mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
7a1762f190
Currently all AA analyses marked as preserved are stateless, not taking into account their dependent analyses. So there's no need to mark them as preserved, they won't be invalidated unless their analyses are. SCEVAAResults was the one exception to this, it was treated like a typical analysis result. Make it like the others and don't invalidate unless SCEV is invalidated. Reviewed By: asbirlea Differential Revision: https://reviews.llvm.org/D102032
519 lines
18 KiB
C++
519 lines
18 KiB
C++
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Eliminate conditions based on constraints collected from dominating
|
|
// conditions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ConstraintSystem.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "constraint-elimination"
|
|
|
|
STATISTIC(NumCondsRemoved, "Number of instructions removed");
|
|
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
|
|
"Controls which conditions are eliminated");
|
|
|
|
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
|
|
|
|
// Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
|
|
// sum of the pairs equals \p V. The first pair is the constant-factor and X
|
|
// must be nullptr. If the expression cannot be decomposed, returns an empty
|
|
// vector.
|
|
static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
|
|
if (auto *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (CI->isNegative() || CI->uge(MaxConstraintValue))
|
|
return {};
|
|
return {{CI->getSExtValue(), nullptr}};
|
|
}
|
|
auto *GEP = dyn_cast<GetElementPtrInst>(V);
|
|
if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
|
|
Value *Op0, *Op1;
|
|
ConstantInt *CI;
|
|
|
|
// If the index is zero-extended, it is guaranteed to be positive.
|
|
if (match(GEP->getOperand(GEP->getNumOperands() - 1),
|
|
m_ZExt(m_Value(Op0)))) {
|
|
if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))))
|
|
return {{0, nullptr},
|
|
{1, GEP->getPointerOperand()},
|
|
{std::pow(int64_t(2), CI->getSExtValue()), Op1}};
|
|
if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))))
|
|
return {{CI->getSExtValue(), nullptr},
|
|
{1, GEP->getPointerOperand()},
|
|
{1, Op1}};
|
|
return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
|
|
}
|
|
|
|
if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
|
|
!CI->isNegative())
|
|
return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
|
|
|
|
SmallVector<std::pair<int64_t, Value *>, 4> Result;
|
|
if (match(GEP->getOperand(GEP->getNumOperands() - 1),
|
|
m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
|
|
Result = {{0, nullptr},
|
|
{1, GEP->getPointerOperand()},
|
|
{std::pow(int64_t(2), CI->getSExtValue()), Op0}};
|
|
else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
|
|
m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
|
|
Result = {{CI->getSExtValue(), nullptr},
|
|
{1, GEP->getPointerOperand()},
|
|
{1, Op0}};
|
|
else {
|
|
Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
|
|
Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
Value *Op0;
|
|
if (match(V, m_ZExt(m_Value(Op0))))
|
|
V = Op0;
|
|
|
|
Value *Op1;
|
|
ConstantInt *CI;
|
|
if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
|
|
return {{CI->getSExtValue(), nullptr}, {1, Op0}};
|
|
if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
|
|
return {{0, nullptr}, {1, Op0}, {1, Op1}};
|
|
|
|
if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
|
|
return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
|
|
if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
|
|
return {{0, nullptr}, {1, Op0}, {1, Op1}};
|
|
|
|
return {{0, nullptr}, {1, V}};
|
|
}
|
|
|
|
struct ConstraintTy {
|
|
SmallVector<int64_t, 8> Coefficients;
|
|
|
|
ConstraintTy(SmallVector<int64_t, 8> Coefficients)
|
|
: Coefficients(Coefficients) {}
|
|
|
|
unsigned size() const { return Coefficients.size(); }
|
|
};
|
|
|
|
/// Turn a condition \p CmpI into a vector of constraints, using indices from \p
|
|
/// Value2Index. Additional indices for newly discovered values are added to \p
|
|
/// NewIndices.
