1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/include/llvm/TableGen/Record.h
Simon Tatham 7aeb5f145e [TableGen] Add a general-purpose JSON backend.
The aim of this backend is to output everything TableGen knows about
the record set, similarly to the default -print-records backend. But
where -print-records produces output in TableGen's input syntax
(convenient for humans to read), this backend produces it as
structured JSON data, which is convenient for loading into standard
scripting languages such as Python, in order to extract information
from the data set in an automated way.

The output data contains a JSON representation of the variable
definitions in output 'def' records, and a few pieces of metadata such
as which of those definitions are tagged with the 'field' prefix and
which defs are derived from which classes. It doesn't dump out
absolutely every piece of knowledge it _could_ produce, such as type
information and complicated arithmetic operator nodes in abstract
superclasses; the main aim is to allow consumers of this JSON dump to
essentially act as new backends, and backends don't generally need to
depend on that kind of data.

The new backend is implemented as an EmitJSON() function similar to
all of llvm-tblgen's other EmitFoo functions, except that it lives in
lib/TableGen instead of utils/TableGen on the basis that I'm expecting
to add it to clang-tblgen too in a future patch.

To test it, I've written a Python script that loads the JSON output
and tests properties of it based on comments in the .td source - more
or less like FileCheck, except that the CHECK: lines have Python
expressions after them instead of textual pattern matches.

Reviewers: nhaehnle

Reviewed By: nhaehnle

Subscribers: arichardson, labath, mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D46054

llvm-svn: 336771
2018-07-11 08:40:19 +00:00

1908 lines
57 KiB
C++

//===- llvm/TableGen/Record.h - Classes for Table Records -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the main TableGen data structures, including the TableGen
// types, values, and high-level data structures.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TABLEGEN_RECORD_H
#define LLVM_TABLEGEN_RECORD_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TrailingObjects.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
class ListRecTy;
struct MultiClass;
class Record;
class RecordKeeper;
class RecordVal;
class Resolver;
class StringInit;
class TypedInit;
//===----------------------------------------------------------------------===//
// Type Classes
//===----------------------------------------------------------------------===//
class RecTy {
public:
/// Subclass discriminator (for dyn_cast<> et al.)
enum RecTyKind {
BitRecTyKind,
BitsRecTyKind,
CodeRecTyKind,
IntRecTyKind,
StringRecTyKind,
ListRecTyKind,
DagRecTyKind,
RecordRecTyKind
};
private:
RecTyKind Kind;
ListRecTy *ListTy = nullptr;
public:
RecTy(RecTyKind K) : Kind(K) {}
virtual ~RecTy() = default;
RecTyKind getRecTyKind() const { return Kind; }
virtual std::string getAsString() const = 0;
void print(raw_ostream &OS) const { OS << getAsString(); }
void dump() const;
/// Return true if all values of 'this' type can be converted to the specified
/// type.
virtual bool typeIsConvertibleTo(const RecTy *RHS) const;
/// Return true if 'this' type is equal to or a subtype of RHS. For example,
/// a bit set is not an int, but they are convertible.
virtual bool typeIsA(const RecTy *RHS) const;
/// Returns the type representing list<this>.
ListRecTy *getListTy();
};
inline raw_ostream &operator<<(raw_ostream &OS, const RecTy &Ty) {
Ty.print(OS);
return OS;
}
/// 'bit' - Represent a single bit
class BitRecTy : public RecTy {
static BitRecTy Shared;
BitRecTy() : RecTy(BitRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == BitRecTyKind;
}
static BitRecTy *get() { return &Shared; }
std::string getAsString() const override { return "bit"; }
bool typeIsConvertibleTo(const RecTy *RHS) const override;
};
/// 'bits<n>' - Represent a fixed number of bits
class BitsRecTy : public RecTy {
unsigned Size;
explicit BitsRecTy(unsigned Sz) : RecTy(BitsRecTyKind), Size(Sz) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == BitsRecTyKind;
}
static BitsRecTy *get(unsigned Sz);
unsigned getNumBits() const { return Size; }
std::string getAsString() const override;
bool typeIsConvertibleTo(const RecTy *RHS) const override;
bool typeIsA(const RecTy *RHS) const override;
};
/// 'code' - Represent a code fragment
class CodeRecTy : public RecTy {
static CodeRecTy Shared;
CodeRecTy() : RecTy(CodeRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == CodeRecTyKind;
}
static CodeRecTy *get() { return &Shared; }
std::string getAsString() const override { return "code"; }
bool typeIsConvertibleTo(const RecTy *RHS) const override;
};
/// 'int' - Represent an integer value of no particular size
class IntRecTy : public RecTy {
static IntRecTy Shared;
IntRecTy() : RecTy(IntRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == IntRecTyKind;
}
static IntRecTy *get() { return &Shared; }
std::string getAsString() const override { return "int"; }
bool typeIsConvertibleTo(const RecTy *RHS) const override;
};
/// 'string' - Represent an string value
class StringRecTy : public RecTy {
static StringRecTy Shared;
StringRecTy() : RecTy(StringRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == StringRecTyKind;
}
static StringRecTy *get() { return &Shared; }
std::string getAsString() const override;
bool typeIsConvertibleTo(const RecTy *RHS) const override;
};
/// 'list<Ty>' - Represent a list of values, all of which must be of
/// the specified type.
class ListRecTy : public RecTy {
friend ListRecTy *RecTy::getListTy();
RecTy *Ty;
explicit ListRecTy(RecTy *T) : RecTy(ListRecTyKind), Ty(T) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == ListRecTyKind;
}
static ListRecTy *get(RecTy *T) { return T->getListTy(); }
RecTy *getElementType() const { return Ty; }
std::string getAsString() const override;
bool typeIsConvertibleTo(const RecTy *RHS) const override;
bool typeIsA(const RecTy *RHS) const override;
};
/// 'dag' - Represent a dag fragment
class DagRecTy : public RecTy {
static DagRecTy Shared;
DagRecTy() : RecTy(DagRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == DagRecTyKind;
}
static DagRecTy *get() { return &Shared; }
std::string getAsString() const override;
};
/// '[classname]' - Type of record values that have zero or more superclasses.
