1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp
Heejin Ahn 9b48b7e7be [WebAssembly] Make Emscripten EH work with Emscripten SjLj
When Emscripten EH mixes with Emscripten SjLj, we are not currently
handling some of them correctly. There are three cases:
1. The current function calls `setjmp` and there is an `invoke` to a
   function that can either throw or longjmp. In this case, we have to
   check both for exception and longjmp. We are currently handling this
   case correctly:
   0c0eb76782/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (L1058-L1090)
   When inserting routines for functions that can longjmp, which we do
   only for setjmp-calling functions, we check if the function was
   previously an `invoke` and handle it correctly.

2. The current function does NOT call `setjmp` and there is an `invoke`
   to a function that can either throw or longjmp. Because there is no
   `setjmp` call, we haven't been doing any check for functions that can
   longjmp. But in that case, for `invoke`, we only check for an
   exception and if it is not an exception we reset `__THREW__` to 0,
   which can silently swallow the longjmp:
   0c0eb76782/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (L70-L80)
   This CL fixes this.

3. The current function calls `setjmp` and there is no `invoke`. Because
   it is not an `invoke`, we haven't been doing any check for functions
   that can throw, and only insert longjmp-checking routines for
   functions that can longjmp. But in that case, if a longjmpable
   function throws, we only check for a longjmp so if it is not a
   longjmp we reset `__THREW__` to 0, which can silently swallow the
   exception:
   0c0eb76782/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (L156-L169)
   This CL fixes this.

To do that, this moves around some code, so we register necessary
functions for both EH and SjLj and precompute some data (the set of
functions that contains `setjmp`) before doing actual EH or SjLj
transformation.

This CL makes 2nd and 3rd tests in
https://github.com/emscripten-core/emscripten/pull/14732 work.

Reviewed By: dschuff

Differential Revision: https://reviews.llvm.org/D106525
2021-07-26 13:48:31 -07:00

1300 lines
51 KiB
C++

//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file lowers exception-related instructions and setjmp/longjmp
/// function calls in order to use Emscripten's JavaScript try and catch
/// mechanism.
///
/// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
/// try and catch syntax and relevant exception-related libraries implemented
/// in JavaScript glue code that will be produced by Emscripten.
///
/// * Exception handling
/// This pass lowers invokes and landingpads into library functions in JS glue
/// code. Invokes are lowered into function wrappers called invoke wrappers that
/// exist in JS side, which wraps the original function call with JS try-catch.
/// If an exception occurred, cxa_throw() function in JS side sets some
/// variables (see below) so we can check whether an exception occurred from
/// wasm code and handle it appropriately.
///
/// * Setjmp-longjmp handling
/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
/// The idea is that each block with a setjmp is broken up into two parts: the
/// part containing setjmp and the part right after the setjmp. The latter part
/// is either reached from the setjmp, or later from a longjmp. To handle the
/// longjmp, all calls that might longjmp are also called using invoke wrappers
/// and thus JS / try-catch. JS longjmp() function also sets some variables so
/// we can check / whether a longjmp occurred from wasm code. Each block with a
/// function call that might longjmp is also split up after the longjmp call.
/// After the longjmp call, we check whether a longjmp occurred, and if it did,
/// which setjmp it corresponds to, and jump to the right post-setjmp block.
/// We assume setjmp-longjmp handling always run after EH handling, which means
/// we don't expect any exception-related instructions when SjLj runs.
/// FIXME Currently this scheme does not support indirect call of setjmp,
/// because of the limitation of the scheme itself. fastcomp does not support it
/// either.
///
/// In detail, this pass does following things:
///
/// 1) Assumes the existence of global variables: __THREW__, __threwValue
/// __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
/// These variables are used for both exceptions and setjmp/longjmps.
/// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
/// means nothing occurred, 1 means an exception occurred, and other numbers
/// mean a longjmp occurred. In the case of longjmp, __THREW__ variable
/// indicates the corresponding setjmp buffer the longjmp corresponds to.
/// __threwValue is 0 for exceptions, and the argument to longjmp in case of
/// longjmp.
///
/// * Exception handling
///
/// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
/// at link time. setThrew exists in Emscripten's compiler-rt:
///
/// void setThrew(uintptr_t threw, int value) {
/// if (__THREW__ == 0) {
/// __THREW__ = threw;
/// __threwValue = value;
/// }
/// }
//
/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
/// In exception handling, getTempRet0 indicates the type of an exception
/// caught, and in setjmp/longjmp, it means the second argument to longjmp
/// function.
