1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-29 23:12:55 +01:00
llvm-mirror/test/CodeGen/X86/ghc-cc64.ll
Andrew Trick e3e67d4a0a Enable MI Sched for x86.
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.

Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.

On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.

Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.

The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.

Unit tests are updated so they don't depend on SD scheduling heuristics.

llvm-svn: 192750
2013-10-15 23:33:07 +00:00

86 lines
2.8 KiB
LLVM

; RUN: llc < %s -tailcallopt -mtriple=x86_64-linux-gnu | FileCheck %s
; Check the GHC call convention works (x86-64)
@base = external global i64 ; assigned to register: R13
@sp = external global i64 ; assigned to register: RBP
@hp = external global i64 ; assigned to register: R12
@r1 = external global i64 ; assigned to register: RBX
@r2 = external global i64 ; assigned to register: R14
@r3 = external global i64 ; assigned to register: RSI
@r4 = external global i64 ; assigned to register: RDI
@r5 = external global i64 ; assigned to register: R8
@r6 = external global i64 ; assigned to register: R9
@splim = external global i64 ; assigned to register: R15
@f1 = external global float ; assigned to register: XMM1
@f2 = external global float ; assigned to register: XMM2
@f3 = external global float ; assigned to register: XMM3
@f4 = external global float ; assigned to register: XMM4
@d1 = external global double ; assigned to register: XMM5
@d2 = external global double ; assigned to register: XMM6
define void @zap(i64 %a, i64 %b) nounwind {
entry:
; CHECK: movq %rdi, %r13
; CHECK-NEXT: movq %rsi, %rbp
; CHECK-NEXT: callq addtwo
%0 = call cc 10 i64 @addtwo(i64 %a, i64 %b)
; CHECK: callq foo
call void @foo() nounwind
ret void
}
define cc 10 i64 @addtwo(i64 %x, i64 %y) nounwind {
entry:
; CHECK: leaq (%r13,%rbp), %rax
%0 = add i64 %x, %y
; CHECK-NEXT: ret
ret i64 %0
}
define cc 10 void @foo() nounwind {
entry:
; CHECK: movsd d2(%rip), %xmm6
; CHECK-NEXT: movsd d1(%rip), %xmm5
; CHECK-NEXT: movss f4(%rip), %xmm4
; CHECK-NEXT: movss f3(%rip), %xmm3
; CHECK-NEXT: movss f2(%rip), %xmm2
; CHECK-NEXT: movss f1(%rip), %xmm1
; CHECK-NEXT: movq splim(%rip), %r15
; CHECK-NEXT: movq r6(%rip), %r9
; CHECK-NEXT: movq r5(%rip), %r8
; CHECK-NEXT: movq r4(%rip), %rdi
; CHECK-NEXT: movq r3(%rip), %rsi
; CHECK-NEXT: movq r2(%rip), %r14
; CHECK-NEXT: movq r1(%rip), %rbx
; CHECK-NEXT: movq hp(%rip), %r12
; CHECK-NEXT: movq sp(%rip), %rbp
; CHECK-NEXT: movq base(%rip), %r13
%0 = load double* @d2
%1 = load double* @d1
%2 = load float* @f4
%3 = load float* @f3
%4 = load float* @f2
%5 = load float* @f1
%6 = load i64* @splim
%7 = load i64* @r6
%8 = load i64* @r5
%9 = load i64* @r4
%10 = load i64* @r3
%11 = load i64* @r2
%12 = load i64* @r1
%13 = load i64* @hp
%14 = load i64* @sp
%15 = load i64* @base
; CHECK: jmp bar
tail call cc 10 void @bar( i64 %15, i64 %14, i64 %13, i64 %12, i64 %11,
i64 %10, i64 %9, i64 %8, i64 %7, i64 %6,
float %5, float %4, float %3, float %2, double %1,
double %0 ) nounwind
ret void
}
declare cc 10 void @bar(i64, i64, i64, i64, i64, i64, i64, i64, i64, i64,
float, float, float, float, double, double)