///
/// The list of superclasses is non-redundant, i.e. only contains classes that
/// are not the superclass of some other listed class.
class RecordRecTy final : public RecTy, public FoldingSetNode,
public TrailingObjects<RecordRecTy, Record *> {
friend class Record;
unsigned NumClasses;
explicit RecordRecTy(unsigned Num)
: RecTy(RecordRecTyKind), NumClasses(Num) {}
public:
RecordRecTy(const RecordRecTy &) = delete;
RecordRecTy &operator=(const RecordRecTy &) = delete;
// Do not use sized deallocation due to trailing objects.
void operator delete(void *p) { ::operator delete(p); }
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == RecordRecTyKind;
}
/// Get the record type with the given non-redundant list of superclasses.
static RecordRecTy *get(ArrayRef<Record *> Classes);
void Profile(FoldingSetNodeID &ID) const;
ArrayRef<Record *> getClasses() const {
return makeArrayRef(getTrailingObjects<Record *>(), NumClasses);
}
using const_record_iterator = Record * const *;
const_record_iterator classes_begin() const { return getClasses().begin(); }
const_record_iterator classes_end() const { return getClasses().end(); }
std::string getAsString() const override;
bool isSubClassOf(Record *Class) const;
bool typeIsConvertibleTo(const RecTy *RHS) const override;
bool typeIsA(const RecTy *RHS) const override;
};
/// Find a common type that T1 and T2 convert to.
/// Return 0 if no such type exists.
RecTy *resolveTypes(RecTy *T1, RecTy *T2);
//===----------------------------------------------------------------------===//
// Initializer Classes
//===----------------------------------------------------------------------===//
class Init {
protected:
/// Discriminator enum (for isa<>, dyn_cast<>, et al.)
///
/// This enum is laid out by a preorder traversal of the inheritance
/// hierarchy, and does not contain an entry for abstract classes, as per
/// the recommendation in docs/HowToSetUpLLVMStyleRTTI.rst.
///
/// We also explicitly include "first" and "last" values for each
/// interior node of the inheritance tree, to make it easier to read the
/// corresponding classof().
///
/// We could pack these a bit tighter by not having the IK_FirstXXXInit
/// and IK_LastXXXInit be their own values, but that would degrade
/// readability for really no benefit.
enum InitKind : uint8_t {
IK_First, // unused; silence a spurious warning
IK_FirstTypedInit,
IK_BitInit,
IK_BitsInit,
IK_CodeInit,
IK_DagInit,
IK_DefInit,
IK_FieldInit,
IK_IntInit,
IK_ListInit,
IK_FirstOpInit,
IK_BinOpInit,
IK_TernOpInit,
IK_UnOpInit,
IK_LastOpInit,
IK_FoldOpInit,
IK_IsAOpInit,
IK_StringInit,
IK_VarInit,
IK_VarListElementInit,
IK_VarBitInit,
IK_VarDefInit,
IK_LastTypedInit,
IK_UnsetInit
};
private:
const InitKind Kind;
protected:
uint8_t Opc; // Used by UnOpInit, BinOpInit, and TernOpInit
private:
virtual void anchor();
public:
InitKind getKind() const { return Kind; }
protected:
explicit Init(InitKind K, uint8_t Opc = 0) : Kind(K), Opc(Opc) {}
public:
Init(const Init &) = delete;
Init &operator=(const Init &) = delete;
virtual ~Init() = default;
/// This virtual method should be overridden by values that may
/// not be completely specified yet.
virtual bool isComplete() const { return true; }
/// Is this a concrete and fully resolved value without any references or
/// stuck operations? Unset values are concrete.
virtual bool isConcrete() const { return false; }
/// Print out this value.
void print(raw_ostream &OS) const { OS << getAsString(); }
/// Convert this value to a string form.
virtual std::string getAsString() const = 0;
/// Convert this value to a string form,
/// without adding quote markers. This primaruly affects
/// StringInits where we will not surround the string value with
/// quotes.
virtual std::string getAsUnquotedString() const { return getAsString(); }
/// Debugging method that may be called through a debugger, just
/// invokes print on stderr.
void dump() const;
/// If this initializer is convertible to Ty, return an initializer whose
/// type is-a Ty, generating a !cast operation if required. Otherwise, return
/// nullptr.
virtual Init *getCastTo(RecTy *Ty) const = 0;
/// Convert to an initializer whose type is-a Ty, or return nullptr if this
/// is not possible (this can happen if the initializer's type is convertible
/// to Ty, but there are unresolved references).
virtual Init *convertInitializerTo(RecTy *Ty) const = 0;
/// This method is used to implement the bitrange
/// selection operator. Given an initializer, it selects the specified bits
/// out, returning them as a new init of bits type. If it is not legal to use
/// the bit subscript operator on this initializer, return null.
virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
return nullptr;
}
/// This method is used to implement the list slice
/// selection operator. Given an initializer, it selects the specified list
/// elements, returning them as a new init of list type. If it is not legal
/// to take a slice of this, return null.
virtual Init *convertInitListSlice(ArrayRef<unsigned> Elements) const {
return nullptr;
}
/// This method is used to implement the FieldInit class.
/// Implementors of this method should return the type of the named field if
/// they are of record type.
virtual RecTy *getFieldType(StringInit *FieldName) const {
return nullptr;
}
/// This method is used by classes that refer to other
/// variables which may not be defined at the time the expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
virtual Init *resolveReferences(Resolver &R) const {
return const_cast<Init *>(this);
}
/// This method is used to return the initializer for the specified
/// bit.
virtual Init *getBit(unsigned Bit) const = 0;
};
inline raw_ostream &operator<<(raw_ostream &OS, const Init &I) {
I.print(OS); return OS;
}
/// This is the common super-class of types that have a specific,
/// explicit, type.
class TypedInit : public Init {
RecTy *Ty;
protected:
explicit TypedInit(InitKind K, RecTy *T, uint8_t Opc = 0)
: Init(K, Opc), Ty(T) {}
public:
TypedInit(const TypedInit &) = delete;
TypedInit &operator=(const TypedInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() >= IK_FirstTypedInit &&
I->getKind() <= IK_LastTypedInit;
}
RecTy *getType() const { return Ty; }
Init *getCastTo(RecTy *Ty) const override;
Init *convertInitializerTo(RecTy *Ty) const override;
Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
/// This method is used to implement the FieldInit class.
/// Implementors of this method should return the type of the named field if
/// they are of record type.
///
RecTy *getFieldType(StringInit *FieldName) const override;
};
/// '?' - Represents an uninitialized value
class UnsetInit : public Init {
UnsetInit() : Init(IK_UnsetInit) {}
public:
UnsetInit(const UnsetInit &) = delete;
UnsetInit &operator=(const UnsetInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_UnsetInit;
}
static UnsetInit *get();
Init *getCastTo(RecTy *Ty) const override;
Init *convertInitializerTo(RecTy *Ty) const override;
Init *getBit(unsigned Bit) const override {
return const_cast<UnsetInit*>(this);
}
bool isComplete() const override { return false; }
bool isConcrete() const override { return true; }
std::string getAsString() const override { return "?"; }
};
/// 'true'/'false' - Represent a concrete initializer for a bit.
class BitInit final : public TypedInit {
bool Value;
explicit BitInit(bool V) : TypedInit(IK_BitInit, BitRecTy::get()), Value(V) {}
public:
BitInit(const BitInit &) = delete;
BitInit &operator=(BitInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_BitInit;
}
static BitInit *get(bool V);
bool getValue() const { return Value; }
Init *convertInitializerTo(RecTy *Ty) const override;
Init *getBit(unsigned Bit) const override {
assert(Bit < 1 && "Bit index out of range!");
return const_cast<BitInit*>(this);
}
bool isConcrete() const override { return true; }
std::string getAsString() const override { return Value ? "1" : "0"; }
};
/// '{ a, b, c }' - Represents an initializer for a BitsRecTy value.