///
/// 3) Lower
/// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
/// into
/// __THREW__ = 0;
/// call @__invoke_SIG(func, arg1, arg2)
/// %__THREW__.val = __THREW__;
/// __THREW__ = 0;
/// if (%__THREW__.val == 1)
/// goto %lpad
/// else
/// goto %invoke.cont
/// SIG is a mangled string generated based on the LLVM IR-level function
/// signature. After LLVM IR types are lowered to the target wasm types,
/// the names for these wrappers will change based on wasm types as well,
/// as in invoke_vi (function takes an int and returns void). The bodies of
/// these wrappers will be generated in JS glue code, and inside those
/// wrappers we use JS try-catch to generate actual exception effects. It
/// also calls the original callee function. An example wrapper in JS code
/// would look like this:
/// function invoke_vi(index,a1) {
/// try {
/// Module["dynCall_vi"](index,a1); // This calls original callee
/// } catch(e) {
/// if (typeof e !== 'number' && e !== 'longjmp') throw e;
/// _setThrew(1, 0); // setThrew is called here
/// }
/// }
/// If an exception is thrown, __THREW__ will be set to true in a wrapper,
/// so we can jump to the right BB based on this value.
///
/// 4) Lower
/// %val = landingpad catch c1 catch c2 catch c3 ...
/// ... use %val ...
/// into
/// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
/// %val = {%fmc, getTempRet0()}
/// ... use %val ...
/// Here N is a number calculated based on the number of clauses.
/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
///
/// 5) Lower
/// resume {%a, %b}
/// into
/// call @__resumeException(%a)
/// where __resumeException() is a function in JS glue code.
///
/// 6) Lower
/// call @llvm.eh.typeid.for(type) (intrinsic)
/// into
/// call @llvm_eh_typeid_for(type)
/// llvm_eh_typeid_for function will be generated in JS glue code.
///
/// * Setjmp / Longjmp handling
///
/// In case calls to longjmp() exists
///
/// 1) Lower
/// longjmp(buf, value)
/// into
/// emscripten_longjmp(buf, value)
///
/// In case calls to setjmp() exists
///
/// 2) In the function entry that calls setjmp, initialize setjmpTable and
/// sejmpTableSize as follows:
/// setjmpTableSize = 4;
/// setjmpTable = (int *) malloc(40);
/// setjmpTable[0] = 0;
/// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
/// Emscripten compiler-rt.
///
/// 3) Lower
/// setjmp(buf)
/// into
/// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
/// setjmpTableSize = getTempRet0();
/// For each dynamic setjmp call, setjmpTable stores its ID (a number which
/// is incrementally assigned from 0) and its label (a unique number that
/// represents each callsite of setjmp). When we need more entries in
/// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
/// compiler-rt and it will return the new table address, and assign the new
/// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
/// the buffer buf. A BB with setjmp is split into two after setjmp call in
/// order to make the post-setjmp BB the possible destination of longjmp BB.
///
///
/// 4) Lower every call that might longjmp into
/// __THREW__ = 0;
/// call @__invoke_SIG(func, arg1, arg2)
/// %__THREW__.val = __THREW__;
/// __THREW__ = 0;
/// %__threwValue.val = __threwValue;
/// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
/// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
/// setjmpTableSize);
/// if (%label == 0)
/// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
/// setTempRet0(%__threwValue.val);
/// } else {
/// %label = -1;
/// }
/// longjmp_result = getTempRet0();
/// switch label {
/// label 1: goto post-setjmp BB 1
/// label 2: goto post-setjmp BB 2
/// ...
/// default: goto splitted next BB
/// }
/// testSetjmp examines setjmpTable to see if there is a matching setjmp
/// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
/// will be the address of matching jmp_buf buffer and __threwValue be the
/// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
/// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
/// each setjmp callsite. Label 0 means this longjmp buffer does not
/// correspond to one of the setjmp callsites in this function, so in this
/// case we just chain the longjmp to the caller. Label -1 means no longjmp
/// occurred. Otherwise we jump to the right post-setjmp BB based on the
/// label.
///
///===----------------------------------------------------------------------===//
#include "WebAssembly.h"
#include "WebAssemblyTargetMachine.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
static cl::list<std::string>
EHAllowlist("emscripten-cxx-exceptions-allowed",
cl::desc("The list of function names in which Emscripten-style "
"exception handling is enabled (see emscripten "
"EMSCRIPTEN_CATCHING_ALLOWED options)"),
cl::CommaSeparated);
namespace {
class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
bool EnableEH; // Enable exception handling
bool EnableSjLj; // Enable setjmp/longjmp handling
bool DoSjLj; // Whether we actually perform setjmp/longjmp handling
GlobalVariable *ThrewGV = nullptr;
GlobalVariable *ThrewValueGV = nullptr;
Function *GetTempRet0Func = nullptr;
Function *SetTempRet0Func = nullptr;
Function *ResumeF = nullptr;
Function *EHTypeIDF = nullptr;
Function *EmLongjmpF = nullptr;
Function *SaveSetjmpF = nullptr;
Function *TestSetjmpF = nullptr;
// __cxa_find_matching_catch_N functions.
// Indexed by the number of clauses in an original landingpad instruction.
