1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/tools/llvm-exegesis/lib/Analysis.cpp
David Blaikie a9632b4cd8 PR51018: Remove explicit conversions from SmallString to StringRef to future-proof against C++23
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
2021-07-08 13:37:57 -07:00

606 lines
20 KiB
C++

//===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Analysis.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Support/FormatVariadic.h"
#include <limits>
#include <unordered_set>
#include <vector>
namespace llvm {
namespace exegesis {
static const char kCsvSep = ',';
namespace {
enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
template <EscapeTag Tag> void writeEscaped(raw_ostream &OS, const StringRef S);
template <> void writeEscaped<kEscapeCsv>(raw_ostream &OS, const StringRef S) {
if (!llvm::is_contained(S, kCsvSep)) {
OS << S;
} else {
// Needs escaping.
OS << '"';
for (const char C : S) {
if (C == '"')
OS << "\"\"";
else
OS << C;
}
OS << '"';
}
}
template <> void writeEscaped<kEscapeHtml>(raw_ostream &OS, const StringRef S) {
for (const char C : S) {
if (C == '<')
OS << "&lt;";
else if (C == '>')
OS << "&gt;";
else if (C == '&')
OS << "&amp;";
else
OS << C;
}
}
template <>
void writeEscaped<kEscapeHtmlString>(raw_ostream &OS, const StringRef S) {
for (const char C : S) {
if (C == '"')
OS << "\\\"";
else
OS << C;
}
}
} // namespace
template <EscapeTag Tag>
static void
writeClusterId(raw_ostream &OS,
const InstructionBenchmarkClustering::ClusterId &CID) {
if (CID.isNoise())
writeEscaped<Tag>(OS, "[noise]");
else if (CID.isError())
writeEscaped<Tag>(OS, "[error]");
else
OS << CID.getId();
}
template <EscapeTag Tag>
static void writeMeasurementValue(raw_ostream &OS, const double Value) {
// Given Value, if we wanted to serialize it to a string,
// how many base-10 digits will we need to store, max?
static constexpr auto MaxDigitCount =
std::numeric_limits<decltype(Value)>::max_digits10;
// Also, we will need a decimal separator.
static constexpr auto DecimalSeparatorLen = 1; // '.' e.g.
// So how long of a string will the serialization produce, max?
static constexpr auto SerializationLen = MaxDigitCount + DecimalSeparatorLen;
// WARNING: when changing the format, also adjust the small-size estimate ^.
static constexpr StringLiteral SimpleFloatFormat = StringLiteral("{0:F}");
writeEscaped<Tag>(
OS, formatv(SimpleFloatFormat.data(), Value).sstr<SerializationLen>());
}
template <typename EscapeTag, EscapeTag Tag>
void Analysis::writeSnippet(raw_ostream &OS, ArrayRef<uint8_t> Bytes,
const char *Separator) const {
SmallVector<std::string, 3> Lines;
// Parse the asm snippet and print it.
while (!Bytes.empty()) {
MCInst MI;
uint64_t MISize = 0;
if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, nulls())) {
writeEscaped<Tag>(OS, join(Lines, Separator));
writeEscaped<Tag>(OS, Separator);
writeEscaped<Tag>(OS, "[error decoding asm snippet]");
return;
}
SmallString<128> InstPrinterStr; // FIXME: magic number.
raw_svector_ostream OSS(InstPrinterStr);
InstPrinter_->printInst(&MI, 0, "", *SubtargetInfo_, OSS);
Bytes = Bytes.drop_front(MISize);
Lines.emplace_back(InstPrinterStr.str().trim());
}
writeEscaped<Tag>(OS, join(Lines, Separator));
}
// Prints a row representing an instruction, along with scheduling info and
// point coordinates (measurements).