/// It contains a vector of bits, whose size is determined by the type.
class BitsInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<BitsInit, Init *> {
unsigned NumBits;
BitsInit(unsigned N)
: TypedInit(IK_BitsInit, BitsRecTy::get(N)), NumBits(N) {}
public:
BitsInit(const BitsInit &) = delete;
BitsInit &operator=(const BitsInit &) = delete;
// Do not use sized deallocation due to trailing objects.
void operator delete(void *p) { ::operator delete(p); }
static bool classof(const Init *I) {
return I->getKind() == IK_BitsInit;
}
static BitsInit *get(ArrayRef<Init *> Range);
void Profile(FoldingSetNodeID &ID) const;
unsigned getNumBits() const { return NumBits; }
Init *convertInitializerTo(RecTy *Ty) const override;
Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
bool isComplete() const override {
for (unsigned i = 0; i != getNumBits(); ++i)
if (!getBit(i)->isComplete()) return false;
return true;
}
bool allInComplete() const {
for (unsigned i = 0; i != getNumBits(); ++i)
if (getBit(i)->isComplete()) return false;
return true;
}
bool isConcrete() const override;
std::string getAsString() const override;
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override {
assert(Bit < NumBits && "Bit index out of range!");
return getTrailingObjects<Init *>()[Bit];
}
};
/// '7' - Represent an initialization by a literal integer value.
class IntInit : public TypedInit {
int64_t Value;
explicit IntInit(int64_t V)
: TypedInit(IK_IntInit, IntRecTy::get()), Value(V) {}
public:
IntInit(const IntInit &) = delete;
IntInit &operator=(const IntInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_IntInit;
}
static IntInit *get(int64_t V);
int64_t getValue() const { return Value; }
Init *convertInitializerTo(RecTy *Ty) const override;
Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
bool isConcrete() const override { return true; }
std::string getAsString() const override;
Init *getBit(unsigned Bit) const override {
return BitInit::get((Value & (1ULL << Bit)) != 0);
}
};
/// "foo" - Represent an initialization by a string value.
class StringInit : public TypedInit {
StringRef Value;
explicit StringInit(StringRef V)
: TypedInit(IK_StringInit, StringRecTy::get()), Value(V) {}
public:
StringInit(const StringInit &) = delete;
StringInit &operator=(const StringInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_StringInit;
}
static StringInit *get(StringRef);
StringRef getValue() const { return Value; }
Init *convertInitializerTo(RecTy *Ty) const override;
bool isConcrete() const override { return true; }
std::string getAsString() const override { return "\"" + Value.str() + "\""; }
std::string getAsUnquotedString() const override { return Value; }
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off string");
}
};
class CodeInit : public TypedInit {
StringRef Value;
explicit CodeInit(StringRef V)
: TypedInit(IK_CodeInit, static_cast<RecTy *>(CodeRecTy::get())),
Value(V) {}
public:
CodeInit(const StringInit &) = delete;
CodeInit &operator=(const StringInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_CodeInit;
}
static CodeInit *get(StringRef);
StringRef getValue() const { return Value; }
Init *convertInitializerTo(RecTy *Ty) const override;
bool isConcrete() const override { return true; }
std::string getAsString() const override {
return "[{" + Value.str() + "}]";
}
std::string getAsUnquotedString() const override { return Value; }
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off string");
}
};
/// [AL, AH, CL] - Represent a list of defs
///
class ListInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<ListInit, Init *> {
unsigned NumValues;
public:
using const_iterator = Init *const *;
private:
explicit ListInit(unsigned N, RecTy *EltTy)
: TypedInit(IK_ListInit, ListRecTy::get(EltTy)), NumValues(N) {}
public:
ListInit(const ListInit &) = delete;
ListInit &operator=(const ListInit &) = delete;
// Do not use sized deallocation due to trailing objects.
void operator delete(void *p) { ::operator delete(p); }
static bool classof(const Init *I) {
return I->getKind() == IK_ListInit;
}
static ListInit *get(ArrayRef<Init *> Range, RecTy *EltTy);
void Profile(FoldingSetNodeID &ID) const;
Init *getElement(unsigned i) const {
assert(i < NumValues && "List element index out of range!");
return getTrailingObjects<Init *>()[i];
}
RecTy *getElementType() const {
return cast<ListRecTy>(getType())->getElementType();
}
Record *getElementAsRecord(unsigned i) const;
Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
Init *convertInitializerTo(RecTy *Ty) const override;
/// This method is used by classes that refer to other
/// variables which may not be defined at the time they expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
Init *resolveReferences(Resolver &R) const override;
bool isConcrete() const override;
std::string getAsString() const override;
ArrayRef<Init*> getValues() const {
return makeArrayRef(getTrailingObjects<Init *>(), NumValues);
}
const_iterator begin() const { return getTrailingObjects<Init *>(); }
const_iterator end () const { return begin() + NumValues; }
size_t size () const { return NumValues; }
bool empty() const { return NumValues == 0; }
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off list");
}
};
/// Base class for operators
///
class OpInit : public TypedInit {
protected:
explicit OpInit(InitKind K, RecTy *Type, uint8_t Opc)
: TypedInit(K, Type, Opc) {}
public:
OpInit(const OpInit &) = delete;
OpInit &operator=(OpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() >= IK_FirstOpInit &&
I->getKind() <= IK_LastOpInit;
}
// Clone - Clone this operator, replacing arguments with the new list
virtual OpInit *clone(ArrayRef<Init *> Operands) const = 0;
virtual unsigned getNumOperands() const = 0;
virtual Init *getOperand(unsigned i) const = 0;
Init *getBit(unsigned Bit) const override;
};
/// !op (X) - Transform an init.
