1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/CodeGen/PseudoProbeInserter.cpp
Hongtao Yu 7fbb587058 [CSSPGO] Undoing the concept of dangling pseudo probe
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen.

I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder.

Reviewed By: wenlei

Differential Revision: https://reviews.llvm.org/D104477
2021-06-18 15:14:11 -07:00

147 lines
5.6 KiB
C++

//===- PseudoProbeInserter.cpp - Insert annotation for callsite profiling -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements PseudoProbeInserter pass, which inserts pseudo probe
// annotations for call instructions with a pseudo-probe-specific dwarf
// discriminator. such discriminator indicates that the call instruction comes
// with a pseudo probe, and the discriminator value holds information to
// identify the corresponding counter.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCPseudoProbe.h"
#include "llvm/Target/TargetMachine.h"
#include <unordered_set>
#define DEBUG_TYPE "pseudo-probe-inserter"
using namespace llvm;
namespace {
class PseudoProbeInserter : public MachineFunctionPass {
public:
static char ID;
PseudoProbeInserter() : MachineFunctionPass(ID) {
initializePseudoProbeInserterPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "Pseudo Probe Inserter"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override {
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
MachineInstr *FirstInstr = nullptr;
for (MachineInstr &MI : MBB) {
if (!MI.isPseudo())
FirstInstr = &MI;
if (MI.isCall()) {
if (DILocation *DL = MI.getDebugLoc()) {
auto Value = DL->getDiscriminator();
if (DILocation::isPseudoProbeDiscriminator(Value)) {
BuildMI(MBB, MI, DL, TII->get(TargetOpcode::PSEUDO_PROBE))
.addImm(getFuncGUID(MF.getFunction().getParent(), DL))
.addImm(
PseudoProbeDwarfDiscriminator::extractProbeIndex(Value))
.addImm(
PseudoProbeDwarfDiscriminator::extractProbeType(Value))
.addImm(PseudoProbeDwarfDiscriminator::extractProbeAttributes(
Value));
Changed = true;
}
}
}
}
// Walk the block backwards, move PSEUDO_PROBE before the first real
// instruction to fix out-of-order probes. There is a problem with probes
// as the terminator of the block. During the offline counts processing,
// the samples collected on the first physical instruction following a
// probe will be counted towards the probe. This logically equals to
// treating the instruction next to a probe as if it is from the same
// block of the probe. This is accurate most of the time unless the
// instruction can be reached from multiple flows, which means it actually
// starts a new block. Samples collected on such probes may cause
// imprecision with the counts inference algorithm. Fortunately, if
// there are still other native instructions preceding the probe we can
// use them as a place holder to collect samples for the probe.
if (FirstInstr) {
auto MII = MBB.rbegin();
while (MII != MBB.rend()) {
// Skip all pseudo probes followed by a real instruction since they
// are not dangling.
if (!MII->isPseudo())
break;
auto Cur = MII++;
if (Cur->getOpcode() != TargetOpcode::PSEUDO_PROBE)
continue;
// Move the dangling probe before FirstInstr.
auto *ProbeInstr = &*Cur;
MBB.remove(ProbeInstr);
MBB.insert(FirstInstr, ProbeInstr);
Changed = true;
}
} else {
// Probes not surrounded by any real instructions in the same block are
// called dangling probes. Since there's no good way to pick up a sample
// collection point for dangling probes at compile time, they are being
// removed so that the profile correlation tool will not report any
// samples collected for them and it's up to the counts inference tool
// to get them a reasonable count.
SmallVector<MachineInstr *, 4> ToBeRemoved;
for (MachineInstr &MI : MBB) {
if (MI.isPseudoProbe())
ToBeRemoved.push_back(&MI);
}
for (auto *MI : ToBeRemoved)
MI->eraseFromParent();
Changed |= !ToBeRemoved.empty();
}
}
return Changed;
}
private:
uint64_t getFuncGUID(Module *M, DILocation *DL) {
auto *SP = DL->getScope()->getSubprogram();
auto Name = SP->getLinkageName();
if (Name.empty())
Name = SP->getName();
return Function::getGUID(Name);
}
};
} // namespace
char PseudoProbeInserter::ID = 0;
INITIALIZE_PASS_BEGIN(PseudoProbeInserter, DEBUG_TYPE,
"Insert pseudo probe annotations for value profiling",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(PseudoProbeInserter, DEBUG_TYPE,
"Insert pseudo probe annotations for value profiling",
false, false)
FunctionPass *llvm::createPseudoProbeInserter() {
return new PseudoProbeInserter();
}