1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/DebugInfo/DWARF/DWARFUnit.cpp
David Blaikie 58ea9af54e llvm-symbolizer: Handle function definitions nested within other functions
LLVM always puts function definition DIEs at the top level, but under
some circumstances GCC does not (at least in this case with member
functions of a function-local type).

To ensure that doesn't appear as though the local type's member function
is unduly inlined within the outer function - ensure the inline
discovery DIE parent walk stops at the first DW_TAG_subprogram.

llvm-svn: 331291
2018-05-01 18:08:45 +00:00

578 lines
21 KiB
C++

//===- DWARFUnit.cpp ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/WithColor.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <utility>
#include <vector>
using namespace llvm;
using namespace dwarf;
void DWARFUnitSectionBase::parse(DWARFContext &C, const DWARFSection &Section) {
const DWARFObject &D = C.getDWARFObj();
parseImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangeSection(),
D.getStringSection(), D.getStringOffsetSection(),
&D.getAddrSection(), D.getLineSection(), D.isLittleEndian(), false,
false);
}
void DWARFUnitSectionBase::parseDWO(DWARFContext &C,
const DWARFSection &DWOSection, bool Lazy) {
const DWARFObject &D = C.getDWARFObj();
parseImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangeDWOSection(),
D.getStringDWOSection(), D.getStringOffsetDWOSection(),
&D.getAddrSection(), D.getLineDWOSection(), C.isLittleEndian(),
true, Lazy);
}
DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
const DWARFDebugAbbrev *DA, const DWARFSection *RS,
StringRef SS, const DWARFSection &SOS,
const DWARFSection *AOS, const DWARFSection &LS, bool LE,
bool IsDWO, const DWARFUnitSectionBase &UnitSection,
const DWARFUnitIndex::Entry *IndexEntry)
: Context(DC), InfoSection(Section), Abbrev(DA), RangeSection(RS),
LineSection(LS), StringSection(SS), StringOffsetSection(SOS),
AddrOffsetSection(AOS), isLittleEndian(LE), isDWO(IsDWO),
UnitSection(UnitSection), IndexEntry(IndexEntry) {
clear();
}
DWARFUnit::~DWARFUnit() = default;
DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const {
return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian,
getAddressByteSize());
}
bool DWARFUnit::getAddrOffsetSectionItem(uint32_t Index,
uint64_t &Result) const {
uint32_t Offset = AddrOffsetSectionBase + Index * getAddressByteSize();
if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
return false;
DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
isLittleEndian, getAddressByteSize());
Result = DA.getRelocatedAddress(&Offset);
return true;
}
bool DWARFUnit::getStringOffsetSectionItem(uint32_t Index,
uint64_t &Result) const {
if (!StringOffsetsTableContribution)
return false;
unsigned ItemSize = getDwarfStringOffsetsByteSize();
uint32_t Offset = getStringOffsetsBase() + Index * ItemSize;
if (StringOffsetSection.Data.size() < Offset + ItemSize)
return false;
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
isLittleEndian, 0);
Result = DA.getRelocatedValue(ItemSize, &Offset);
return true;
}
bool DWARFUnit::extractImpl(const DWARFDataExtractor &debug_info,
uint32_t *offset_ptr) {
Length = debug_info.getU32(offset_ptr);
// FIXME: Support DWARF64.
FormParams.Format = DWARF32;
FormParams.Version = debug_info.getU16(offset_ptr);
if (FormParams.Version >= 5) {
UnitType = debug_info.getU8(offset_ptr);
FormParams.AddrSize = debug_info.getU8(offset_ptr);
AbbrOffset = debug_info.getU32(offset_ptr);
} else {
AbbrOffset = debug_info.getRelocatedValue(4, offset_ptr);
FormParams.AddrSize = debug_info.getU8(offset_ptr);
}
if (IndexEntry) {
if (AbbrOffset)
return false;
auto *UnitContrib = IndexEntry->getOffset();
if (!UnitContrib || UnitContrib->Length != (Length + 4))
return false;
auto *AbbrEntry = IndexEntry->getOffset(DW_SECT_ABBREV);
if (!AbbrEntry)
return false;
AbbrOffset = AbbrEntry->Offset;
}
bool LengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1);
bool VersionOK = DWARFContext::isSupportedVersion(getVersion());
bool AddrSizeOK = getAddressByteSize() == 4 || getAddressByteSize() == 8;
if (!LengthOK || !VersionOK || !AddrSizeOK)
return false;
// Keep track of the highest DWARF version we encounter across all units.
