1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/AMDGPU/AMDGPUPropagateAttributes.cpp
Jon Chesterfield 358e2ca63a Revert "[AMDGPU] [IndirectCalls] Don't propagate attributes to address taken functions and their callees"
This reverts commit 6a3beb1f68d6791a4cd0190f68b48510f754a00a.
Test case that triggers an infinite loop before the revert is at
the review for D103138.
2021-06-24 02:33:50 +01:00

431 lines
13 KiB
C++

//===--- AMDGPUPropagateAttributes.cpp --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass propagates attributes from kernels to the non-entry
/// functions. Most of the library functions were not compiled for specific ABI,
/// yet will be correctly compiled if proper attrbutes are propagated from the
/// caller.
///
/// The pass analyzes call graph and propagates ABI target features through the
/// call graph.
///
/// It can run in two modes: as a function or module pass. A function pass
/// simply propagates attributes. A module pass clones functions if there are
/// callers with different ABI. If a function is clonned all call sites will
/// be updated to use a correct clone.
///
/// A function pass is limited in functionality but can run early in the
/// pipeline. A module pass is more powerful but has to run late, so misses
/// library folding opportunities.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/Cloning.h"
#define DEBUG_TYPE "amdgpu-propagate-attributes"
using namespace llvm;
namespace llvm {
extern const SubtargetFeatureKV AMDGPUFeatureKV[AMDGPU::NumSubtargetFeatures-1];
}
namespace {
// Target features to propagate.
static constexpr const FeatureBitset TargetFeatures = {
AMDGPU::FeatureWavefrontSize16,
AMDGPU::FeatureWavefrontSize32,
AMDGPU::FeatureWavefrontSize64
};
// Attributes to propagate.
// TODO: Support conservative min/max merging instead of cloning.
static constexpr const char* AttributeNames[] = {
"amdgpu-waves-per-eu",
"amdgpu-flat-work-group-size"
};
static constexpr unsigned NumAttr =
sizeof(AttributeNames) / sizeof(AttributeNames[0]);
class AMDGPUPropagateAttributes {
class FnProperties {
private:
explicit FnProperties(const FeatureBitset &&FB) : Features(FB) {}
public:
explicit FnProperties(const TargetMachine &TM, const Function &F) {
Features = TM.getSubtargetImpl(F)->getFeatureBits();
for (unsigned I = 0; I < NumAttr; ++I)
if (F.hasFnAttribute(AttributeNames[I]))
Attributes[I] = F.getFnAttribute(AttributeNames[I]);
}
bool operator == (const FnProperties &Other) const {
if ((Features & TargetFeatures) != (Other.Features & TargetFeatures))
return false;
for (unsigned I = 0; I < NumAttr; ++I)
if (Attributes[I] != Other.Attributes[I])
return false;
return true;
}
FnProperties adjustToCaller(const FnProperties &CallerProps) const {
FnProperties New((Features & ~TargetFeatures) | CallerProps.Features);
for (unsigned I = 0; I < NumAttr; ++I)
New.Attributes[I] = CallerProps.Attributes[I];
return New;
}
FeatureBitset Features;
Optional<Attribute> Attributes[NumAttr];
};
class Clone {
public:
Clone(const FnProperties &Props, Function *OrigF, Function *NewF) :
Properties(Props), OrigF(OrigF), NewF(NewF) {}
FnProperties Properties;
Function *OrigF;
Function *NewF;
};
const TargetMachine *TM;
// Clone functions as needed or just set attributes.
bool AllowClone;
// Option propagation roots.
SmallSet<Function *, 32> Roots;
// Clones of functions with their attributes.
SmallVector<Clone, 32> Clones;
// Find a clone with required features.
Function *findFunction(const FnProperties &PropsNeeded,
Function *OrigF);
// Clone function \p F and set \p NewProps on the clone.
// Cole takes the name of original function.
Function *cloneWithProperties(Function &F, const FnProperties &NewProps);
// Set new function's features in place.
void setFeatures(Function &F, const FeatureBitset &NewFeatures);
// Set new function's attributes in place.
void setAttributes(Function &F, const ArrayRef<Optional<Attribute>> NewAttrs);
std::string getFeatureString(const FeatureBitset &Features) const;
// Propagate attributes from Roots.
bool process();
public:
AMDGPUPropagateAttributes(const TargetMachine *TM, bool AllowClone) :
TM(TM), AllowClone(AllowClone) {}
// Use F as a root and propagate its attributes.
bool process(Function &F);
// Propagate attributes starting from kernel functions.
bool process(Module &M);
};
// Allows to propagate attributes early, but no clonning is allowed as it must
// be a function pass to run before any optimizations.