DenseMap<int, Function *> FindMatchingCatches;
// Map of <function signature string, invoke_ wrappers>
StringMap<Function *> InvokeWrappers;
// Set of allowed function names for exception handling
std::set<std::string> EHAllowlistSet;
// Functions that contains calls to setjmp
SmallPtrSet<Function *, 8> SetjmpUsers;
StringRef getPassName() const override {
return "WebAssembly Lower Emscripten Exceptions";
}
bool runEHOnFunction(Function &F);
bool runSjLjOnFunction(Function &F);
Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
Value *wrapInvoke(CallBase *CI);
void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
Value *&LongjmpResult, BasicBlock *&EndBB);
Function *getInvokeWrapper(CallBase *CI);
bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
bool canLongjmp(Module &M, const Value *Callee) const;
bool isEmAsmCall(Module &M, const Value *Callee) const;
bool supportsException(const Function *F) const {
return EnableEH && (areAllExceptionsAllowed() ||
EHAllowlistSet.count(std::string(F->getName())));
}
void rebuildSSA(Function &F);
public:
static char ID;
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
: ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
}
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
}
};
} // End anonymous namespace
char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
"WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
false, false)
ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
bool EnableSjLj) {
return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
}
static bool canThrow(const Value *V) {
if (const auto *F = dyn_cast<const Function>(V)) {
// Intrinsics cannot throw
if (F->isIntrinsic())
return false;
StringRef Name = F->getName();
// leave setjmp and longjmp (mostly) alone, we process them properly later
if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
return false;
return !F->doesNotThrow();
}
// not a function, so an indirect call - can throw, we can't tell
return true;
}
// Get a global variable with the given name. If it doesn't exist declare it,
// which will generate an import and assume that it will exist at link time.
static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
WebAssemblyTargetMachine &TM,
const char *Name) {
auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
if (!GV)
report_fatal_error(Twine("unable to create global: ") + Name);
// If the target supports TLS, make this variable thread-local. We can't just
// unconditionally make it thread-local and depend on
// CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
// the side effect of disallowing the object from being linked into a
// shared-memory module, which we don't want to be responsible for.
auto *Subtarget = TM.getSubtargetImpl();
auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
? GlobalValue::LocalExecTLSModel
: GlobalValue::NotThreadLocal;
GV->setThreadLocalMode(TLS);
return GV;
}
// Simple function name mangler.
// This function simply takes LLVM's string representation of parameter types
// and concatenate them with '_'. There are non-alphanumeric characters but llc
// is ok with it, and we need to postprocess these names after the lowering
// phase anyway.
static std::string getSignature(FunctionType *FTy) {
std::string Sig;
raw_string_ostream OS(Sig);
OS << *FTy->getReturnType();
for (Type *ParamTy : FTy->params())
OS << "_" << *ParamTy;
if (FTy->isVarArg())
OS << "_...";
Sig = OS.str();
erase_if(Sig, isSpace);
// When s2wasm parses .s file, a comma means the end of an argument. So a
// mangled function name can contain any character but a comma.
std::replace(Sig.begin(), Sig.end(), ',', '.');
return Sig;
}
static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
Module *M) {
Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
// Tell the linker that this function is expected to be imported from the
// 'env' module.
if (!F->hasFnAttribute("wasm-import-module")) {
llvm::AttrBuilder B;
B.addAttribute("wasm-import-module", "env");
F->addAttributes(llvm::AttributeList::FunctionIndex, B);
}
if (!F->hasFnAttribute("wasm-import-name")) {
llvm::AttrBuilder B;
B.addAttribute("wasm-import-name", F->getName());
F->addAttributes(llvm::AttributeList::FunctionIndex, B);
}
return F;
}
// Returns an integer type for the target architecture's address space.
// i32 for wasm32 and i64 for wasm64.
static Type *getAddrIntType(Module *M) {
IRBuilder<> IRB(M->getContext());
return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
}
// Returns an integer pointer type for the target architecture's address space.
// i32* for wasm32 and i64* for wasm64.
static Type *getAddrPtrType(Module *M) {
return Type::getIntNPtrTy(M->getContext(),
M->getDataLayout().getPointerSizeInBits());
}
// Returns an integer whose type is the integer type for the target's address
// space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
// integer.
static Value *getAddrSizeInt(Module *M, uint64_t C) {
IRBuilder<> IRB(M->getContext());
return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
}
// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
// This is because a landingpad instruction contains two more arguments, a
// personality function and a cleanup bit, and __cxa_find_matching_catch_N
// functions are named after the number of arguments in the original landingpad
// instruction.
Function *
WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
unsigned NumClauses) {
if (FindMatchingCatches.count(NumClauses))
return FindMatchingCatches[NumClauses];
PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
Function *F = getEmscriptenFunction(
FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
FindMatchingCatches[NumClauses] = F;
return F;
}
// Generate invoke wrapper seqence with preamble and postamble
// Preamble:
// __THREW__ = 0;
// Postamble:
// %__THREW__.val = __THREW__; __THREW__ = 0;
// Returns %__THREW__.val, which indicates whether an exception is thrown (or
// whether longjmp occurred), for future use.
Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
Module *M = CI->getModule();
LLVMContext &C = M->getContext();
// If we are calling a function that is noreturn, we must remove that
// attribute. The code we insert here does expect it to return, after we
// catch the exception.
if (CI->doesNotReturn()) {
if (auto *F = CI->getCalledFunction())
F->removeFnAttr(Attribute::NoReturn);
CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
}
IRBuilder<> IRB(C);
IRB.SetInsertPoint(CI);
// Pre-invoke
// __THREW__ = 0;
IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
// Invoke function wrapper in JavaScript
SmallVector<Value *, 16> Args;
// Put the pointer to the callee as first argument, so it can be called
// within the invoke wrapper later
Args.push_back(CI->getCalledOperand());
Args.append(CI->arg_begin(), CI->arg_end());
CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
NewCall->takeName(CI);
NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
NewCall->setDebugLoc(CI->getDebugLoc());
// Because we added the pointer to the callee as first argument, all
// argument attribute indices have to be incremented by one.
SmallVector<AttributeSet, 8> ArgAttributes;
const AttributeList &InvokeAL = CI->getAttributes();
// No attributes for the callee pointer.
ArgAttributes.push_back(AttributeSet());
// Copy the argument attributes from the original
for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
if (FnAttrs.contains(Attribute::AllocSize)) {
// The allocsize attribute (if any) referes to parameters by index and needs
// to be adjusted.
unsigned SizeArg;
Optional<unsigned> NEltArg;
std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
SizeArg += 1;
if (NEltArg.hasValue())
NEltArg = NEltArg.getValue() + 1;
FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
}
// Reconstruct the AttributesList based on the vector we constructed.
AttributeList NewCallAL =
AttributeList::get(C, AttributeSet::get(C, FnAttrs),
InvokeAL.getRetAttributes(), ArgAttributes);
NewCall->setAttributes(NewCallAL);
CI->replaceAllUsesWith(NewCall);
// Post-invoke
// %__THREW__.val = __THREW__; __THREW__ = 0;
Value *Threw =
IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
return Threw;
}
// Get matching invoke wrapper based on callee signature
Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
Module *M = CI->getModule();
SmallVector<Type *, 16> ArgTys;
FunctionType *CalleeFTy = CI->getFunctionType();
std::string Sig = getSignature(CalleeFTy);
if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
return InvokeWrappers[Sig];
// Put the pointer to the callee as first argument
ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
// Add argument types
ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
CalleeFTy->isVarArg());
Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
InvokeWrappers[Sig] = F;
return F;
}
bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
const Value *Callee) const {
if (auto *CalleeF = dyn_cast<Function>(Callee))
if (CalleeF->isIntrinsic())
return false;
// Attempting to transform inline assembly will result in something like:
// call void @__invoke_void(void ()* asm ...)
// which is invalid because inline assembly blocks do not have addresses
// and can't be passed by pointer. The result is a crash with illegal IR.
if (isa<InlineAsm>(Callee))
return false;
StringRef CalleeName = Callee->getName();
// The reason we include malloc/free here is to exclude the malloc/free
// calls generated in setjmp prep / cleanup routines.
if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
return false;
// There are functions in Emscripten's JS glue code or compiler-rt
if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
return false;
// __cxa_find_matching_catch_N functions cannot longjmp
if (Callee->getName().startswith("__cxa_find_matching_catch_"))
return false;
// Exception-catching related functions
if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
CalleeName == "__clang_call_terminate")
return false;
// Otherwise we don't know
return true;
}
bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
const Value *Callee) const {
StringRef CalleeName = Callee->getName();
// This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
return CalleeName == "emscripten_asm_const_int" ||
CalleeName == "emscripten_asm_const_double" ||
CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
CalleeName == "emscripten_asm_const_async_on_main_thread";
}
// Generate testSetjmp function call seqence with preamble and postamble.
// The code this generates is equivalent to the following JavaScript code:
// %__threwValue.val = __threwValue;
// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
// %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
// if (%label == 0)
// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
// setTempRet0(%__threwValue.val);
// } else {
// %label = -1;
// }
// %longjmp_result = getTempRet0();
//
// As output parameters. returns %label, %longjmp_result, and the BB the last
// instruction (%longjmp_result = ...) is in.
void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
BasicBlock *&EndBB) {
Function *F = BB->getParent();
Module *M = F->getParent();
LLVMContext &C = M->getContext();
IRBuilder<> IRB(C);
IRB.SetCurrentDebugLocation(DL);
// if (%__THREW__.val != 0 & %__threwValue.val != 0)
IRB.SetInsertPoint(BB);
BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
ThrewValueGV->getName() + ".val");
Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
// %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
// if (%label == 0)
IRB.SetInsertPoint(ThenBB1);
BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
Value *ThrewPtr =
IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
ThrewPtr->getName() + ".loaded");
Value *ThenLabel = IRB.CreateCall(
TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
IRB.SetInsertPoint(ThenBB2);
IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
IRB.CreateUnreachable();
// setTempRet0(%__threwValue.val);
IRB.SetInsertPoint(EndBB2);
IRB.CreateCall(SetTempRet0Func, ThrewValue);
IRB.CreateBr(EndBB1);
IRB.SetInsertPoint(ElseBB1);
IRB.CreateBr(EndBB1);
// longjmp_result = getTempRet0();
IRB.SetInsertPoint(EndBB1);
PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
LabelPHI->addIncoming(ThenLabel, EndBB2);
LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
// Output parameter assignment
Label = LabelPHI;
EndBB = EndBB1;
LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
}
void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
DT.recalculate(F); // CFG has been changed
SSAUpdater SSA;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
SSA.Initialize(I.getType(), I.getName());
SSA.AddAvailableValue(&BB, &I);
for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
Use &U = *UI;
++UI;
auto *User = cast<Instruction>(U.getUser());
if (auto *UserPN = dyn_cast<PHINode>(User))
if (UserPN->getIncomingBlock(U) == &BB)
continue;
if (DT.dominates(&I, User))
continue;
SSA.RewriteUseAfterInsertions(U);
}
}
}
}
// Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
// arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes
// {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type
// match. jmp_buf* will eventually be lowered to i32 in the wasm backend.