void Analysis::printInstructionRowCsv(const size_t PointId,
raw_ostream &OS) const {
const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
OS << kCsvSep;
writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
OS << kCsvSep;
assert(!Point.Key.Instructions.empty());
const MCInst &MCI = Point.keyInstruction();
unsigned SchedClassId;
std::tie(SchedClassId, std::ignore) = ResolvedSchedClass::resolveSchedClassId(
*SubtargetInfo_, *InstrInfo_, MCI);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
const MCSchedClassDesc *const SCDesc =
SubtargetInfo_->getSchedModel().getSchedClassDesc(SchedClassId);
writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
#else
OS << SchedClassId;
#endif
for (const auto &Measurement : Point.Measurements) {
OS << kCsvSep;
writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
}
OS << "\n";
}
Analysis::Analysis(const Target &Target, std::unique_ptr<MCInstrInfo> InstrInfo,
const InstructionBenchmarkClustering &Clustering,
double AnalysisInconsistencyEpsilon,
bool AnalysisDisplayUnstableOpcodes,
const std::string &ForceCpuName)
: Clustering_(Clustering), InstrInfo_(std::move(InstrInfo)),
AnalysisInconsistencyEpsilonSquared_(AnalysisInconsistencyEpsilon *
AnalysisInconsistencyEpsilon),
AnalysisDisplayUnstableOpcodes_(AnalysisDisplayUnstableOpcodes) {
if (Clustering.getPoints().empty())
return;
const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
const std::string CpuName =
ForceCpuName.empty() ? FirstPoint.CpuName : ForceCpuName;
RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
MCTargetOptions MCOptions;
AsmInfo_.reset(
Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple, MCOptions));
SubtargetInfo_.reset(
Target.createMCSubtargetInfo(FirstPoint.LLVMTriple, CpuName, ""));
InstPrinter_.reset(Target.createMCInstPrinter(
Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
*InstrInfo_, *RegInfo_));
Context_ =
std::make_unique<MCContext>(Triple(FirstPoint.LLVMTriple), AsmInfo_.get(),
RegInfo_.get(), SubtargetInfo_.get());
Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
assert(Disasm_ && "cannot create MCDisassembler. missing call to "
"InitializeXXXTargetDisassembler ?");
}
template <>
Error Analysis::run<Analysis::PrintClusters>(raw_ostream &OS) const {
if (Clustering_.getPoints().empty())
return Error::success();
// Write the header.
OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
<< kCsvSep << "sched_class";
for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Measurement.Key);
}
OS << "\n";
// Write the points.
for (const auto &ClusterIt : Clustering_.getValidClusters()) {
for (const size_t PointId : ClusterIt.PointIndices) {
printInstructionRowCsv(PointId, OS);
}
OS << "\n\n";
}
return Error::success();
}
Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
ResolvedSchedClass &&RSC)
: RSC(std::move(RSC)) {}
std::vector<Analysis::ResolvedSchedClassAndPoints>
Analysis::makePointsPerSchedClass() const {
std::vector<ResolvedSchedClassAndPoints> Entries;
// Maps SchedClassIds to index in result.
std::unordered_map<unsigned, size_t> SchedClassIdToIndex;
const auto &Points = Clustering_.getPoints();
for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
const InstructionBenchmark &Point = Points[PointId];
if (!Point.Error.empty())
continue;
assert(!Point.Key.Instructions.empty());
// FIXME: we should be using the tuple of classes for instructions in the
// snippet as key.
const MCInst &MCI = Point.keyInstruction();
unsigned SchedClassId;
bool WasVariant;
std::tie(SchedClassId, WasVariant) =
ResolvedSchedClass::resolveSchedClassId(*SubtargetInfo_, *InstrInfo_,
MCI);
const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
if (IndexIt == SchedClassIdToIndex.end()) {
// Create a new entry.
SchedClassIdToIndex.emplace(SchedClassId, Entries.size());
ResolvedSchedClassAndPoints Entry(
ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant));
Entry.PointIds.push_back(PointId);
Entries.push_back(std::move(Entry));
} else {
// Append to the existing entry.
Entries[IndexIt->second].PointIds.push_back(PointId);
}
}
return Entries;
}
// Parallel benchmarks repeat the same opcode multiple times. Just show this
// opcode and show the whole snippet only on hover.
static void writeParallelSnippetHtml(raw_ostream &OS,
const std::vector<MCInst> &Instructions,
const MCInstrInfo &InstrInfo) {
if (Instructions.empty())
return;
writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
if (Instructions.size() > 1)
OS << " (x" << Instructions.size() << ")";
}
// Latency tries to find a serial path. Just show the opcode path and show the
// whole snippet only on hover.
