1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/lib/CodeGen/CalcSpillWeights.cpp
Serguei Katkov c9a1c9ca92 [RegAlloc] Fix "ran out of regs" with uses in statepoint
Statepoint instruction is known to have a variable and big number of operands.
It is possible that Register Allocator will split live intervals in the way that all
physical registers are occupied by "zero-length" live intervals which are marked
as not-spillable.
While intervals are marked as not-spillable in the moment of creation when they are
really zero-length it is possible that in future as part of re-materialization there will
need for physical register between def and use of such tiny interval (the use is not
related to this interval at all).
As all physical registers are assigned to not-spillable intervals there is not avaialbe
registers and RA reports an error.

The idea of the fix is avoid marking tiny live intervals where there is a use in statepoint
instruction in var args section. Such interval may be perfectly spilled and folded to
operand of statepoint.

Reviewers: reames, dantrushin, qcolombet, dsanders, dmgreen
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D98766
2021-03-24 10:25:34 +07:00

328 lines
11 KiB
C++

//===- CalcSpillWeights.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/CodeGen/StackMaps.h"
#include <cassert>
#include <tuple>
using namespace llvm;
#define DEBUG_TYPE "calcspillweights"
void VirtRegAuxInfo::calculateSpillWeightsAndHints() {
LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
<< "********** Function: " << MF.getName() << '\n');
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
unsigned Reg = Register::index2VirtReg(I);
if (MRI.reg_nodbg_empty(Reg))
continue;
calculateSpillWeightAndHint(LIS.getInterval(Reg));
}
}
// Return the preferred allocation register for reg, given a COPY instruction.
static Register copyHint(const MachineInstr *MI, unsigned Reg,
const TargetRegisterInfo &TRI,
const MachineRegisterInfo &MRI) {
unsigned Sub, HSub;
Register HReg;
if (MI->getOperand(0).getReg() == Reg) {
Sub = MI->getOperand(0).getSubReg();
HReg = MI->getOperand(1).getReg();
HSub = MI->getOperand(1).getSubReg();
} else {
Sub = MI->getOperand(1).getSubReg();
HReg = MI->getOperand(0).getReg();
HSub = MI->getOperand(0).getSubReg();
}
if (!HReg)
return 0;
if (Register::isVirtualRegister(HReg))
return Sub == HSub ? HReg : Register();
const TargetRegisterClass *rc = MRI.getRegClass(Reg);
MCRegister CopiedPReg = HSub ? TRI.getSubReg(HReg, HSub) : HReg.asMCReg();
if (rc->contains(CopiedPReg))
return CopiedPReg;
// Check if reg:sub matches so that a super register could be hinted.
if (Sub)
return TRI.getMatchingSuperReg(CopiedPReg, Sub, rc);
return 0;
}
// Check if all values in LI are rematerializable
static bool isRematerializable(const LiveInterval &LI, const LiveIntervals &LIS,
const VirtRegMap &VRM,
const TargetInstrInfo &TII) {
unsigned Reg = LI.reg();
unsigned Original = VRM.getOriginal(Reg);
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
I != E; ++I) {
const VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
if (VNI->isPHIDef())
return false;
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
// Trace copies introduced by live range splitting. The inline
// spiller can rematerialize through these copies, so the spill
// weight must reflect this.
while (MI->isFullCopy()) {
// The copy destination must match the interval register.
if (MI->getOperand(0).getReg() != Reg)
return false;
// Get the source register.
Reg = MI->getOperand(1).getReg();
// If the original (pre-splitting) registers match this
// copy came from a split.
if (!Register::isVirtualRegister(Reg) || VRM.getOriginal(Reg) != Original)
return false;
// Follow the copy live-in value.
const LiveInterval &SrcLI = LIS.getInterval(Reg);
LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
VNI = SrcQ.valueIn();
assert(VNI && "Copy from non-existing value");
if (VNI->isPHIDef())
return false;
MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
}
if (!TII.isTriviallyReMaterializable(*MI, LIS.getAliasAnalysis()))
return false;
}
return true;
}
bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval &LI) {
return any_of(VRM.getRegInfo().reg_operands(LI.reg()),
[](MachineOperand &MO) {
MachineInstr *MI = MO.getParent();
if (MI->getOpcode() != TargetOpcode::STATEPOINT)
return false;
return StatepointOpers(MI).getVarIdx() <= MI->getOperandNo(&MO);
});
}
void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &LI) {
float Weight = weightCalcHelper(LI);
// Check if unspillable.
if (Weight < 0)
return;
LI.setWeight(Weight);
}
float VirtRegAuxInfo::futureWeight(LiveInterval &LI, SlotIndex Start,
SlotIndex End) {
return weightCalcHelper(LI, &Start, &End);
}
float VirtRegAuxInfo::weightCalcHelper(LiveInterval &LI, SlotIndex *Start,
SlotIndex *End) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineBasicBlock *MBB = nullptr;
MachineLoop *Loop = nullptr;
bool IsExiting = false;
float TotalWeight = 0;
unsigned NumInstr = 0; // Number of instructions using LI
SmallPtrSet<MachineInstr *, 8> Visited;
std::pair<Register, Register> TargetHint = MRI.getRegAllocationHint(LI.reg());
if (LI.isSpillable()) {
Register Reg = LI.reg();