static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
Function *EmLongjmpF) {
Module *M = LongjmpF->getParent();
SmallVector<CallInst *, 8> ToErase;
LLVMContext &C = LongjmpF->getParent()->getContext();
IRBuilder<> IRB(C);
// For calls to longjmp, replace it with emscripten_longjmp and cast its first
// argument (jmp_buf*) to int
for (User *U : LongjmpF->users()) {
auto *CI = dyn_cast<CallInst>(U);
if (CI && CI->getCalledFunction() == LongjmpF) {
IRB.SetInsertPoint(CI);
Value *Jmpbuf =
IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf");
IRB.CreateCall(EmLongjmpF, {Jmpbuf, CI->getArgOperand(1)});
ToErase.push_back(CI);
}
}
for (auto *I : ToErase)
I->eraseFromParent();
// If we have any remaining uses of longjmp's function pointer, replace it
// with (int(*)(jmp_buf*, int))emscripten_longjmp.
if (!LongjmpF->uses().empty()) {
Value *EmLongjmp =
IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
LongjmpF->replaceAllUsesWith(EmLongjmp);
}
}
bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
LLVMContext &C = M.getContext();
IRBuilder<> IRB(C);
Function *SetjmpF = M.getFunction("setjmp");
Function *LongjmpF = M.getFunction("longjmp");
bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
assert(TPC && "Expected a TargetPassConfig");
auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
if (EnableEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm)
report_fatal_error("-exception-model=wasm not allowed with "
"-enable-emscripten-cxx-exceptions");
// Declare (or get) global variables __THREW__, __threwValue, and
// getTempRet0/setTempRet0 function which are used in common for both
// exception handling and setjmp/longjmp handling
ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
GetTempRet0Func = getEmscriptenFunction(
FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
SetTempRet0Func = getEmscriptenFunction(
FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
"setTempRet0", &M);
GetTempRet0Func->setDoesNotThrow();
SetTempRet0Func->setDoesNotThrow();
bool Changed = false;
// Function registration for exception handling
if (EnableEH) {
// Register __resumeException function
FunctionType *ResumeFTy =
FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
// Register llvm_eh_typeid_for function
FunctionType *EHTypeIDTy =
FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
}
// Function registration and data pre-gathering for setjmp/longjmp handling
if (DoSjLj) {
// Register emscripten_longjmp function
FunctionType *FTy = FunctionType::get(
IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
if (SetjmpF) {
// Register saveSetjmp function
FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
FTy = FunctionType::get(Type::getInt32PtrTy(C),
{SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
Type::getInt32PtrTy(C), IRB.getInt32Ty()},
false);
SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
// Register testSetjmp function
FTy = FunctionType::get(
IRB.getInt32Ty(),
{getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
false);
TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
// Precompute setjmp users
for (User *U : SetjmpF->users()) {
auto *UI = cast<Instruction>(U);
SetjmpUsers.insert(UI->getFunction());
}
}
}
// Exception handling transformation
if (EnableEH) {
for (Function &F : M) {
if (F.isDeclaration())
continue;
Changed |= runEHOnFunction(F);
}
}
// Setjmp/longjmp handling transformation
if (DoSjLj) {
Changed = true; // We have setjmp or longjmp somewhere
if (LongjmpF)
replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
// Only traverse functions that uses setjmp in order not to insert
// unnecessary prep / cleanup code in every function
if (SetjmpF)
for (Function *F : SetjmpUsers)
runSjLjOnFunction(*F);
}
if (!Changed) {
// Delete unused global variables and functions
if (ResumeF)
ResumeF->eraseFromParent();
if (EHTypeIDF)
EHTypeIDF->eraseFromParent();
if (EmLongjmpF)
EmLongjmpF->eraseFromParent();
if (SaveSetjmpF)
SaveSetjmpF->eraseFromParent();
if (TestSetjmpF)
TestSetjmpF->eraseFromParent();
return false;
}
return true;
}
bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
Module &M = *F.getParent();
LLVMContext &C = F.getContext();
IRBuilder<> IRB(C);
bool Changed = false;
SmallVector<Instruction *, 64> ToErase;
SmallPtrSet<LandingPadInst *, 32> LandingPads;
for (BasicBlock &BB : F) {
auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
if (!II)
continue;
Changed = true;
LandingPads.insert(II->getLandingPadInst());
IRB.SetInsertPoint(II);
const Value *Callee = II->getCalledOperand();
bool NeedInvoke = supportsException(&F) && canThrow(Callee);
if (NeedInvoke) {
// Wrap invoke with invoke wrapper and generate preamble/postamble
Value *Threw = wrapInvoke(II);
ToErase.push_back(II);
// If setjmp/longjmp handling is enabled, the thrown value can be not an
// exception but a longjmp. If the current function contains calls to
// setjmp, it will be appropriately handled in runSjLjOnFunction. But even
// if the function does not contain setjmp calls, we shouldn't silently
// ignore longjmps; we should rethrow them so they can be correctly
// handled in somewhere up the call chain where setjmp is.