///
class UnOpInit : public OpInit, public FoldingSetNode {
public:
enum UnaryOp : uint8_t { CAST, HEAD, TAIL, SIZE, EMPTY };
private:
Init *LHS;
UnOpInit(UnaryOp opc, Init *lhs, RecTy *Type)
: OpInit(IK_UnOpInit, Type, opc), LHS(lhs) {}
public:
UnOpInit(const UnOpInit &) = delete;
UnOpInit &operator=(const UnOpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_UnOpInit;
}
static UnOpInit *get(UnaryOp opc, Init *lhs, RecTy *Type);
void Profile(FoldingSetNodeID &ID) const;
// Clone - Clone this operator, replacing arguments with the new list
OpInit *clone(ArrayRef<Init *> Operands) const override {
assert(Operands.size() == 1 &&
"Wrong number of operands for unary operation");
return UnOpInit::get(getOpcode(), *Operands.begin(), getType());
}
unsigned getNumOperands() const override { return 1; }
Init *getOperand(unsigned i) const override {
assert(i == 0 && "Invalid operand id for unary operator");
return getOperand();
}
UnaryOp getOpcode() const { return (UnaryOp)Opc; }
Init *getOperand() const { return LHS; }
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec, bool IsFinal = false) const;
Init *resolveReferences(Resolver &R) const override;
std::string getAsString() const override;
};
/// !op (X, Y) - Combine two inits.
class BinOpInit : public OpInit, public FoldingSetNode {
public:
enum BinaryOp : uint8_t { ADD, AND, OR, SHL, SRA, SRL, LISTCONCAT,
STRCONCAT, CONCAT, EQ, NE, LE, LT, GE, GT };
private:
Init *LHS, *RHS;
BinOpInit(BinaryOp opc, Init *lhs, Init *rhs, RecTy *Type) :
OpInit(IK_BinOpInit, Type, opc), LHS(lhs), RHS(rhs) {}
public:
BinOpInit(const BinOpInit &) = delete;
BinOpInit &operator=(const BinOpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_BinOpInit;
}
static BinOpInit *get(BinaryOp opc, Init *lhs, Init *rhs,
RecTy *Type);
static Init *getStrConcat(Init *lhs, Init *rhs);
void Profile(FoldingSetNodeID &ID) const;
// Clone - Clone this operator, replacing arguments with the new list
OpInit *clone(ArrayRef<Init *> Operands) const override {
assert(Operands.size() == 2 &&
"Wrong number of operands for binary operation");
return BinOpInit::get(getOpcode(), Operands[0], Operands[1], getType());
}
unsigned getNumOperands() const override { return 2; }
Init *getOperand(unsigned i) const override {
switch (i) {
default: llvm_unreachable("Invalid operand id for binary operator");
case 0: return getLHS();
case 1: return getRHS();
}
}
BinaryOp getOpcode() const { return (BinaryOp)Opc; }
Init *getLHS() const { return LHS; }
Init *getRHS() const { return RHS; }
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec) const;
Init *resolveReferences(Resolver &R) const override;
std::string getAsString() const override;
};
/// !op (X, Y, Z) - Combine two inits.
class TernOpInit : public OpInit, public FoldingSetNode {
public:
enum TernaryOp : uint8_t { SUBST, FOREACH, IF, DAG };
private:
Init *LHS, *MHS, *RHS;
TernOpInit(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs,
RecTy *Type) :
OpInit(IK_TernOpInit, Type, opc), LHS(lhs), MHS(mhs), RHS(rhs) {}
public:
TernOpInit(const TernOpInit &) = delete;
TernOpInit &operator=(const TernOpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_TernOpInit;
}
static TernOpInit *get(TernaryOp opc, Init *lhs,
Init *mhs, Init *rhs,
RecTy *Type);
void Profile(FoldingSetNodeID &ID) const;
// Clone - Clone this operator, replacing arguments with the new list
OpInit *clone(ArrayRef<Init *> Operands) const override {
assert(Operands.size() == 3 &&
"Wrong number of operands for ternary operation");
return TernOpInit::get(getOpcode(), Operands[0], Operands[1], Operands[2],
getType());
}
unsigned getNumOperands() const override { return 3; }
Init *getOperand(unsigned i) const override {
switch (i) {
default: llvm_unreachable("Invalid operand id for ternary operator");
case 0: return getLHS();
case 1: return getMHS();
case 2: return getRHS();
}
}
TernaryOp getOpcode() const { return (TernaryOp)Opc; }
Init *getLHS() const { return LHS; }
Init *getMHS() const { return MHS; }
Init *getRHS() const { return RHS; }
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec) const;
bool isComplete() const override {
return LHS->isComplete() && MHS->isComplete() && RHS->isComplete();
}
Init *resolveReferences(Resolver &R) const override;
std::string getAsString() const override;
};
/// !foldl (a, b, expr, start, lst) - Fold over a list.
class FoldOpInit : public TypedInit, public FoldingSetNode {
private:
Init *Start;
Init *List;
Init *A;
Init *B;
Init *Expr;
FoldOpInit(Init *Start, Init *List, Init *A, Init *B, Init *Expr, RecTy *Type)
: TypedInit(IK_FoldOpInit, Type), Start(Start), List(List), A(A), B(B),
Expr(Expr) {}
public:
FoldOpInit(const FoldOpInit &) = delete;
FoldOpInit &operator=(const FoldOpInit &) = delete;
static bool classof(const Init *I) { return I->getKind() == IK_FoldOpInit; }
static FoldOpInit *get(Init *Start, Init *List, Init *A, Init *B, Init *Expr,
RecTy *Type);
void Profile(FoldingSetNodeID &ID) const;
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec) const;
bool isComplete() const override { return false; }
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
std::string getAsString() const override;
};
/// !isa<type>(expr) - Dynamically determine the type of an expression.
class IsAOpInit : public TypedInit, public FoldingSetNode {
private:
RecTy *CheckType;
Init *Expr;
IsAOpInit(RecTy *CheckType, Init *Expr)
: TypedInit(IK_IsAOpInit, IntRecTy::get()), CheckType(CheckType),
Expr(Expr) {}
public:
IsAOpInit(const IsAOpInit &) = delete;
IsAOpInit &operator=(const IsAOpInit &) = delete;
static bool classof(const Init *I) { return I->getKind() == IK_IsAOpInit; }
static IsAOpInit *get(RecTy *CheckType, Init *Expr);
void Profile(FoldingSetNodeID &ID) const;
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold() const;
bool isComplete() const override { return false; }
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
std::string getAsString() const override;
};
/// 'Opcode' - Represent a reference to an entire variable object.
class VarInit : public TypedInit {
Init *VarName;
explicit VarInit(Init *VN, RecTy *T)
: TypedInit(IK_VarInit, T), VarName(VN) {}
public:
VarInit(const VarInit &) = delete;
VarInit &operator=(const VarInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_VarInit;
}
static VarInit *get(StringRef VN, RecTy *T);
static VarInit *get(Init *VN, RecTy *T);
StringRef getName() const;
Init *getNameInit() const { return VarName; }
std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
/// This method is used by classes that refer to other
/// variables which may not be defined at the time they expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
std::string getAsString() const override { return getName(); }
};
/// Opcode{0} - Represent access to one bit of a variable or field.