Context.setMaxVersionIfGreater(getVersion());
return true;
}
bool DWARFUnit::extract(const DWARFDataExtractor &debug_info,
uint32_t *offset_ptr) {
clear();
Offset = *offset_ptr;
if (debug_info.isValidOffset(*offset_ptr)) {
if (extractImpl(debug_info, offset_ptr))
return true;
// reset the offset to where we tried to parse from if anything went wrong
*offset_ptr = Offset;
}
return false;
}
bool DWARFUnit::extractRangeList(uint32_t RangeListOffset,
DWARFDebugRangeList &RangeList) const {
// Require that compile unit is extracted.
assert(!DieArray.empty());
DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
isLittleEndian, getAddressByteSize());
uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
return RangeList.extract(RangesData, &ActualRangeListOffset);
}
void DWARFUnit::clear() {
Offset = 0;
Length = 0;
Abbrevs = nullptr;
FormParams = dwarf::FormParams({0, 0, DWARF32});
BaseAddr.reset();
RangeSectionBase = 0;
AddrOffsetSectionBase = 0;
clearDIEs(false);
DWO.reset();
}
const char *DWARFUnit::getCompilationDir() {
return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
}
Optional<uint64_t> DWARFUnit::getDWOId() {
return toUnsigned(getUnitDIE().find(DW_AT_GNU_dwo_id));
}
void DWARFUnit::extractDIEsToVector(
bool AppendCUDie, bool AppendNonCUDies,
std::vector<DWARFDebugInfoEntry> &Dies) const {
if (!AppendCUDie && !AppendNonCUDies)
return;
// Set the offset to that of the first DIE and calculate the start of the
// next compilation unit header.
uint32_t DIEOffset = Offset + getHeaderSize();
uint32_t NextCUOffset = getNextUnitOffset();
DWARFDebugInfoEntry DIE;
DWARFDataExtractor DebugInfoData = getDebugInfoExtractor();
uint32_t Depth = 0;
bool IsCUDie = true;
while (DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
Depth)) {
if (IsCUDie) {
if (AppendCUDie)
Dies.push_back(DIE);
if (!AppendNonCUDies)
break;
// The average bytes per DIE entry has been seen to be
// around 14-20 so let's pre-reserve the needed memory for
// our DIE entries accordingly.
Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
IsCUDie = false;
} else {
Dies.push_back(DIE);
}
if (const DWARFAbbreviationDeclaration *AbbrDecl =
DIE.getAbbreviationDeclarationPtr()) {
// Normal DIE
if (AbbrDecl->hasChildren())
++Depth;
} else {
// NULL DIE.
if (Depth > 0)
--Depth;
if (Depth == 0)
break; // We are done with this compile unit!
}
}
// Give a little bit of info if we encounter corrupt DWARF (our offset
// should always terminate at or before the start of the next compilation
// unit header).
if (DIEOffset > NextCUOffset)
WithColor::warning() << format("DWARF compile unit extends beyond its "
"bounds cu 0x%8.8x at 0x%8.8x\n",
getOffset(), DIEOffset);
}
size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
if ((CUDieOnly && !DieArray.empty()) ||
DieArray.size() > 1)
return 0; // Already parsed.
bool HasCUDie = !DieArray.empty();
extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
if (DieArray.empty())
return 0;
// If CU DIE was just parsed, copy several attribute values from it.
if (!HasCUDie) {
DWARFDie UnitDie = getUnitDIE();
Optional<DWARFFormValue> PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
if (Optional<uint64_t> Addr = toAddress(PC))
setBaseAddress({*Addr, PC->getSectionIndex()});
if (!isDWO) {
assert(AddrOffsetSectionBase == 0);
assert(RangeSectionBase == 0);
AddrOffsetSectionBase =
toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base), 0);
RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
}
// In general, in DWARF v5 and beyond we derive the start of the unit's
// contribution to the string offsets table from the unit DIE's
// DW_AT_str_offsets_base attribute. Split DWARF units do not use this
// attribute, so we assume that there is a contribution to the string
// offsets table starting at offset 0 of the debug_str_offsets.dwo section.
// In both cases we need to determine the format of the contribution,
// which may differ from the unit's format.
uint64_t StringOffsetsContributionBase =
isDWO ? 0 : toSectionOffset(UnitDie.find(DW_AT_str_offsets_base), 0);
if (IndexEntry)
if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS))
StringOffsetsContributionBase += C->Offset;
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
isLittleEndian, 0);
if (isDWO)
StringOffsetsTableContribution =
determineStringOffsetsTableContributionDWO(
DA, StringOffsetsContributionBase);
else if (getVersion() >= 5)
StringOffsetsTableContribution = determineStringOffsetsTableContribution(
DA, StringOffsetsContributionBase);
// Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
// skeleton CU DIE, so that DWARF users not aware of it are not broken.