// TODO: We shall only need a one instance of module pass, but that needs to be
// in the linker pipeline which is currently not possible.
class AMDGPUPropagateAttributesEarly : public FunctionPass {
const TargetMachine *TM;
public:
static char ID; // Pass identification
AMDGPUPropagateAttributesEarly(const TargetMachine *TM = nullptr) :
FunctionPass(ID), TM(TM) {
initializeAMDGPUPropagateAttributesEarlyPass(
*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
};
// Allows to propagate attributes with clonning but does that late in the
// pipeline.
class AMDGPUPropagateAttributesLate : public ModulePass {
const TargetMachine *TM;
public:
static char ID; // Pass identification
AMDGPUPropagateAttributesLate(const TargetMachine *TM = nullptr) :
ModulePass(ID), TM(TM) {
initializeAMDGPUPropagateAttributesLatePass(
*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override;
};
} // end anonymous namespace.
char AMDGPUPropagateAttributesEarly::ID = 0;
char AMDGPUPropagateAttributesLate::ID = 0;
INITIALIZE_PASS(AMDGPUPropagateAttributesEarly,
"amdgpu-propagate-attributes-early",
"Early propagate attributes from kernels to functions",
false, false)
INITIALIZE_PASS(AMDGPUPropagateAttributesLate,
"amdgpu-propagate-attributes-late",
"Late propagate attributes from kernels to functions",
false, false)
Function *
AMDGPUPropagateAttributes::findFunction(const FnProperties &PropsNeeded,
Function *OrigF) {
// TODO: search for clone's clones.
for (Clone &C : Clones)
if (C.OrigF == OrigF && PropsNeeded == C.Properties)
return C.NewF;
return nullptr;
}
bool AMDGPUPropagateAttributes::process(Module &M) {
for (auto &F : M.functions())
if (AMDGPU::isEntryFunctionCC(F.getCallingConv()))
Roots.insert(&F);
return process();
}
bool AMDGPUPropagateAttributes::process(Function &F) {
Roots.insert(&F);
return process();
}
bool AMDGPUPropagateAttributes::process() {
bool Changed = false;
SmallSet<Function *, 32> NewRoots;
SmallSet<Function *, 32> Replaced;
if (Roots.empty())
return false;
Module &M = *(*Roots.begin())->getParent();
do {
Roots.insert(NewRoots.begin(), NewRoots.end());
NewRoots.clear();
for (auto &F : M.functions()) {
if (F.isDeclaration())
continue;
const FnProperties CalleeProps(*TM, F);
SmallVector<std::pair<CallBase *, Function *>, 32> ToReplace;
SmallSet<CallBase *, 32> Visited;
for (User *U : F.users()) {
Instruction *I = dyn_cast<Instruction>(U);
if (!I)
continue;
CallBase *CI = dyn_cast<CallBase>(I);
// Only propagate attributes if F is the called function. Specifically,
// do not propagate attributes if F is passed as an argument.
// FIXME: handle bitcasted callee, e.g.
// %retval = call i8* bitcast (i32* ()* @f to i8* ()*)()
if (!CI || CI->getCalledOperand() != &F)
continue;
Function *Caller = CI->getCaller();
if (!Caller || !Visited.insert(CI).second)
continue;
if (!Roots.count(Caller) && !NewRoots.count(Caller))
continue;
const FnProperties CallerProps(*TM, *Caller);
if (CalleeProps == CallerProps) {
if (!Roots.count(&F))
NewRoots.insert(&F);
continue;
}
Function *NewF = findFunction(CallerProps, &F);
if (!NewF) {
const FnProperties NewProps = CalleeProps.adjustToCaller(CallerProps);
if (!AllowClone) {
// This may set different features on different iteartions if
// there is a contradiction in callers' attributes. In this case
// we rely on a second pass running on Module, which is allowed
// to clone.