// __THREW__'s value is 0 when nothing happened, 1 when an exception is
// thrown, other values when longjmp is thrown.
//
// if (%__THREW__.val == 0 || %__THREW__.val == 1)
// goto %tail
// else
// goto %longjmp.rethrow
//
// longjmp.rethrow: ;; This is longjmp. Rethrow it
// %__threwValue.val = __threwValue
// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
//
// tail: ;; Nothing happened or an exception is thrown
// ... Continue exception handling ...
if (DoSjLj && !SetjmpUsers.count(&F) && canLongjmp(M, Callee)) {
BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
BasicBlock *RethrowBB = BasicBlock::Create(C, "longjmp.rethrow", &F);
Value *CmpEqOne =
IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
Value *CmpEqZero =
IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
IRB.CreateCondBr(Or, Tail, RethrowBB);
IRB.SetInsertPoint(RethrowBB);
Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
ThrewValueGV->getName() + ".val");
IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
IRB.CreateUnreachable();
IRB.SetInsertPoint(Tail);
}
// Insert a branch based on __THREW__ variable
Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
} else {
// This can't throw, and we don't need this invoke, just replace it with a
// call+branch
SmallVector<Value *, 16> Args(II->args());
CallInst *NewCall =
IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
NewCall->takeName(II);
NewCall->setCallingConv(II->getCallingConv());
NewCall->setDebugLoc(II->getDebugLoc());
NewCall->setAttributes(II->getAttributes());
II->replaceAllUsesWith(NewCall);
ToErase.push_back(II);
IRB.CreateBr(II->getNormalDest());
// Remove any PHI node entries from the exception destination
II->getUnwindDest()->removePredecessor(&BB);
}
}
// Process resume instructions
for (BasicBlock &BB : F) {
// Scan the body of the basic block for resumes
for (Instruction &I : BB) {
auto *RI = dyn_cast<ResumeInst>(&I);
if (!RI)
continue;
Changed = true;
// Split the input into legal values
Value *Input = RI->getValue();
IRB.SetInsertPoint(RI);
Value *Low = IRB.CreateExtractValue(Input, 0, "low");
// Create a call to __resumeException function
IRB.CreateCall(ResumeF, {Low});
// Add a terminator to the block
IRB.CreateUnreachable();
ToErase.push_back(RI);
}
}
// Process llvm.eh.typeid.for intrinsics
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
auto *CI = dyn_cast<CallInst>(&I);
if (!CI)
continue;
const Function *Callee = CI->getCalledFunction();
if (!Callee)
continue;
if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
continue;
Changed = true;
IRB.SetInsertPoint(CI);
CallInst *NewCI =
IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
CI->replaceAllUsesWith(NewCI);
ToErase.push_back(CI);
}
}
// Look for orphan landingpads, can occur in blocks with no predecessors
for (BasicBlock &BB : F) {
Instruction *I = BB.getFirstNonPHI();
if (auto *LPI = dyn_cast<LandingPadInst>(I))
LandingPads.insert(LPI);
}
Changed |= !LandingPads.empty();
// Handle all the landingpad for this function together, as multiple invokes
// may share a single lp
for (LandingPadInst *LPI : LandingPads) {
IRB.SetInsertPoint(LPI);
SmallVector<Value *, 16> FMCArgs;
for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
Constant *Clause = LPI->getClause(I);
// TODO Handle filters (= exception specifications).
// https://bugs.llvm.org/show_bug.cgi?id=50396
if (LPI->isCatch(I))
FMCArgs.push_back(Clause);
}
// Create a call to __cxa_find_matching_catch_N function
Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
Value *Undef = UndefValue::get(LPI->getType());
Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
LPI->replaceAllUsesWith(Pair1);
ToErase.push_back(LPI);
}
// Erase everything we no longer need in this function
for (Instruction *I : ToErase)
I->eraseFromParent();
return Changed;
}
// This tries to get debug info from the instruction before which a new
// instruction will be inserted, and if there's no debug info in that
// instruction, tries to get the info instead from the previous instruction (if
// any). If none of these has debug info and a DISubprogram is provided, it
// creates a dummy debug info with the first line of the function, because IR
// verifier requires all inlinable callsites should have debug info when both a
// caller and callee have DISubprogram. If none of these conditions are met,
// returns empty info.
static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
DISubprogram *SP) {
assert(InsertBefore);
if (InsertBefore->getDebugLoc())
return InsertBefore->getDebugLoc();
const Instruction *Prev = InsertBefore->getPrevNode();
if (Prev && Prev->getDebugLoc())
return Prev->getDebugLoc();
if (SP)
return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
return DebugLoc();
}
bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
Module &M = *F.getParent();
LLVMContext &C = F.getContext();
IRBuilder<> IRB(C);
SmallVector<Instruction *, 64> ToErase;
// Vector of %setjmpTable values
std::vector<Instruction *> SetjmpTableInsts;
// Vector of %setjmpTableSize values
std::vector<Instruction *> SetjmpTableSizeInsts;
// Setjmp preparation
// This instruction effectively means %setjmpTableSize = 4.