class VarBitInit final : public TypedInit {
TypedInit *TI;
unsigned Bit;
VarBitInit(TypedInit *T, unsigned B)
: TypedInit(IK_VarBitInit, BitRecTy::get()), TI(T), Bit(B) {
assert(T->getType() &&
(isa<IntRecTy>(T->getType()) ||
(isa<BitsRecTy>(T->getType()) &&
cast<BitsRecTy>(T->getType())->getNumBits() > B)) &&
"Illegal VarBitInit expression!");
}
public:
VarBitInit(const VarBitInit &) = delete;
VarBitInit &operator=(const VarBitInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_VarBitInit;
}
static VarBitInit *get(TypedInit *T, unsigned B);
Init *getBitVar() const { return TI; }
unsigned getBitNum() const { return Bit; }
std::string getAsString() const override;
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned B) const override {
assert(B < 1 && "Bit index out of range!");
return const_cast<VarBitInit*>(this);
}
};
/// List[4] - Represent access to one element of a var or
/// field.
class VarListElementInit : public TypedInit {
TypedInit *TI;
unsigned Element;
VarListElementInit(TypedInit *T, unsigned E)
: TypedInit(IK_VarListElementInit,
cast<ListRecTy>(T->getType())->getElementType()),
TI(T), Element(E) {
assert(T->getType() && isa<ListRecTy>(T->getType()) &&
"Illegal VarBitInit expression!");
}
public:
VarListElementInit(const VarListElementInit &) = delete;
VarListElementInit &operator=(const VarListElementInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_VarListElementInit;
}
static VarListElementInit *get(TypedInit *T, unsigned E);
TypedInit *getVariable() const { return TI; }
unsigned getElementNum() const { return Element; }
std::string getAsString() const override;
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
};
/// AL - Represent a reference to a 'def' in the description
class DefInit : public TypedInit {
friend class Record;
Record *Def;
explicit DefInit(Record *D);
public:
DefInit(const DefInit &) = delete;
DefInit &operator=(const DefInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_DefInit;
}
static DefInit *get(Record*);
Init *convertInitializerTo(RecTy *Ty) const override;
Record *getDef() const { return Def; }
//virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits);
RecTy *getFieldType(StringInit *FieldName) const override;
bool isConcrete() const override { return true; }
std::string getAsString() const override;
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off def");
}
};
/// classname<targs...> - Represent an uninstantiated anonymous class
/// instantiation.
class VarDefInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<VarDefInit, Init *> {
Record *Class;
DefInit *Def = nullptr; // after instantiation
unsigned NumArgs;
explicit VarDefInit(Record *Class, unsigned N)
: TypedInit(IK_VarDefInit, RecordRecTy::get(Class)), Class(Class), NumArgs(N) {}
DefInit *instantiate();
public:
VarDefInit(const VarDefInit &) = delete;
VarDefInit &operator=(const VarDefInit &) = delete;
// Do not use sized deallocation due to trailing objects.
void operator delete(void *p) { ::operator delete(p); }
static bool classof(const Init *I) {
return I->getKind() == IK_VarDefInit;
}
static VarDefInit *get(Record *Class, ArrayRef<Init *> Args);
void Profile(FoldingSetNodeID &ID) const;
Init *resolveReferences(Resolver &R) const override;
Init *Fold() const;
std::string getAsString() const override;
Init *getArg(unsigned i) const {
assert(i < NumArgs && "Argument index out of range!");
return getTrailingObjects<Init *>()[i];
}
using const_iterator = Init *const *;
const_iterator args_begin() const { return getTrailingObjects<Init *>(); }
const_iterator args_end () const { return args_begin() + NumArgs; }
size_t args_size () const { return NumArgs; }
bool args_empty() const { return NumArgs == 0; }
ArrayRef<Init *> args() const { return makeArrayRef(args_begin(), NumArgs); }
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off anonymous def");
}
};
/// X.Y - Represent a reference to a subfield of a variable
class FieldInit : public TypedInit {
Init *Rec; // Record we are referring to
StringInit *FieldName; // Field we are accessing
FieldInit(Init *R, StringInit *FN)
: TypedInit(IK_FieldInit, R->getFieldType(FN)), Rec(R), FieldName(FN) {
assert(getType() && "FieldInit with non-record type!");
}
public:
FieldInit(const FieldInit &) = delete;
FieldInit &operator=(const FieldInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_FieldInit;
}
static FieldInit *get(Init *R, StringInit *FN);
Init *getRecord() const { return Rec; }
StringInit *getFieldName() const { return FieldName; }
Init *getBit(unsigned Bit) const override;
Init *resolveReferences(Resolver &R) const override;
Init *Fold(Record *CurRec) const;
std::string getAsString() const override {
return Rec->getAsString() + "." + FieldName->getValue().str();
}
};
/// (v a, b) - Represent a DAG tree value. DAG inits are required
/// to have at least one value then a (possibly empty) list of arguments. Each
/// argument can have a name associated with it.
class DagInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<DagInit, Init *, StringInit *> {
friend TrailingObjects;
Init *Val;
StringInit *ValName;
unsigned NumArgs;
unsigned NumArgNames;
DagInit(Init *V, StringInit *VN, unsigned NumArgs, unsigned NumArgNames)
: TypedInit(IK_DagInit, DagRecTy::get()), Val(V), ValName(VN),
NumArgs(NumArgs), NumArgNames(NumArgNames) {}
size_t numTrailingObjects(OverloadToken<Init *>) const { return NumArgs; }
public:
DagInit(const DagInit &) = delete;
DagInit &operator=(const DagInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_DagInit;
}
static DagInit *get(Init *V, StringInit *VN, ArrayRef<Init *> ArgRange,
ArrayRef<StringInit*> NameRange);
static DagInit *get(Init *V, StringInit *VN,
ArrayRef<std::pair<Init*, StringInit*>> Args);
void Profile(FoldingSetNodeID &ID) const;
Init *getOperator() const { return Val; }
StringInit *getName() const { return ValName; }
StringRef getNameStr() const {
return ValName ? ValName->getValue() : StringRef();
}
unsigned getNumArgs() const { return NumArgs; }
Init *getArg(unsigned Num) const {
assert(Num < NumArgs && "Arg number out of range!");
return getTrailingObjects<Init *>()[Num];
}
StringInit *getArgName(unsigned Num) const {
assert(Num < NumArgNames && "Arg number out of range!");
return getTrailingObjects<StringInit *>()[Num];
}
StringRef getArgNameStr(unsigned Num) const {
StringInit *Init = getArgName(Num);
return Init ? Init->getValue() : StringRef();
}
ArrayRef<Init *> getArgs() const {
return makeArrayRef(getTrailingObjects<Init *>(), NumArgs);
}
ArrayRef<StringInit *> getArgNames() const {
return makeArrayRef(getTrailingObjects<StringInit *>(), NumArgNames);
}
Init *resolveReferences(Resolver &R) const override;
bool isConcrete() const override;
std::string getAsString() const override;
using const_arg_iterator = SmallVectorImpl<Init*>::const_iterator;
using const_name_iterator = SmallVectorImpl<StringInit*>::const_iterator;
inline const_arg_iterator arg_begin() const { return getArgs().begin(); }
inline const_arg_iterator arg_end () const { return getArgs().end(); }
inline size_t arg_size () const { return NumArgs; }
inline bool arg_empty() const { return NumArgs == 0; }
inline const_name_iterator name_begin() const { return getArgNames().begin();}
inline const_name_iterator name_end () const { return getArgNames().end(); }
inline size_t name_size () const { return NumArgNames; }
inline bool name_empty() const { return NumArgNames == 0; }
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off dag");
}
};
//===----------------------------------------------------------------------===//
// High-Level Classes
//===----------------------------------------------------------------------===//
class RecordVal {
friend class Record;
Init *Name;
PointerIntPair<RecTy *, 1, bool> TyAndPrefix;
Init *Value;
public:
RecordVal(Init *N, RecTy *T, bool P);
StringRef getName() const;
Init *getNameInit() const { return Name; }
std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
bool getPrefix() const { return TyAndPrefix.getInt(); }
RecTy *getType() const { return TyAndPrefix.getPointer(); }
Init *getValue() const { return Value; }
bool setValue(Init *V);
void dump() const;
void print(raw_ostream &OS, bool PrintSem = true) const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const RecordVal &RV) {
RV.print(OS << " ");
return OS;
}
class Record {
static unsigned LastID;
Init *Name;
// Location where record was instantiated, followed by the location of
// multiclass prototypes used.
SmallVector<SMLoc, 4> Locs;
SmallVector<Init *, 0> TemplateArgs;
SmallVector<RecordVal, 0> Values;
// All superclasses in the inheritance forest in reverse preorder (yes, it
// must be a forest; diamond-shaped inheritance is not allowed).
SmallVector<std::pair<Record *, SMRange>, 0> SuperClasses;
// Tracks Record instances. Not owned by Record.
RecordKeeper &TrackedRecords;
DefInit *TheInit = nullptr;
// Unique record ID.
unsigned ID;
bool IsAnonymous;
bool IsClass;
void checkName();
public:
// Constructs a record.
explicit Record(Init *N, ArrayRef<SMLoc> locs, RecordKeeper &records,
bool Anonymous = false, bool Class = false)
: Name(N), Locs(locs.begin(), locs.end()), TrackedRecords(records),
ID(LastID++), IsAnonymous(Anonymous), IsClass(Class) {
checkName();
}
explicit Record(StringRef N, ArrayRef<SMLoc> locs, RecordKeeper &records,
bool Class = false)
: Record(StringInit::get(N), locs, records, false, Class) {}
// When copy-constructing a Record, we must still guarantee a globally unique
// ID number. Don't copy TheInit either since it's owned by the original
// record. All other fields can be copied normally.
Record(const Record &O)
: Name(O.Name), Locs(O.Locs), TemplateArgs(O.TemplateArgs),
Values(O.Values), SuperClasses(O.SuperClasses),
TrackedRecords(O.TrackedRecords), ID(LastID++),
IsAnonymous(O.IsAnonymous), IsClass(O.IsClass) { }
static unsigned getNewUID() { return LastID++; }
unsigned getID() const { return ID; }
StringRef getName() const { return cast<StringInit>(Name)->getValue(); }
Init *getNameInit() const {
return Name;
}
const std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
void setName(Init *Name); // Also updates RecordKeeper.
ArrayRef<SMLoc> getLoc() const { return Locs; }
void appendLoc(SMLoc Loc) { Locs.push_back(Loc); }
// Make the type that this record should have based on its superclasses.
RecordRecTy *getType();
/// get the corresponding DefInit.
DefInit *getDefInit();
bool isClass() const { return IsClass; }
ArrayRef<Init *> getTemplateArgs() const {
return TemplateArgs;
}
ArrayRef<RecordVal> getValues() const { return Values; }
ArrayRef<std::pair<Record *, SMRange>> getSuperClasses() const {
return SuperClasses;
}
/// Append the direct super classes of this record to Classes.
void getDirectSuperClasses(SmallVectorImpl<Record *> &Classes) const;
bool isTemplateArg(Init *Name) const {
for (Init *TA : TemplateArgs)
if (TA == Name) return true;
return false;
}
const RecordVal *getValue(const Init *Name) const {
for (const RecordVal &Val : Values)
if (Val.Name == Name) return &Val;
return nullptr;
}
const RecordVal *getValue(StringRef Name) const {
return getValue(StringInit::get(Name));
}
RecordVal *getValue(const Init *Name) {
return const_cast<RecordVal *>(static_cast<const Record *>(this)->getValue(Name));
}
RecordVal *getValue(StringRef Name) {
return const_cast<RecordVal *>(static_cast<const Record *>(this)->getValue(Name));
}
void addTemplateArg(Init *Name) {
assert(!isTemplateArg(Name) && "Template arg already defined!");
TemplateArgs.push_back(Name);
}
void addValue(const RecordVal &RV) {
assert(getValue(RV.getNameInit()) == nullptr && "Value already added!");
Values.push_back(RV);
}
void removeValue(Init *Name) {
for (unsigned i = 0, e = Values.size(); i != e; ++i)
if (Values[i].getNameInit() == Name) {
Values.erase(Values.begin()+i);
return;
}
llvm_unreachable("Cannot remove an entry that does not exist!");
}
void removeValue(StringRef Name) {
removeValue(StringInit::get(Name));
}
bool isSubClassOf(const Record *R) const {
for (const auto &SCPair : SuperClasses)
if (SCPair.first == R)
return true;
return false;
}
bool isSubClassOf(StringRef Name) const {
for (const auto &SCPair : SuperClasses) {
if (const auto *SI = dyn_cast<StringInit>(SCPair.first->getNameInit())) {
if (SI->getValue() == Name)
return true;
} else if (SCPair.first->getNameInitAsString() == Name) {
return true;
}
}
return false;
}
void addSuperClass(Record *R, SMRange Range) {
assert(!TheInit && "changing type of record after it has been referenced");
assert(!isSubClassOf(R) && "Already subclassing record!");
SuperClasses.push_back(std::make_pair(R, Range));
}
/// If there are any field references that refer to fields
/// that have been filled in, we can propagate the values now.
