1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/tools/llvm-exegesis/lib/ParallelSnippetGenerator.cpp
Roman Lebedev 92ce5b3319 [llvm-exegesis] Exploring X86::OperandType::OPERAND_COND_CODE
Summary:
Currently, we only have nice exploration for LEA instruction,
while for the rest, we rely on `randomizeUnsetVariables()`
to sometimes generate something interesting.
While that works, it isn't very reliable in coverage :)

Here, i'm making an assumption that while we may want to explore
multi-instruction configs, we are most interested in the
characteristics of the main instruction we were asked about.

Which we can do, by taking the existing `randomizeMCOperand()`,
and turning it on it's head - instead of relying on it to randomly fill
one of the interesting values, let's pregenerate all the possible interesting
values for the variable, and then generate as much `InstructionTemplate`
combinations of these possible values for variables as needed/possible.

Of course, that requires invasive changes to no longer pass just the
naked `Instruction`, but sometimes partially filled `InstructionTemplate`.

As it can be seen from the test, this allows us to explore
`X86::OperandType::OPERAND_COND_CODE` for instructions
that take such an operand.
I'm hoping this will greatly simplify exploration.

Reviewers: courbet, gchatelet

Reviewed By: gchatelet

Subscribers: orodley, mgorny, sdardis, tschuett, jrtc27, atanasyan, mstojanovic, andreadb, RKSimon, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74156
2020-02-12 21:33:52 +03:00