}
return DieArray.size();
}
bool DWARFUnit::parseDWO() {
if (isDWO)
return false;
if (DWO.get())
return false;
DWARFDie UnitDie = getUnitDIE();
if (!UnitDie)
return false;
auto DWOFileName = dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
if (!DWOFileName)
return false;
auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
SmallString<16> AbsolutePath;
if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
*CompilationDir) {
sys::path::append(AbsolutePath, *CompilationDir);
}
sys::path::append(AbsolutePath, *DWOFileName);
auto DWOId = getDWOId();
if (!DWOId)
return false;
auto DWOContext = Context.getDWOContext(AbsolutePath);
if (!DWOContext)
return false;
DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
if (!DWOCU)
return false;
DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
// Share .debug_addr and .debug_ranges section with compile unit in .dwo
DWO->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase);
auto DWORangesBase = UnitDie.getRangesBaseAttribute();
DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0);
return true;
}
void DWARFUnit::clearDIEs(bool KeepCUDie) {
if (DieArray.size() > (unsigned)KeepCUDie) {
DieArray.resize((unsigned)KeepCUDie);
DieArray.shrink_to_fit();
}
}
void DWARFUnit::collectAddressRanges(DWARFAddressRangesVector &CURanges) {
DWARFDie UnitDie = getUnitDIE();
if (!UnitDie)
return;
// First, check if unit DIE describes address ranges for the whole unit.
const auto &CUDIERanges = UnitDie.getAddressRanges();
if (!CUDIERanges.empty()) {
CURanges.insert(CURanges.end(), CUDIERanges.begin(), CUDIERanges.end());
return;
}
// This function is usually called if there in no .debug_aranges section
// in order to produce a compile unit level set of address ranges that
// is accurate. If the DIEs weren't parsed, then we don't want all dies for
// all compile units to stay loaded when they weren't needed. So we can end
// up parsing the DWARF and then throwing them all away to keep memory usage
// down.
const bool ClearDIEs = extractDIEsIfNeeded(false) > 1;
getUnitDIE().collectChildrenAddressRanges(CURanges);
// Collect address ranges from DIEs in .dwo if necessary.
bool DWOCreated = parseDWO();
if (DWO)
DWO->collectAddressRanges(CURanges);
if (DWOCreated)
DWO.reset();
// Keep memory down by clearing DIEs if this generate function
// caused them to be parsed.
if (ClearDIEs)
clearDIEs(true);
}
void DWARFUnit::updateAddressDieMap(DWARFDie Die) {
if (Die.isSubroutineDIE()) {
for (const auto &R : Die.getAddressRanges()) {
// Ignore 0-sized ranges.
if (R.LowPC == R.HighPC)
continue;
auto B = AddrDieMap.upper_bound(R.LowPC);
if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) {
// The range is a sub-range of existing ranges, we need to split the
// existing range.
if (R.HighPC < B->second.first)
AddrDieMap[R.HighPC] = B->second;
if (R.LowPC > B->first)
AddrDieMap[B->first].first = R.LowPC;
}
AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die);
}
}
// Parent DIEs are added to the AddrDieMap prior to the Children DIEs to
// simplify the logic to update AddrDieMap. The child's range will always
// be equal or smaller than the parent's range. With this assumption, when
// adding one range into the map, it will at most split a range into 3
// sub-ranges.
for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling())
updateAddressDieMap(Child);
}
DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
extractDIEsIfNeeded(false);
if (AddrDieMap.empty())
updateAddressDieMap(getUnitDIE());
auto R = AddrDieMap.upper_bound(Address);
if (R == AddrDieMap.begin())
return DWARFDie();
// upper_bound's previous item contains Address.
--R;
if (Address >= R->second.first)
return DWARFDie();
return R->second.second;
}
void
DWARFUnit::getInlinedChainForAddress(uint64_t Address,
SmallVectorImpl<DWARFDie> &InlinedChain) {
assert(InlinedChain.empty());
// Try to look for subprogram DIEs in the DWO file.
parseDWO();
// First, find the subroutine that contains the given address (the leaf
// of inlined chain).