|
|
static SmallVector<ConstraintTy, 4>
|
|
getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
|
|
const DenseMap<Value *, unsigned> &Value2Index,
|
|
DenseMap<Value *, unsigned> &NewIndices) {
|
|
int64_t Offset1 = 0;
|
|
int64_t Offset2 = 0;
|
|
|
|
// First try to look up \p V in Value2Index and NewIndices. Otherwise add a
|
|
// new entry to NewIndices.
|
|
auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
|
|
auto V2I = Value2Index.find(V);
|
|
if (V2I != Value2Index.end())
|
|
return V2I->second;
|
|
auto NewI = NewIndices.find(V);
|
|
if (NewI != NewIndices.end())
|
|
return NewI->second;
|
|
auto Insert =
|
|
NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
|
|
return Insert.first->second;
|
|
};
|
|
|
|
if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
|
|
return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
|
|
Value2Index, NewIndices);
|
|
|
|
if (Pred == CmpInst::ICMP_EQ) {
|
|
auto A =
|
|
getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
|
|
auto B =
|
|
getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
|
|
append_range(A, B);
|
|
return A;
|
|
}
|
|
|
|
if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) {
|
|
return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices);
|
|
}
|
|
|
|
// Only ULE and ULT predicates are supported at the moment.
|
|
if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
|
|
return {};
|
|
|
|
auto ADec = decompose(Op0->stripPointerCastsSameRepresentation());
|
|
auto BDec = decompose(Op1->stripPointerCastsSameRepresentation());
|
|
// Skip if decomposing either of the values failed.
|
|
if (ADec.empty() || BDec.empty())
|
|
return {};
|
|
|
|
// Skip trivial constraints without any variables.
|
|
if (ADec.size() == 1 && BDec.size() == 1)
|
|
return {};
|
|
|
|
Offset1 = ADec[0].first;
|
|
Offset2 = BDec[0].first;
|
|
Offset1 *= -1;
|
|
|
|
// Create iterator ranges that skip the constant-factor.
|
|
auto VariablesA = llvm::drop_begin(ADec);
|
|
auto VariablesB = llvm::drop_begin(BDec);
|
|
|
|
// Make sure all variables have entries in Value2Index or NewIndices.
|
|
for (const auto &KV :
|
|
concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
|
|
GetOrAddIndex(KV.second);
|
|
|
|
// Build result constraint, by first adding all coefficients from A and then
|
|
// subtracting all coefficients from B.
|
|
SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
|
|
for (const auto &KV : VariablesA)
|
|
R[GetOrAddIndex(KV.second)] += KV.first;
|
|
|
|
for (const auto &KV : VariablesB)
|
|
R[GetOrAddIndex(KV.second)] -= KV.first;
|
|
|
|
R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
|
|
return {R};
|
|
}
|
|
|
|
static SmallVector<ConstraintTy, 4>
|
|
getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index,
|
|
DenseMap<Value *, unsigned> &NewIndices) {
|
|
return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
|
|
Cmp->getOperand(1), Value2Index, NewIndices);
|
|
}
|
|
|
|
namespace {
|
|
/// Represents either a condition that holds on entry to a block or a basic
|
|
/// block, with their respective Dominator DFS in and out numbers.
|
|
struct ConstraintOrBlock {
|
|
unsigned NumIn;
|
|
unsigned NumOut;
|
|
bool IsBlock;
|
|
bool Not;
|
|
union {
|
|
BasicBlock *BB;
|
|
CmpInst *Condition;
|
|
};
|
|
|
|
ConstraintOrBlock(DomTreeNode *DTN)
|
|
: NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
|
|
BB(DTN->getBlock()) {}
|
|
ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
|
|
: NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
|
|
Not(Not), Condition(Condition) {}
|
|
};
|
|
|
|
struct StackEntry {
|
|
unsigned NumIn;
|
|
unsigned NumOut;
|
|
CmpInst *Condition;
|
|
bool IsNot;
|
|
|
|
StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
|
|
: NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
|
|
};
|
|
} // namespace
|
|
|
|
#ifndef NDEBUG
|
|
static void dumpWithNames(ConstraintTy &C,
|
|
DenseMap<Value *, unsigned> &Value2Index) {
|
|
SmallVector<std::string> Names(Value2Index.size(), "");
|
|
for (auto &KV : Value2Index) {
|
|
Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
|
|
}
|
|
ConstraintSystem CS;
|
|
CS.addVariableRowFill(C.Coefficients);
|
|
CS.dump(Names);
|
|
}
|
|
#endif
|
|
|
|
static bool eliminateConstraints(Function &F, DominatorTree &DT) {
|
|
bool Changed = false;
|
|
DT.updateDFSNumbers();
|
|
ConstraintSystem CS;
|
|
|
|
SmallVector<ConstraintOrBlock, 64> WorkList;
|
|
|
|
// First, collect conditions implied by branches and blocks with their
|
|
// Dominator DFS in and out numbers.