setFeatures(F, NewProps.Features);
setAttributes(F, NewProps.Attributes);
NewRoots.insert(&F);
Changed = true;
break;
}
NewF = cloneWithProperties(F, NewProps);
Clones.push_back(Clone(CallerProps, &F, NewF));
NewRoots.insert(NewF);
}
ToReplace.push_back(std::make_pair(CI, NewF));
Replaced.insert(&F);
Changed = true;
}
while (!ToReplace.empty()) {
auto R = ToReplace.pop_back_val();
R.first->setCalledFunction(R.second);
}
}
} while (!NewRoots.empty());
for (Function *F : Replaced) {
if (F->use_empty())
F->eraseFromParent();
}
Roots.clear();
Clones.clear();
return Changed;
}
Function *
AMDGPUPropagateAttributes::cloneWithProperties(Function &F,
const FnProperties &NewProps) {
LLVM_DEBUG(dbgs() << "Cloning " << F.getName() << '\n');
ValueToValueMapTy dummy;
Function *NewF = CloneFunction(&F, dummy);
setFeatures(*NewF, NewProps.Features);
setAttributes(*NewF, NewProps.Attributes);
NewF->setVisibility(GlobalValue::DefaultVisibility);
NewF->setLinkage(GlobalValue::InternalLinkage);
// Swap names. If that is the only clone it will retain the name of now
// dead value. Preserve original name for externally visible functions.
if (F.hasName() && F.hasLocalLinkage()) {
std::string NewName = std::string(NewF->getName());
NewF->takeName(&F);
F.setName(NewName);
}
return NewF;
}
void AMDGPUPropagateAttributes::setFeatures(Function &F,
const FeatureBitset &NewFeatures) {
std::string NewFeatureStr = getFeatureString(NewFeatures);
LLVM_DEBUG(dbgs() << "Set features "
<< getFeatureString(NewFeatures & TargetFeatures)
<< " on " << F.getName() << '\n');
F.removeFnAttr("target-features");
F.addFnAttr("target-features", NewFeatureStr);
}
void AMDGPUPropagateAttributes::setAttributes(Function &F,
const ArrayRef<Optional<Attribute>> NewAttrs) {
LLVM_DEBUG(dbgs() << "Set attributes on " << F.getName() << ":\n");
for (unsigned I = 0; I < NumAttr; ++I) {
F.removeFnAttr(AttributeNames[I]);
if (NewAttrs[I]) {
LLVM_DEBUG(dbgs() << '\t' << NewAttrs[I]->getAsString() << '\n');
F.addFnAttr(*NewAttrs[I]);
}
}
}
std::string
AMDGPUPropagateAttributes::getFeatureString(const FeatureBitset &Features) const
{
std::string Ret;
for (const SubtargetFeatureKV &KV : AMDGPUFeatureKV) {
if (Features[KV.Value])
Ret += (StringRef("+") + KV.Key + ",").str();
else if (TargetFeatures[KV.Value])
Ret += (StringRef("-") + KV.Key + ",").str();
}
Ret.pop_back(); // Remove last comma.
return Ret;
}
bool AMDGPUPropagateAttributesEarly::runOnFunction(Function &F) {
if (!TM) {
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
TM = &TPC->getTM<TargetMachine>();
}
if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
return false;
return AMDGPUPropagateAttributes(TM, false).process(F);
}
bool AMDGPUPropagateAttributesLate::runOnModule(Module &M) {
if (!TM) {
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
TM = &TPC->getTM<TargetMachine>();
}
return AMDGPUPropagateAttributes(TM, true).process(M);
}
FunctionPass
*llvm::createAMDGPUPropagateAttributesEarlyPass(const TargetMachine *TM) {
return new AMDGPUPropagateAttributesEarly(TM);
}
ModulePass
*llvm::createAMDGPUPropagateAttributesLatePass(const TargetMachine *TM) {
return new AMDGPUPropagateAttributesLate(TM);
}
PreservedAnalyses
AMDGPUPropagateAttributesEarlyPass::run(Function &F,
FunctionAnalysisManager &AM) {
if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
return PreservedAnalyses::all();
return AMDGPUPropagateAttributes(&TM, false).process(F)
? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
PreservedAnalyses
AMDGPUPropagateAttributesLatePass::run(Module &M, ModuleAnalysisManager &AM) {
return AMDGPUPropagateAttributes(&TM, true).process(M)
? PreservedAnalyses::none()
: PreservedAnalyses::all();
}