
return SectionKind::getReadOnlyWithRel();
|
|
switch (getSizeInBytes(*DL)) {
|
|
case 4:
|
|
return SectionKind::getMergeableConst4();
|
|
case 8:
|
|
return SectionKind::getMergeableConst8();
|
|
case 16:
|
|
return SectionKind::getMergeableConst16();
|
|
case 32:
|
|
return SectionKind::getMergeableConst32();
|
|
default:
|
|
return SectionKind::getReadOnly();
|
|
}
|
|
}
|
|
|
|
MachineConstantPool::~MachineConstantPool() {
|
|
// A constant may be a member of both Constants and MachineCPVsSharingEntries,
|
|
// so keep track of which we've deleted to avoid double deletions.
|
|
DenseSet<MachineConstantPoolValue*> Deleted;
|
|
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
|
|
if (Constants[i].isMachineConstantPoolEntry()) {
|
|
Deleted.insert(Constants[i].Val.MachineCPVal);
|
|
delete Constants[i].Val.MachineCPVal;
|
|
}
|
|
for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
|
|
if (Deleted.count(CPV) == 0)
|
|
delete CPV;
|
|
}
|
|
}
|
|
|
|
/// Test whether the given two constants can be allocated the same constant pool
|
|
/// entry.
|
|
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
|
|
const DataLayout &DL) {
|
|
// Handle the trivial case quickly.
|
|
if (A == B) return true;
|
|
|
|
// If they have the same type but weren't the same constant, quickly
|
|
// reject them.
|
|
if (A->getType() == B->getType()) return false;
|
|
|
|
// We can't handle structs or arrays.
|
|
if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
|
|
isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
|
|
return false;
|
|
|
|
// For now, only support constants with the same size.
|
|
uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
|
|
if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
|
|
return false;
|
|
|
|
Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
|
|
|
|
// Try constant folding a bitcast of both instructions to an integer. If we
|
|
// get two identical ConstantInt's, then we are good to share them. We use
|
|
// the constant folding APIs to do this so that we get the benefit of
|
|
// DataLayout.
|
|
if (isa<PointerType>(A->getType()))
|
|
A = ConstantFoldCastOperand(Instruction::PtrToInt,
|
|
const_cast<Constant *>(A), IntTy, DL);
|
|
else if (A->getType() != IntTy)
|
|
A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
|
|
IntTy, DL);
|
|
if (isa<PointerType>(B->getType()))
|
|
B = ConstantFoldCastOperand(Instruction::PtrToInt,
|
|
const_cast<Constant *>(B), IntTy, DL);
|
|
else if (B->getType() != IntTy)
|
|
B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
|
|
IntTy, DL);
|
|
|
|
return A == B;
|
|
}
|
|
|
|
/// Create a new entry in the constant pool or return an existing one.
|
|
/// User must specify the log2 of the minimum required alignment for the object.
|
|
unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
|
|
Align Alignment) {
|
|
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
|
|
|
|
// Check to see if we already have this constant.
|
|
//
|
|
// FIXME, this could be made much more efficient for large constant pools.
|
|
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
|
|
if (!Constants[i].isMachineConstantPoolEntry() &&
|
|
CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
|
|
if (Constants[i].getAlign() < Alignment)
|
|
Constants[i].Alignment = Alignment;
|
|
return i;
|
|
}
|
|
|
|
Constants.push_back(MachineConstantPoolEntry(C, Alignment));
|
|
return Constants.size()-1;
|
|
}
|
|
|
|
unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
|
|
Align Alignment) {
|
|
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
|
|
|
|
// Check to see if we already have this constant.
|
|
//
|
|
// FIXME, this could be made much more efficient for large constant pools.
|
|
int Idx = V->getExistingMachineCPValue(this, Alignment);
|
|
if (Idx != -1) {
|
|
MachineCPVsSharingEntries.insert(V);
|
|
return (unsigned)Idx;
|
|
}
|
|
|
|
Constants.push_back(MachineConstantPoolEntry(V, Alignment));
|
|
return Constants.size()-1;
|
|
}
|
|
|
|
void MachineConstantPool::print(raw_ostream &OS) const {
|
|
if (Constants.empty()) return;
|
|
|
|
OS << "Constant Pool:\n";
|
|
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
|
|
OS << " cp#" << i << ": ";
|
|
if (Constants[i].isMachineConstantPoolEntry())
|
|
Constants[i].Val.MachineCPVal->print(OS);
|
|
else
|
|
Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
|
|
OS << ", align=" << Constants[i].getAlign().value();
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
|
|
#endif
|