///
/// This is a final resolve: any error messages, e.g. due to undefined
/// !cast references, are generated now.
void resolveReferences();
/// Apply the resolver to the name of the record as well as to the
/// initializers of all fields of the record except SkipVal.
///
/// The resolver should not resolve any of the fields itself, to avoid
/// recursion / infinite loops.
void resolveReferences(Resolver &R, const RecordVal *SkipVal = nullptr);
/// If anything in this record refers to RV, replace the
/// reference to RV with the RHS of RV. If RV is null, we resolve all
/// possible references.
void resolveReferencesTo(const RecordVal *RV);
RecordKeeper &getRecords() const {
return TrackedRecords;
}
bool isAnonymous() const {
return IsAnonymous;
}
void print(raw_ostream &OS) const;
void dump() const;
//===--------------------------------------------------------------------===//
// High-level methods useful to tablegen back-ends
//
/// Return the initializer for a value with the specified name,
/// or throw an exception if the field does not exist.
Init *getValueInit(StringRef FieldName) const;
/// Return true if the named field is unset.
bool isValueUnset(StringRef FieldName) const {
return isa<UnsetInit>(getValueInit(FieldName));
}
/// This method looks up the specified field and returns
/// its value as a string, throwing an exception if the field does not exist
/// or if the value is not a string.
StringRef getValueAsString(StringRef FieldName) const;
/// This method looks up the specified field and returns
/// its value as a BitsInit, throwing an exception if the field does not exist
/// or if the value is not the right type.
BitsInit *getValueAsBitsInit(StringRef FieldName) const;
/// This method looks up the specified field and returns
/// its value as a ListInit, throwing an exception if the field does not exist
/// or if the value is not the right type.
ListInit *getValueAsListInit(StringRef FieldName) const;
/// This method looks up the specified field and
/// returns its value as a vector of records, throwing an exception if the
/// field does not exist or if the value is not the right type.
std::vector<Record*> getValueAsListOfDefs(StringRef FieldName) const;
/// This method looks up the specified field and
/// returns its value as a vector of integers, throwing an exception if the
/// field does not exist or if the value is not the right type.
std::vector<int64_t> getValueAsListOfInts(StringRef FieldName) const;
/// This method looks up the specified field and
/// returns its value as a vector of strings, throwing an exception if the
/// field does not exist or if the value is not the right type.
std::vector<StringRef> getValueAsListOfStrings(StringRef FieldName) const;
/// This method looks up the specified field and returns its
/// value as a Record, throwing an exception if the field does not exist or if
/// the value is not the right type.
Record *getValueAsDef(StringRef FieldName) const;
/// This method looks up the specified field and returns its
/// value as a bit, throwing an exception if the field does not exist or if
/// the value is not the right type.
bool getValueAsBit(StringRef FieldName) const;
/// This method looks up the specified field and
/// returns its value as a bit. If the field is unset, sets Unset to true and
/// returns false.
bool getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const;
/// This method looks up the specified field and returns its
/// value as an int64_t, throwing an exception if the field does not exist or
/// if the value is not the right type.
int64_t getValueAsInt(StringRef FieldName) const;
/// This method looks up the specified field and returns its
/// value as an Dag, throwing an exception if the field does not exist or if
/// the value is not the right type.
DagInit *getValueAsDag(StringRef FieldName) const;
};
raw_ostream &operator<<(raw_ostream &OS, const Record &R);
class RecordKeeper {
friend class RecordRecTy;
using RecordMap = std::map<std::string, std::unique_ptr<Record>>;
RecordMap Classes, Defs;
FoldingSet<RecordRecTy> RecordTypePool;
std::map<std::string, Init *> ExtraGlobals;
unsigned AnonCounter = 0;
public:
const RecordMap &getClasses() const { return Classes; }
const RecordMap &getDefs() const { return Defs; }
Record *getClass(StringRef Name) const {
auto I = Classes.find(Name);
return I == Classes.end() ? nullptr : I->second.get();
}
Record *getDef(StringRef Name) const {
auto I = Defs.find(Name);
return I == Defs.end() ? nullptr : I->second.get();
}
Init *getGlobal(StringRef Name) const {
if (Record *R = getDef(Name))
return R->getDefInit();
auto It = ExtraGlobals.find(Name);
return It == ExtraGlobals.end() ? nullptr : It->second;
}
void addClass(std::unique_ptr<Record> R) {
bool Ins = Classes.insert(std::make_pair(R->getName(),
std::move(R))).second;
(void)Ins;
assert(Ins && "Class already exists");
}
void addDef(std::unique_ptr<Record> R) {
bool Ins = Defs.insert(std::make_pair(R->getName(),
std::move(R))).second;
(void)Ins;
assert(Ins && "Record already exists");
}
void addExtraGlobal(StringRef Name, Init *I) {
bool Ins = ExtraGlobals.insert(std::make_pair(Name, I)).second;
(void)Ins;
assert(!getDef(Name));
assert(Ins && "Global already exists");
}
Init *getNewAnonymousName();
//===--------------------------------------------------------------------===//
// High-level helper methods, useful for tablegen backends...
/// This method returns all concrete definitions
/// that derive from the specified class name. A class with the specified
/// name must exist.
std::vector<Record *> getAllDerivedDefinitions(StringRef ClassName) const;
void dump() const;
};
/// Sorting predicate to sort record pointers by name.
struct LessRecord {
bool operator()(const Record *Rec1, const Record *Rec2) const {
return StringRef(Rec1->getName()).compare_numeric(Rec2->getName()) < 0;
}
};
/// Sorting predicate to sort record pointers by their
/// unique ID. If you just need a deterministic order, use this, since it
/// just compares two `unsigned`; the other sorting predicates require
/// string manipulation.
struct LessRecordByID {
bool operator()(const Record *LHS, const Record *RHS) const {
return LHS->getID() < RHS->getID();
}
};
/// Sorting predicate to sort record pointers by their
/// name field.
struct LessRecordFieldName {
bool operator()(const Record *Rec1, const Record *Rec2) const {
return Rec1->getValueAsString("Name") < Rec2->getValueAsString("Name");
}
};
struct LessRecordRegister {
static bool ascii_isdigit(char x) { return x >= '0' && x <= '9'; }
struct RecordParts {
SmallVector<std::pair< bool, StringRef>, 4> Parts;
RecordParts(StringRef Rec) {
if (Rec.empty())
return;
size_t Len = 0;
const char *Start = Rec.data();
const char *Curr = Start;
bool isDigitPart = ascii_isdigit(Curr[0]);
for (size_t I = 0, E = Rec.size(); I != E; ++I, ++Len) {
bool isDigit = ascii_isdigit(Curr[I]);
if (isDigit != isDigitPart) {
Parts.push_back(std::make_pair(isDigitPart, StringRef(Start, Len)));
Len = 0;
Start = &Curr[I];
isDigitPart = ascii_isdigit(Curr[I]);
}
}
// Push the last part.