DWARFDie SubroutineDIE =
(DWO ? DWO.get() : this)->getSubroutineForAddress(Address);
if (!SubroutineDIE)
return;
while (!SubroutineDIE.isSubprogramDIE()) {
if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine)
InlinedChain.push_back(SubroutineDIE);
SubroutineDIE = SubroutineDIE.getParent();
}
InlinedChain.push_back(SubroutineDIE);
}
const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context,
DWARFSectionKind Kind) {
if (Kind == DW_SECT_INFO)
return Context.getCUIndex();
assert(Kind == DW_SECT_TYPES);
return Context.getTUIndex();
}
DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) {
if (!Die)
return DWARFDie();
const uint32_t Depth = Die->getDepth();
// Unit DIEs always have a depth of zero and never have parents.
if (Depth == 0)
return DWARFDie();
// Depth of 1 always means parent is the compile/type unit.
if (Depth == 1)
return getUnitDIE();
// Look for previous DIE with a depth that is one less than the Die's depth.
const uint32_t ParentDepth = Depth - 1;
for (uint32_t I = getDIEIndex(Die) - 1; I > 0; --I) {
if (DieArray[I].getDepth() == ParentDepth)
return DWARFDie(this, &DieArray[I]);
}
return DWARFDie();
}
DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) {
if (!Die)
return DWARFDie();
uint32_t Depth = Die->getDepth();
// Unit DIEs always have a depth of zero and never have siblings.
if (Depth == 0)
return DWARFDie();
// NULL DIEs don't have siblings.
if (Die->getAbbreviationDeclarationPtr() == nullptr)
return DWARFDie();
// Find the next DIE whose depth is the same as the Die's depth.
for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx;
++I) {
if (DieArray[I].getDepth() == Depth)
return DWARFDie(this, &DieArray[I]);
}
return DWARFDie();
}
DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) {
if (!Die->hasChildren())
return DWARFDie();
// We do not want access out of bounds when parsing corrupted debug data.
size_t I = getDIEIndex(Die) + 1;
if (I >= DieArray.size())
return DWARFDie();
return DWARFDie(this, &DieArray[I]);
}
const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const {
if (!Abbrevs)
Abbrevs = Abbrev->getAbbreviationDeclarationSet(AbbrOffset);
return Abbrevs;
}
Optional<StrOffsetsContributionDescriptor>
StrOffsetsContributionDescriptor::validateContributionSize(
DWARFDataExtractor &DA) {
uint8_t EntrySize = getDwarfOffsetByteSize();
// In order to ensure that we don't read a partial record at the end of
// the section we validate for a multiple of the entry size.
uint64_t ValidationSize = alignTo(Size, EntrySize);
// Guard against overflow.
if (ValidationSize >= Size)
if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
return *this;
return Optional<StrOffsetsContributionDescriptor>();
}
// Look for a DWARF64-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Optional<StrOffsetsContributionDescriptor>
parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) {
if (!DA.isValidOffsetForDataOfSize(Offset, 16))
return Optional<StrOffsetsContributionDescriptor>();
if (DA.getU32(&Offset) != 0xffffffff)
return Optional<StrOffsetsContributionDescriptor>();
uint64_t Size = DA.getU64(&Offset);
uint8_t Version = DA.getU16(&Offset);
(void)DA.getU16(&Offset); // padding
return StrOffsetsContributionDescriptor(Offset, Size, Version, DWARF64);
//return Optional<StrOffsetsContributionDescriptor>(Descriptor);
}
// Look for a DWARF32-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Optional<StrOffsetsContributionDescriptor>
parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) {
if (!DA.isValidOffsetForDataOfSize(Offset, 8))
return Optional<StrOffsetsContributionDescriptor>();
uint32_t ContributionSize = DA.getU32(&Offset);
if (ContributionSize >= 0xfffffff0)
return Optional<StrOffsetsContributionDescriptor>();
uint8_t Version = DA.getU16(&Offset);
(void)DA.getU16(&Offset); // padding
return StrOffsetsContributionDescriptor(Offset, ContributionSize, Version, DWARF32);
//return Optional<StrOffsetsContributionDescriptor>(Descriptor);
}
Optional<StrOffsetsContributionDescriptor>
DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA,
uint64_t Offset) {
Optional<StrOffsetsContributionDescriptor> Descriptor;
// Attempt to find a DWARF64 contribution 16 bytes before the base.
if (Offset >= 16)
Descriptor =
parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset - 16);
// Try to find a DWARF32 contribution 8 bytes before the base.
if (!Descriptor && Offset >= 8)
Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset - 8);
return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor;
}
Optional<StrOffsetsContributionDescriptor>
DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA,
uint64_t Offset) {
if (getVersion() >= 5) {
// Look for a valid contribution at the given offset.
auto Descriptor =
parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset);
if (!Descriptor)
Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset);
return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor;
}
// Prior to DWARF v5, we derive the contribution size from the
// index table (in a package file). In a .dwo file it is simply
// the length of the string offsets section.
uint64_t Size = 0;
if (!IndexEntry)
Size = StringOffsetSection.Data.size();
else if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS))
Size = C->Length;
// Return a descriptor with the given offset as base, version 4 and
// DWARF32 format.
//return Optional<StrOffsetsContributionDescriptor>(
//StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32));
return StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32);
}