224 lines
8.9 KiB
C++

//===-- ParallelSnippetGenerator.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ParallelSnippetGenerator.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "Target.h"
// FIXME: Load constants into registers (e.g. with fld1) to not break
// instructions like x87.
// Ideally we would like the only limitation on executing instructions to be the
// availability of the CPU resources (e.g. execution ports) needed to execute
// them, instead of the availability of their data dependencies.
// To achieve that, one approach is to generate instructions that do not have
// data dependencies between them.
//
// For some instructions, this is trivial:
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// For the above snippet, haswell just renames rax four times and executes the
// four instructions two at a time on P23 and P0126.
//
// For some instructions, we just need to make sure that the source is
// different from the destination. For example, IDIV8r reads from GPR and
// writes to AX. We just need to ensure that the Var is assigned a
// register which is different from AX:
// idiv bx
// idiv bx
// idiv bx
// idiv bx
// The above snippet will be able to fully saturate the ports, while the same
// with ax would issue one uop every `latency(IDIV8r)` cycles.
//
// Some instructions make this harder because they both read and write from
// the same register:
// inc rax
// inc rax
// inc rax
// inc rax
// This has a data dependency from each instruction to the next, limit the
// number of instructions that can be issued in parallel.
// It turns out that this is not a big issue on recent Intel CPUs because they
// have heuristics to balance port pressure. In the snippet above, subsequent
// instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs
// might end up executing them all on P0 (just because they can), or try
// avoiding P5 because it's usually under high pressure from vector
// instructions.
// This issue is even more important for high-latency instructions because
// they increase the idle time of the CPU, e.g. :
// imul rax, rbx
// imul rax, rbx
// imul rax, rbx
// imul rax, rbx
//
// To avoid that, we do the renaming statically by generating as many
// independent exclusive assignments as possible (until all possible registers
// are exhausted) e.g.:
// imul rax, rbx
// imul rcx, rbx
// imul rdx, rbx
// imul r8, rbx
//
// Some instruction even make the above static renaming impossible because
// they implicitly read and write from the same operand, e.g. ADC16rr reads
// and writes from EFLAGS.
// In that case we just use a greedy register assignment and hope for the
// best.
namespace llvm {
namespace exegesis {
static SmallVector<const Variable *, 8>
getVariablesWithTiedOperands(const Instruction &Instr) {
SmallVector<const Variable *, 8> Result;
for (const auto &Var : Instr.Variables)
if (Var.hasTiedOperands())
Result.push_back(&Var);
return Result;
}
ParallelSnippetGenerator::~ParallelSnippetGenerator() = default;
void ParallelSnippetGenerator::instantiateMemoryOperands(
const unsigned ScratchSpacePointerInReg,
std::vector<InstructionTemplate> &Instructions) const {
if (ScratchSpacePointerInReg == 0)
return; // no memory operands.
const auto &ET = State.getExegesisTarget();
const unsigned MemStep = ET.getMaxMemoryAccessSize();
const size_t OriginalInstructionsSize = Instructions.size();
size_t I = 0;
for (InstructionTemplate &IT : Instructions) {
ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
++I;
}
while (Instructions.size() < kMinNumDifferentAddresses) {
InstructionTemplate IT = Instructions[I % OriginalInstructionsSize];
ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
++I;
Instructions.push_back(std::move(IT));
}
assert(I * MemStep < BenchmarkRunner::ScratchSpace::kSize &&
"not enough scratch space");
}
static std::vector<InstructionTemplate> generateSnippetUsingStaticRenaming(
const LLVMState &State, const InstructionTemplate &IT,
const ArrayRef<const Variable *> TiedVariables,
const BitVector &ForbiddenRegisters) {
std::vector<InstructionTemplate> Instructions;
// Assign registers to variables in a round-robin manner. This is simple but
// ensures that the most register-constrained variable does not get starved.
std::vector<BitVector> PossibleRegsForVar;
for (const Variable *Var : TiedVariables) {
assert(Var);
const Operand &Op = IT.getInstr().getPrimaryOperand(*Var);
assert(Op.isReg());
BitVector PossibleRegs = Op.getRegisterAliasing().sourceBits();
remove(PossibleRegs, ForbiddenRegisters);
PossibleRegsForVar.push_back(std::move(PossibleRegs));
}
SmallVector<int, 2> Iterators(TiedVariables.size(), 0);
while (true) {
InstructionTemplate TmpIT = IT;
// Find a possible register for each variable in turn, marking the
// register as taken.
for (size_t VarId = 0; VarId < TiedVariables.size(); ++VarId) {
const int NextPossibleReg =
PossibleRegsForVar[VarId].find_next(Iterators[VarId]);
if (NextPossibleReg <= 0) {
return Instructions;
}
TmpIT.getValueFor(*TiedVariables[VarId]) =
MCOperand::createReg(NextPossibleReg);
// Bump iterator.
Iterators[VarId] = NextPossibleReg;
// Prevent other variables from using the register.
for (BitVector &OtherPossibleRegs : PossibleRegsForVar) {
OtherPossibleRegs.reset(NextPossibleReg);
}
}
Instructions.push_back(std::move(TmpIT));
}
}
Expected<std::vector<CodeTemplate>>
ParallelSnippetGenerator::generateCodeTemplates(
InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
const Instruction &Instr = Variant.getInstr();
CodeTemplate CT;
CT.ScratchSpacePointerInReg =
Instr.hasMemoryOperands()
? State.getExegesisTarget().getScratchMemoryRegister(
State.getTargetMachine().getTargetTriple())
: 0;
const AliasingConfigurations SelfAliasing(Instr, Instr);
if (SelfAliasing.empty()) {
CT.Info = "instruction is parallel, repeating a random one.";
CT.Instructions.push_back(std::move(Variant));
instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
return getSingleton(std::move(CT));
}
if (SelfAliasing.hasImplicitAliasing()) {
CT.Info = "instruction is serial, repeating a random one.";
CT.Instructions.push_back(std::move(Variant));
instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
return getSingleton(std::move(CT));
}
const auto TiedVariables = getVariablesWithTiedOperands(Instr);
if (!TiedVariables.empty()) {
CT.Info = "instruction has tied variables, using static renaming.";
CT.Instructions = generateSnippetUsingStaticRenaming(
State, Variant, TiedVariables, ForbiddenRegisters);
instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
return getSingleton(std::move(CT));
}
// No tied variables, we pick random values for defs.
BitVector Defs(State.getRegInfo().getNumRegs());
for (const auto &Op : Instr.Operands) {
if (Op.isReg() && Op.isExplicit() && Op.isDef() && !Op.isMemory()) {
auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
// Do not use forbidden registers.
remove(PossibleRegisters, ForbiddenRegisters);
assert(PossibleRegisters.any() && "No register left to choose from");
const auto RandomReg = randomBit(PossibleRegisters);
Defs.set(RandomReg);
Variant.getValueFor(Op) = MCOperand::createReg(RandomReg);
}
}
// And pick random use values that are not reserved and don't alias with defs.
const auto DefAliases = getAliasedBits(State.getRegInfo(), Defs);
for (const auto &Op : Instr.Operands) {
if (Op.isReg() && Op.isExplicit() && Op.isUse() && !Op.isMemory()) {
auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
remove(PossibleRegisters, ForbiddenRegisters);
remove(PossibleRegisters, DefAliases);
assert(PossibleRegisters.any() && "No register left to choose from");
const auto RandomReg = randomBit(PossibleRegisters);
Variant.getValueFor(Op) = MCOperand::createReg(RandomReg);
}
}
CT.Info =
"instruction has no tied variables picking Uses different from defs";
CT.Instructions.push_back(std::move(Variant));
instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
return getSingleton(std::move(CT));
}
constexpr const size_t ParallelSnippetGenerator::kMinNumDifferentAddresses;
} // namespace exegesis
} // namespace llvm