Parts.push_back(std::make_pair(isDigitPart, StringRef(Start, Len)));
}
size_t size() { return Parts.size(); }
std::pair<bool, StringRef> getPart(size_t i) {
assert (i < Parts.size() && "Invalid idx!");
return Parts[i];
}
};
bool operator()(const Record *Rec1, const Record *Rec2) const {
RecordParts LHSParts(StringRef(Rec1->getName()));
RecordParts RHSParts(StringRef(Rec2->getName()));
size_t LHSNumParts = LHSParts.size();
size_t RHSNumParts = RHSParts.size();
assert (LHSNumParts && RHSNumParts && "Expected at least one part!");
if (LHSNumParts != RHSNumParts)
return LHSNumParts < RHSNumParts;
// We expect the registers to be of the form [_a-zA-Z]+([0-9]*[_a-zA-Z]*)*.
for (size_t I = 0, E = LHSNumParts; I < E; I+=2) {
std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
// Expect even part to always be alpha.
assert (LHSPart.first == false && RHSPart.first == false &&
"Expected both parts to be alpha.");
if (int Res = LHSPart.second.compare(RHSPart.second))
return Res < 0;
}
for (size_t I = 1, E = LHSNumParts; I < E; I+=2) {
std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
// Expect odd part to always be numeric.
assert (LHSPart.first == true && RHSPart.first == true &&
"Expected both parts to be numeric.");
if (LHSPart.second.size() != RHSPart.second.size())
return LHSPart.second.size() < RHSPart.second.size();
unsigned LHSVal, RHSVal;
bool LHSFailed = LHSPart.second.getAsInteger(10, LHSVal); (void)LHSFailed;
assert(!LHSFailed && "Unable to convert LHS to integer.");
bool RHSFailed = RHSPart.second.getAsInteger(10, RHSVal); (void)RHSFailed;
assert(!RHSFailed && "Unable to convert RHS to integer.");
if (LHSVal != RHSVal)
return LHSVal < RHSVal;
}
return LHSNumParts < RHSNumParts;
}
};
raw_ostream &operator<<(raw_ostream &OS, const RecordKeeper &RK);
//===----------------------------------------------------------------------===//
// Resolvers
//===----------------------------------------------------------------------===//
/// Interface for looking up the initializer for a variable name, used by
/// Init::resolveReferences.
class Resolver {
Record *CurRec;
bool IsFinal = false;
public:
explicit Resolver(Record *CurRec) : CurRec(CurRec) {}
virtual ~Resolver() {}
Record *getCurrentRecord() const { return CurRec; }
/// Return the initializer for the given variable name (should normally be a
/// StringInit), or nullptr if the name could not be resolved.
virtual Init *resolve(Init *VarName) = 0;
// Whether bits in a BitsInit should stay unresolved if resolving them would
// result in a ? (UnsetInit). This behavior is used to represent instruction
// encodings by keeping references to unset variables within a record.
virtual bool keepUnsetBits() const { return false; }
// Whether this is the final resolve step before adding a record to the
// RecordKeeper. Error reporting during resolve and related constant folding
// should only happen when this is true.
bool isFinal() const { return IsFinal; }
void setFinal(bool Final) { IsFinal = Final; }
};
/// Resolve arbitrary mappings.
class MapResolver final : public Resolver {
struct MappedValue {
Init *V;
bool Resolved;
MappedValue() : V(nullptr), Resolved(false) {}
MappedValue(Init *V, bool Resolved) : V(V), Resolved(Resolved) {}
};
DenseMap<Init *, MappedValue> Map;
public:
explicit MapResolver(Record *CurRec = nullptr) : Resolver(CurRec) {}
void set(Init *Key, Init *Value) { Map[Key] = {Value, false}; }
Init *resolve(Init *VarName) override;
};
/// Resolve all variables from a record except for unset variables.
class RecordResolver final : public Resolver {
DenseMap<Init *, Init *> Cache;
SmallVector<Init *, 4> Stack;
public:
explicit RecordResolver(Record &R) : Resolver(&R) {}
Init *resolve(Init *VarName) override;
bool keepUnsetBits() const override { return true; }
};
/// Resolve all references to a specific RecordVal.
//
// TODO: This is used for resolving references to template arguments, in a
// rather inefficient way. Change those uses to resolve all template
// arguments simultaneously and get rid of this class.
class RecordValResolver final : public Resolver {
const RecordVal *RV;
public:
explicit RecordValResolver(Record &R, const RecordVal *RV)
: Resolver(&R), RV(RV) {}
Init *resolve(Init *VarName) override {
if (VarName == RV->getNameInit())
return RV->getValue();
return nullptr;
}
};
/// Delegate resolving to a sub-resolver, but shadow some variable names.
class ShadowResolver final : public Resolver {
Resolver &R;
DenseSet<Init *> Shadowed;
public:
explicit ShadowResolver(Resolver &R)
: Resolver(R.getCurrentRecord()), R(R) {
setFinal(R.isFinal());
}
void addShadow(Init *Key) { Shadowed.insert(Key); }
Init *resolve(Init *VarName) override {
if (Shadowed.count(VarName))
return nullptr;
return R.resolve(VarName);
}
};
/// (Optionally) delegate resolving to a sub-resolver, and keep track whether
/// there were unresolved references.
class TrackUnresolvedResolver final : public Resolver {
Resolver *R;
bool FoundUnresolved = false;
public:
explicit TrackUnresolvedResolver(Resolver *R = nullptr)
: Resolver(R ? R->getCurrentRecord() : nullptr), R(R) {}
bool foundUnresolved() const { return FoundUnresolved; }
Init *resolve(Init *VarName) override;
};
/// Do not resolve anything, but keep track of whether a given variable was
/// referenced.
class HasReferenceResolver final : public Resolver {
Init *VarNameToTrack;
bool Found = false;
public:
explicit HasReferenceResolver(Init *VarNameToTrack)
: Resolver(nullptr), VarNameToTrack(VarNameToTrack) {}
bool found() const { return Found; }
Init *resolve(Init *VarName) override;
};
void EmitJSON(RecordKeeper &RK, raw_ostream &OS);
} // end namespace llvm
#endif // LLVM_TABLEGEN_RECORD_H