|
|
for (BasicBlock &BB : F) {
|
|
if (!DT.getNode(&BB))
|
|
continue;
|
|
WorkList.emplace_back(DT.getNode(&BB));
|
|
|
|
auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
|
|
if (!Br || !Br->isConditional())
|
|
continue;
|
|
|
|
// Returns true if we can add a known condition from BB to its successor
|
|
// block Succ. Each predecessor of Succ can either be BB or be dominated by
|
|
// Succ (e.g. the case when adding a condition from a pre-header to a loop
|
|
// header).
|
|
auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
|
|
return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
|
|
return Pred == &BB || DT.dominates(Succ, Pred);
|
|
});
|
|
};
|
|
// If the condition is an OR of 2 compares and the false successor only has
|
|
// the current block as predecessor, queue both negated conditions for the
|
|
// false successor.
|
|
Value *Op0, *Op1;
|
|
if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
|
|
match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
|
|
BasicBlock *FalseSuccessor = Br->getSuccessor(1);
|
|
if (CanAdd(FalseSuccessor)) {
|
|
WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
|
|
true);
|
|
WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
|
|
true);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If the condition is an AND of 2 compares and the true successor only has
|
|
// the current block as predecessor, queue both conditions for the true
|
|
// successor.
|
|
if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
|
|
match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
|
|
BasicBlock *TrueSuccessor = Br->getSuccessor(0);
|
|
if (CanAdd(TrueSuccessor)) {
|
|
WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
|
|
false);
|
|
WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
|
|
false);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
|
|
if (!CmpI)
|
|
continue;
|
|
if (CanAdd(Br->getSuccessor(0)))
|
|
WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
|
|
if (CanAdd(Br->getSuccessor(1)))
|
|
WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
|
|
}
|
|
|
|
// Next, sort worklist by dominance, so that dominating blocks and conditions
|
|
// come before blocks and conditions dominated by them. If a block and a
|
|
// condition have the same numbers, the condition comes before the block, as
|
|
// it holds on entry to the block.
|
|
sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
|
|
return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
|
|
});
|
|
|
|
// Finally, process ordered worklist and eliminate implied conditions.
|
|
SmallVector<StackEntry, 16> DFSInStack;
|
|
DenseMap<Value *, unsigned> Value2Index;
|
|
for (ConstraintOrBlock &CB : WorkList) {
|
|
// First, pop entries from the stack that are out-of-scope for CB. Remove
|
|
// the corresponding entry from the constraint system.
|
|
while (!DFSInStack.empty()) {
|
|
auto &E = DFSInStack.back();
|
|
LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
|
|
assert(E.NumIn <= CB.NumIn);
|
|
if (CB.NumOut <= E.NumOut)
|
|
break;
|
|
LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
|
|
<< "\n");
|
|
DFSInStack.pop_back();
|
|
CS.popLastConstraint();
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "Processing ";
|
|
if (CB.IsBlock)
|
|
dbgs() << *CB.BB;
|
|
else
|
|
dbgs() << *CB.Condition;
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
// For a block, check if any CmpInsts become known based on the current set
|
|
// of constraints.