// We create this as an instruction intentionally, and we don't want to fold
// this instruction to a constant 4, because this value will be used in
// SSAUpdater.AddAvailableValue(...) later.
BasicBlock &EntryBB = F.getEntryBlock();
DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram());
BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
&*EntryBB.getFirstInsertionPt());
SetjmpTableSize->setDebugLoc(FirstDL);
// setjmpTable = (int *) malloc(40);
Instruction *SetjmpTable = CallInst::CreateMalloc(
SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
nullptr, nullptr, "setjmpTable");
SetjmpTable->setDebugLoc(FirstDL);
// CallInst::CreateMalloc may return a bitcast instruction if the result types
// mismatch. We need to set the debug loc for the original call too.
auto *MallocCall = SetjmpTable->stripPointerCasts();
if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
MallocCallI->setDebugLoc(FirstDL);
}
// setjmpTable[0] = 0;
IRB.SetInsertPoint(SetjmpTableSize);
IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
SetjmpTableInsts.push_back(SetjmpTable);
SetjmpTableSizeInsts.push_back(SetjmpTableSize);
// Setjmp transformation
std::vector<PHINode *> SetjmpRetPHIs;
Function *SetjmpF = M.getFunction("setjmp");
for (User *U : SetjmpF->users()) {
auto *CI = dyn_cast<CallInst>(U);
if (!CI)
report_fatal_error("Does not support indirect calls to setjmp");
BasicBlock *BB = CI->getParent();
if (BB->getParent() != &F) // in other function
continue;
// The tail is everything right after the call, and will be reached once
// when setjmp is called, and later when longjmp returns to the setjmp
BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
// Add a phi to the tail, which will be the output of setjmp, which
// indicates if this is the first call or a longjmp back. The phi directly
// uses the right value based on where we arrive from
IRB.SetInsertPoint(Tail->getFirstNonPHI());
PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
// setjmp initial call returns 0
SetjmpRet->addIncoming(IRB.getInt32(0), BB);
// The proper output is now this, not the setjmp call itself
CI->replaceAllUsesWith(SetjmpRet);
// longjmp returns to the setjmp will add themselves to this phi
SetjmpRetPHIs.push_back(SetjmpRet);
// Fix call target
// Our index in the function is our place in the array + 1 to avoid index
// 0, because index 0 means the longjmp is not ours to handle.
IRB.SetInsertPoint(CI);
Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
SetjmpTable, SetjmpTableSize};
Instruction *NewSetjmpTable =
IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
Instruction *NewSetjmpTableSize =
IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
SetjmpTableInsts.push_back(NewSetjmpTable);
SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
ToErase.push_back(CI);
}
// Update each call that can longjmp so it can return to a setjmp where
// relevant.
// Because we are creating new BBs while processing and don't want to make
// all these newly created BBs candidates again for longjmp processing, we
// first make the vector of candidate BBs.
std::vector<BasicBlock *> BBs;
for (BasicBlock &BB : F)
BBs.push_back(&BB);
// BBs.size() will change within the loop, so we query it every time
for (unsigned I = 0; I < BBs.size(); I++) {
BasicBlock *BB = BBs[I];
for (Instruction &I : *BB) {
assert(!isa<InvokeInst>(&I));
auto *CI = dyn_cast<CallInst>(&I);
if (!CI)
continue;
const Value *Callee = CI->getCalledOperand();
if (!canLongjmp(M, Callee))
continue;
if (isEmAsmCall(M, Callee))
report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
F.getName() +
". Please consider using EM_JS, or move the "
"EM_ASM into another function.",
false);
Value *Threw = nullptr;
BasicBlock *Tail;
if (Callee->getName().startswith("__invoke_")) {
// If invoke wrapper has already been generated for this call in
// previous EH phase, search for the load instruction
// %__THREW__.val = __THREW__;
// in postamble after the invoke wrapper call
LoadInst *ThrewLI = nullptr;
StoreInst *ThrewResetSI = nullptr;
for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
I != IE; ++I) {
if (auto *LI = dyn_cast<LoadInst>(I))
if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
if (GV == ThrewGV) {
Threw = ThrewLI = LI;
break;
}
}
// Search for the store instruction after the load above
// __THREW__ = 0;
for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
I != IE; ++I) {
if (auto *SI = dyn_cast<StoreInst>(I)) {
if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
if (GV == ThrewGV &&
SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
ThrewResetSI = SI;
break;
}
}
}
}
assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
} else {
// Wrap call with invoke wrapper and generate preamble/postamble
Threw = wrapInvoke(CI);
ToErase.push_back(CI);
Tail = SplitBlock(BB, CI->getNextNode());
// If exception handling is enabled, the thrown value can be not a
// longjmp but an exception, in which case we shouldn't silently ignore
// exceptions; we should rethrow them.