static void writeLatencySnippetHtml(raw_ostream &OS,
const std::vector<MCInst> &Instructions,
const MCInstrInfo &InstrInfo) {
bool First = true;
for (const MCInst &Instr : Instructions) {
if (First)
First = false;
else
OS << " &rarr; ";
writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
}
}
void Analysis::printPointHtml(const InstructionBenchmark &Point,
llvm::raw_ostream &OS) const {
OS << "<li><span class=\"mono\" title=\"";
writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet, "\n");
OS << "\">";
switch (Point.Mode) {
case InstructionBenchmark::Latency:
writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
break;
case InstructionBenchmark::Uops:
case InstructionBenchmark::InverseThroughput:
writeParallelSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
break;
default:
llvm_unreachable("invalid mode");
}
OS << "</span> <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
OS << "</span></li>";
}
void Analysis::printSchedClassClustersHtml(
const std::vector<SchedClassCluster> &Clusters,
const ResolvedSchedClass &RSC, raw_ostream &OS) const {
const auto &Points = Clustering_.getPoints();
OS << "<table class=\"sched-class-clusters\">";
OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
assert(!Clusters.empty());
for (const auto &Measurement :
Points[Clusters[0].getPointIds()[0]].Measurements) {
OS << "<th>";
writeEscaped<kEscapeHtml>(OS, Measurement.Key);
OS << "</th>";
}
OS << "</tr>";
for (const SchedClassCluster &Cluster : Clusters) {
OS << "<tr class=\""
<< (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_,
AnalysisInconsistencyEpsilonSquared_)
? "good-cluster"
: "bad-cluster")
<< "\"><td>";
writeClusterId<kEscapeHtml>(OS, Cluster.id());
OS << "</td><td><ul>";
for (const size_t PointId : Cluster.getPointIds()) {
printPointHtml(Points[PointId], OS);
}
OS << "</ul></td>";
for (const auto &Stats : Cluster.getCentroid().getStats()) {
OS << "<td class=\"measurement\">";
writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
OS << "<br><span class=\"minmax\">[";
writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
OS << ";";
writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
OS << "]</span></td>";
}
OS << "</tr>";
}
OS << "</table>";
}
void Analysis::SchedClassCluster::addPoint(
size_t PointId, const InstructionBenchmarkClustering &Clustering) {
PointIds.push_back(PointId);
const auto &Point = Clustering.getPoints()[PointId];
if (ClusterId.isUndef())
ClusterId = Clustering.getClusterIdForPoint(PointId);
assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
Centroid.addPoint(Point.Measurements);
}
bool Analysis::SchedClassCluster::measurementsMatch(
const MCSubtargetInfo &STI, const ResolvedSchedClass &RSC,
const InstructionBenchmarkClustering &Clustering,
const double AnalysisInconsistencyEpsilonSquared_) const {
assert(!Clustering.getPoints().empty());
const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
if (!Centroid.validate(Mode))
return false;
const std::vector<BenchmarkMeasure> ClusterCenterPoint =
Centroid.getAsPoint();
const std::vector<BenchmarkMeasure> SchedClassPoint =
RSC.getAsPoint(Mode, STI, Centroid.getStats());
if (SchedClassPoint.empty())
return false; // In Uops mode validate() may not be enough.
assert(ClusterCenterPoint.size() == SchedClassPoint.size() &&
"Expected measured/sched data dimensions to match.");
return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint,
AnalysisInconsistencyEpsilonSquared_);
}
void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC,
raw_ostream &OS) const {
OS << "<table class=\"sched-class-desc\">";
OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
"th><th>RThroughput</th><th>WriteProcRes</th><th title=\"This is the "
"idealized unit resource (port) pressure assuming ideal "
"distribution\">Idealized Resource Pressure</th></tr>";
if (RSC.SCDesc->isValid()) {
const auto &SM = SubtargetInfo_->getSchedModel();
OS << "<tr><td>&#10004;</td>";
OS << "<td>" << (RSC.WasVariant ? "&#10004;" : "&#10005;") << "</td>";
OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>";
// Latencies.
OS << "<td><ul>";
for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
const auto *const Entry =
SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I);
OS << "<li>" << Entry->Cycles;
if (RSC.SCDesc->NumWriteLatencyEntries > 1) {
// Dismabiguate if more than 1 latency.
OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
}
OS << "</li>";
}
OS << "</ul></td>";
// inverse throughput.
OS << "<td>";
writeMeasurementValue<kEscapeHtml>(
OS,
MCSchedModel::getReciprocalThroughput(*SubtargetInfo_, *RSC.SCDesc));
OS << "</td>";
// WriteProcRes.
OS << "<td><ul>";
for (const auto &WPR : RSC.NonRedundantWriteProcRes) {
OS << "<li><span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS,
SM.getProcResource(WPR.ProcResourceIdx)->Name);
OS << "</span>: " << WPR.Cycles << "</li>";
}
OS << "</ul></td>";
// Idealized port pressure.
OS << "<td><ul>";
for (const auto &Pressure : RSC.IdealizedProcResPressure) {
OS << "<li><span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
.getProcResource(Pressure.first)
->Name);
OS << "</span>: ";
writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
OS << "</li>";
}
OS << "</ul></td>";
OS << "</tr>";
} else {
OS << "<tr><td>&#10005;</td><td></td><td></td></tr>";
}
OS << "</table>";
}
void Analysis::printClusterRawHtml(
const InstructionBenchmarkClustering::ClusterId &Id, StringRef display_name,
llvm::raw_ostream &OS) const {
const auto &Points = Clustering_.getPoints();
const auto &Cluster = Clustering_.getCluster(Id);
if (Cluster.PointIndices.empty())
return;
OS << "<div class=\"inconsistency\"><p>" << display_name << " Cluster ("
<< Cluster.PointIndices.size() << " points)</p>";
OS << "<table class=\"sched-class-clusters\">";
// Table Header.
OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
for (const auto &Measurement : Points[Cluster.PointIndices[0]].Measurements) {
OS << "<th>";
writeEscaped<kEscapeHtml>(OS, Measurement.Key);
OS << "</th>";
}
OS << "</tr>";
// Point data.
for (const auto &PointId : Cluster.PointIndices) {
OS << "<tr class=\"bad-cluster\"><td>" << display_name << "</td><td><ul>";
printPointHtml(Points[PointId], OS);
OS << "</ul></td>";
for (const auto &Measurement : Points[PointId].Measurements) {
OS << "<td class=\"measurement\">";
writeMeasurementValue<kEscapeHtml>(OS, Measurement.PerInstructionValue);
}
OS << "</tr>";
}
OS << "</table>";
OS << "</div>";
} // namespace exegesis
static constexpr const char kHtmlHead[] = R"(
<head>
<title>llvm-exegesis Analysis Results</title>
<style>
body {
font-family: sans-serif
}
span.sched-class-name {
font-weight: bold;
font-family: monospace;
}
span.opcode {
font-family: monospace;
}
span.config {
font-family: monospace;
}
div.inconsistency {
margin-top: 50px;
}
table {
margin-left: 50px;
border-collapse: collapse;
}
table, table tr,td,th {
border: 1px solid #444;
}
table ul {
padding-left: 0px;
margin: 0px;
list-style-type: none;
}
table.sched-class-clusters td {
padding-left: 10px;
padding-right: 10px;
padding-top: 10px;
padding-bottom: 10px;
}
table.sched-class-desc td {
padding-left: 10px;
padding-right: 10px;
padding-top: 2px;
padding-bottom: 2px;
}
span.mono {
font-family: monospace;
}
td.measurement {
text-align: center;
}
tr.good-cluster td.measurement {
color: #292
}
tr.bad-cluster td.measurement {
color: #922
}
tr.good-cluster td.measurement span.minmax {
color: #888;
}
tr.bad-cluster td.measurement span.minmax {
color: #888;
}
</style>
</head>
)";
template <>
Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
raw_ostream &OS) const {
const auto &FirstPoint = Clustering_.getPoints()[0];
// Print the header.
OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
OS << "<h3>Triple: <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
OS << "</span></h3>";
for (const auto &RSCAndPoints : makePointsPerSchedClass()) {
if (!RSCAndPoints.RSC.SCDesc)
continue;
// Bucket sched class points into sched class clusters.
std::vector<SchedClassCluster> SchedClassClusters;
for (const size_t PointId : RSCAndPoints.PointIds) {
const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
if (!ClusterId.isValid())
continue; // Ignore noise and errors. FIXME: take noise into account ?
if (ClusterId.isUnstable() ^ AnalysisDisplayUnstableOpcodes_)
continue; // Either display stable or unstable clusters only.
auto SchedClassClusterIt = llvm::find_if(
SchedClassClusters, [ClusterId](const SchedClassCluster &C) {
return C.id() == ClusterId;
});
if (SchedClassClusterIt == SchedClassClusters.end()) {
SchedClassClusters.emplace_back();
SchedClassClusterIt = std::prev(SchedClassClusters.end());
}
SchedClassClusterIt->addPoint(PointId, Clustering_);
}
// Print any scheduling class that has at least one cluster that does not
// match the checked-in data.
if (all_of(SchedClassClusters, [this,
&RSCAndPoints](const SchedClassCluster &C) {
return C.measurementsMatch(*SubtargetInfo_, RSCAndPoints.RSC,
Clustering_,
AnalysisInconsistencyEpsilonSquared_);
}))
continue; // Nothing weird.
OS << "<div class=\"inconsistency\"><p>Sched Class <span "
"class=\"sched-class-name\">";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name);
#else
OS << RSCAndPoints.RSC.SchedClassId;
#endif
OS << "</span> contains instructions whose performance characteristics do"
" not match that of LLVM:</p>";
printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS);
OS << "<p>llvm SchedModel data:</p>";
printSchedClassDescHtml(RSCAndPoints.RSC, OS);
OS << "</div>";
}
printClusterRawHtml(InstructionBenchmarkClustering::ClusterId::noise(),
"[noise]", OS);
OS << "</body></html>";
return Error::success();
}
} // namespace exegesis
} // namespace llvm