|
|
if (CB.IsBlock) {
|
|
for (Instruction &I : *CB.BB) {
|
|
auto *Cmp = dyn_cast<CmpInst>(&I);
|
|
if (!Cmp)
|
|
continue;
|
|
|
|
DenseMap<Value *, unsigned> NewIndices;
|
|
auto R = getConstraint(Cmp, Value2Index, NewIndices);
|
|
if (R.size() != 1)
|
|
continue;
|
|
|
|
// Check if all coefficients of new indices are 0 after building the
|
|
// constraint. Skip if any of the new indices has a non-null
|
|
// coefficient.
|
|
bool HasNewIndex = false;
|
|
for (unsigned I = 0; I < NewIndices.size(); ++I) {
|
|
int64_t Last = R[0].Coefficients.pop_back_val();
|
|
if (Last != 0) {
|
|
HasNewIndex = true;
|
|
break;
|
|
}
|
|
}
|
|
if (HasNewIndex || R[0].size() == 1)
|
|
continue;
|
|
|
|
if (CS.isConditionImplied(R[0].Coefficients)) {
|
|
if (!DebugCounter::shouldExecute(EliminatedCounter))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Condition " << *Cmp
|
|
<< " implied by dominating constraints\n");
|
|
LLVM_DEBUG({
|
|
for (auto &E : reverse(DFSInStack))
|
|
dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n";
|
|
});
|
|
Cmp->replaceAllUsesWith(
|
|
ConstantInt::getTrue(F.getParent()->getContext()));
|
|
NumCondsRemoved++;
|
|
Changed = true;
|
|
}
|
|
if (CS.isConditionImplied(
|
|
ConstraintSystem::negate(R[0].Coefficients))) {
|
|
if (!DebugCounter::shouldExecute(EliminatedCounter))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
|
|
<< " implied by dominating constraints\n");
|
|
LLVM_DEBUG({
|
|
for (auto &E : reverse(DFSInStack))
|
|
dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n";
|
|
});
|
|
Cmp->replaceAllUsesWith(
|
|
ConstantInt::getFalse(F.getParent()->getContext()));
|
|
NumCondsRemoved++;
|
|
Changed = true;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Set up a function to restore the predicate at the end of the scope if it
|
|
// has been negated. Negate the predicate in-place, if required.
|
|
auto *CI = dyn_cast<CmpInst>(CB.Condition);
|
|
auto PredicateRestorer = make_scope_exit([CI, &CB]() {
|
|
if (CB.Not && CI)
|
|
CI->setPredicate(CI->getInversePredicate());
|
|
});
|
|
if (CB.Not) {
|
|
if (CI) {
|
|
CI->setPredicate(CI->getInversePredicate());
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, add the condition to the system and stack, if we can transform
|
|
// it into a constraint.
|
|
DenseMap<Value *, unsigned> NewIndices;
|
|
auto R = getConstraint(CB.Condition, Value2Index, NewIndices);
|
|
if (R.empty())
|
|
continue;
|
|
|
|
for (auto &KV : NewIndices)
|
|
Value2Index.insert(KV);
|
|
|
|
LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
|
|
bool Added = false;
|
|
for (auto &C : R) {
|
|
auto Coeffs = C.Coefficients;
|
|
LLVM_DEBUG({
|
|
dbgs() << " constraint: ";
|
|
dumpWithNames(C, Value2Index);
|
|
});
|
|
Added |= CS.addVariableRowFill(Coeffs);
|
|
// If R has been added to the system, queue it for removal once it goes
|
|
// out-of-scope.
|
|
if (Added)
|
|
DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
|
|
}
|
|
}
|
|
|
|
assert(CS.size() == DFSInStack.size() &&
|
|
"updates to CS and DFSInStack are out of sync");
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses ConstraintEliminationPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
if (!eliminateConstraints(F, DT))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ConstraintElimination : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
ConstraintElimination() : FunctionPass(ID) {
|
|
initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
return eliminateConstraints(F, DT);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char ConstraintElimination::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
|
|
"Constraint Elimination", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
|
|
INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
|
|
"Constraint Elimination", false, false)
|
|
|
|
FunctionPass *llvm::createConstraintEliminationPass() {
|
|
return new ConstraintElimination();
|
|
}
|