// __THREW__'s value is 0 when nothing happened, 1 when an exception is
// thrown, other values when longjmp is thrown.
//
// if (%__THREW__.val == 1)
// goto %eh.rethrow
// else
// goto %normal
//
// eh.rethrow: ;; Rethrow exception
// %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
// __resumeException(%exn)
//
// normal:
// <-- Insertion point. Will insert sjlj handling code from here
// goto %tail
//
// tail:
// ...
if (supportsException(&F) && canThrow(Callee)) {
IRB.SetInsertPoint(CI);
// We will add a new conditional branch. So remove the branch created
// when we split the BB
ToErase.push_back(BB->getTerminator());
BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
BasicBlock *RethrowBB = BasicBlock::Create(C, "eh.rethrow", &F);
Value *CmpEqOne =
IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
IRB.CreateCondBr(CmpEqOne, RethrowBB, NormalBB);
IRB.SetInsertPoint(RethrowBB);
CallInst *Exn = IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
IRB.CreateCall(ResumeF, {Exn});
IRB.CreateUnreachable();
IRB.SetInsertPoint(NormalBB);
IRB.CreateBr(Tail);
BB = NormalBB; // New insertion point to insert testSetjmp()
}
}
// We need to replace the terminator in Tail - SplitBlock makes BB go
// straight to Tail, we need to check if a longjmp occurred, and go to the
// right setjmp-tail if so
ToErase.push_back(BB->getTerminator());
// Generate a function call to testSetjmp function and preamble/postamble
// code to figure out (1) whether longjmp occurred (2) if longjmp
// occurred, which setjmp it corresponds to
Value *Label = nullptr;
Value *LongjmpResult = nullptr;
BasicBlock *EndBB = nullptr;
wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
Label, LongjmpResult, EndBB);
assert(Label && LongjmpResult && EndBB);
// Create switch instruction
IRB.SetInsertPoint(EndBB);
IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
// -1 means no longjmp happened, continue normally (will hit the default
// switch case). 0 means a longjmp that is not ours to handle, needs a
// rethrow. Otherwise the index is the same as the index in P+1 (to avoid
// 0).
for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
}
// We are splitting the block here, and must continue to find other calls
// in the block - which is now split. so continue to traverse in the Tail
BBs.push_back(Tail);
}
}
// Erase everything we no longer need in this function
for (Instruction *I : ToErase)
I->eraseFromParent();
// Free setjmpTable buffer before each return instruction
for (BasicBlock &BB : F) {
Instruction *TI = BB.getTerminator();
if (isa<ReturnInst>(TI)) {
DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
auto *Free = CallInst::CreateFree(SetjmpTable, TI);
Free->setDebugLoc(DL);
// CallInst::CreateFree may create a bitcast instruction if its argument
// types mismatch. We need to set the debug loc for the bitcast too.
if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
BitCastI->setDebugLoc(DL);
}
}
}
// Every call to saveSetjmp can change setjmpTable and setjmpTableSize
// (when buffer reallocation occurs)
// entry:
// setjmpTableSize = 4;
// setjmpTable = (int *) malloc(40);
// setjmpTable[0] = 0;
// ...
// somebb:
// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
// setjmpTableSize = getTempRet0();
// So we need to make sure the SSA for these variables is valid so that every
// saveSetjmp and testSetjmp calls have the correct arguments.
SSAUpdater SetjmpTableSSA;
SSAUpdater SetjmpTableSizeSSA;
SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
for (Instruction *I : SetjmpTableInsts)
SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
for (Instruction *I : SetjmpTableSizeInsts)
SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
UI != UE;) {
// Grab the use before incrementing the iterator.
Use &U = *UI;
// Increment the iterator before removing the use from the list.
++UI;
if (auto *I = dyn_cast<Instruction>(U.getUser()))
if (I->getParent() != &EntryBB)
SetjmpTableSSA.RewriteUse(U);
}
for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
UI != UE;) {
Use &U = *UI;
++UI;
if (auto *I = dyn_cast<Instruction>(U.getUser()))
if (I->getParent() != &EntryBB)
SetjmpTableSizeSSA.RewriteUse(U);
}
// Finally, our modifications to the cfg can break dominance of SSA variables.
// For example, in this code,
// if (x()) { .. setjmp() .. }
// if (y()) { .. longjmp() .. }
// We must split the longjmp block, and it can jump into the block splitted
// from setjmp one. But that means that when we split the setjmp block, it's
// first part no longer dominates its second part - there is a theoretically
// possible control flow path where x() is false, then y() is true and we
// reach the second part of the setjmp block, without ever reaching the first
// part. So, we rebuild SSA form here.
rebuildSSA(F);
return true;
}