Register Original = VRM.getOriginal(Reg);
const LiveInterval &OrigInt = LIS.getInterval(Original);
// li comes from a split of OrigInt. If OrigInt was marked
// as not spillable, make sure the new interval is marked
// as not spillable as well.
if (!OrigInt.isSpillable())
LI.markNotSpillable();
}
// Don't recompute spill weight for an unspillable register.
bool IsSpillable = LI.isSpillable();
bool IsLocalSplitArtifact = Start && End;
// Do not update future local split artifacts.
bool ShouldUpdateLI = !IsLocalSplitArtifact;
if (IsLocalSplitArtifact) {
MachineBasicBlock *localMBB = LIS.getMBBFromIndex(*End);
assert(localMBB == LIS.getMBBFromIndex(*Start) &&
"start and end are expected to be in the same basic block");
// Local split artifact will have 2 additional copy instructions and they
// will be in the same BB.
// localLI = COPY other
// ...
// other = COPY localLI
TotalWeight += LiveIntervals::getSpillWeight(true, false, &MBFI, localMBB);
TotalWeight += LiveIntervals::getSpillWeight(false, true, &MBFI, localMBB);
NumInstr += 2;
}
// CopyHint is a sortable hint derived from a COPY instruction.
struct CopyHint {
const Register Reg;
const float Weight;
CopyHint(Register R, float W) : Reg(R), Weight(W) {}
bool operator<(const CopyHint &Rhs) const {
// Always prefer any physreg hint.
if (Reg.isPhysical() != Rhs.Reg.isPhysical())
return Reg.isPhysical();
if (Weight != Rhs.Weight)
return (Weight > Rhs.Weight);
return Reg.id() < Rhs.Reg.id(); // Tie-breaker.
}
};
std::set<CopyHint> CopyHints;
DenseMap<unsigned, float> Hint;
for (MachineRegisterInfo::reg_instr_nodbg_iterator
I = MRI.reg_instr_nodbg_begin(LI.reg()),
E = MRI.reg_instr_nodbg_end();
I != E;) {
MachineInstr *MI = &*(I++);
// For local split artifacts, we are interested only in instructions between
// the expected start and end of the range.
SlotIndex SI = LIS.getInstructionIndex(*MI);
if (IsLocalSplitArtifact && ((SI < *Start) || (SI > *End)))
continue;
NumInstr++;
if (MI->isIdentityCopy() || MI->isImplicitDef())
continue;
if (!Visited.insert(MI).second)
continue;
// For terminators that produce values, ask the backend if the register is
// not spillable.
if (TII.isUnspillableTerminator(MI) && MI->definesRegister(LI.reg())) {
LI.markNotSpillable();
return -1.0f;
}
float Weight = 1.0f;
if (IsSpillable) {
// Get loop info for mi.
if (MI->getParent() != MBB) {
MBB = MI->getParent();
Loop = Loops.getLoopFor(MBB);
IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
}
// Calculate instr weight.
bool Reads, Writes;
std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
Weight = LiveIntervals::getSpillWeight(Writes, Reads, &MBFI, *MI);
// Give extra weight to what looks like a loop induction variable update.
if (Writes && IsExiting && LIS.isLiveOutOfMBB(LI, MBB))
Weight *= 3;
TotalWeight += Weight;
}
// Get allocation hints from copies.
if (!MI->isCopy())
continue;
Register HintReg = copyHint(MI, LI.reg(), TRI, MRI);
if (!HintReg)
continue;
// Force hweight onto the stack so that x86 doesn't add hidden precision,
// making the comparison incorrectly pass (i.e., 1 > 1 == true??).
//
// FIXME: we probably shouldn't use floats at all.
volatile float HWeight = Hint[HintReg] += Weight;
if (HintReg.isVirtual() || MRI.isAllocatable(HintReg))
CopyHints.insert(CopyHint(HintReg, HWeight));
}
// Pass all the sorted copy hints to mri.
if (ShouldUpdateLI && CopyHints.size()) {
// Remove a generic hint if previously added by target.
if (TargetHint.first == 0 && TargetHint.second)
MRI.clearSimpleHint(LI.reg());
std::set<Register> HintedRegs;
for (auto &Hint : CopyHints) {
if (!HintedRegs.insert(Hint.Reg).second ||
(TargetHint.first != 0 && Hint.Reg == TargetHint.second))
// Don't add the same reg twice or the target-type hint again.
continue;
MRI.addRegAllocationHint(LI.reg(), Hint.Reg);
}
// Weakly boost the spill weight of hinted registers.
TotalWeight *= 1.01F;
}
// If the live interval was already unspillable, leave it that way.
if (!IsSpillable)
return -1.0;
// Mark li as unspillable if all live ranges are tiny and the interval
// is not live at any reg mask. If the interval is live at a reg mask
// spilling may be required. If li is live as use in statepoint instruction
// spilling may be required due to if we mark interval with use in statepoint
// as not spillable we are risky to end up with no register to allocate.
// At the same time STATEPOINT instruction is perfectly fine to have this
// operand on stack, so spilling such interval and folding its load from stack
// into instruction itself makes perfect sense.
if (ShouldUpdateLI && LI.isZeroLength(LIS.getSlotIndexes()) &&
!LI.isLiveAtIndexes(LIS.getRegMaskSlots()) &&
!isLiveAtStatepointVarArg(LI)) {
LI.markNotSpillable();
return -1.0;
}
// If all of the definitions of the interval are re-materializable,
// it is a preferred candidate for spilling.
// FIXME: this gets much more complicated once we support non-trivial
// re-materialization.
if (isRematerializable(LI, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
TotalWeight *= 0.5F;
if (IsLocalSplitArtifact)
return normalize(TotalWeight, Start->distance(*End), NumInstr);
return normalize(TotalWeight, LI.getSize(), NumInstr);
}