1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/unittests/ADT/SparseSetTest.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

206 lines
5.0 KiB
C++

//===------ ADT/SparseSetTest.cpp - SparseSet unit tests - -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SparseSet.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
typedef SparseSet<unsigned> USet;
// Empty set tests.
TEST(SparseSetTest, EmptySet) {
USet Set;
EXPECT_TRUE(Set.empty());
EXPECT_TRUE(Set.begin() == Set.end());
EXPECT_EQ(0u, Set.size());
Set.setUniverse(10);
// Lookups on empty set.
EXPECT_TRUE(Set.find(0) == Set.end());
EXPECT_TRUE(Set.find(9) == Set.end());
// Same thing on a const reference.
const USet &CSet = Set;
EXPECT_TRUE(CSet.empty());
EXPECT_TRUE(CSet.begin() == CSet.end());
EXPECT_EQ(0u, CSet.size());
EXPECT_TRUE(CSet.find(0) == CSet.end());
USet::const_iterator I = CSet.find(5);
EXPECT_TRUE(I == CSet.end());
}
// Single entry set tests.
TEST(SparseSetTest, SingleEntrySet) {
USet Set;
Set.setUniverse(10);
std::pair<USet::iterator, bool> IP = Set.insert(5);
EXPECT_TRUE(IP.second);
EXPECT_TRUE(IP.first == Set.begin());
EXPECT_FALSE(Set.empty());
EXPECT_FALSE(Set.begin() == Set.end());
EXPECT_TRUE(Set.begin() + 1 == Set.end());
EXPECT_EQ(1u, Set.size());
EXPECT_TRUE(Set.find(0) == Set.end());
EXPECT_TRUE(Set.find(9) == Set.end());
EXPECT_FALSE(Set.count(0));
EXPECT_TRUE(Set.count(5));
// Redundant insert.
IP = Set.insert(5);
EXPECT_FALSE(IP.second);
EXPECT_TRUE(IP.first == Set.begin());
// Erase non-existent element.
EXPECT_FALSE(Set.erase(1));
EXPECT_EQ(1u, Set.size());
EXPECT_EQ(5u, *Set.begin());
// Erase iterator.
USet::iterator I = Set.find(5);
EXPECT_TRUE(I == Set.begin());
I = Set.erase(I);
EXPECT_TRUE(I == Set.end());
EXPECT_TRUE(Set.empty());
}
// Multiple entry set tests.
TEST(SparseSetTest, MultipleEntrySet) {
USet Set;
Set.setUniverse(10);
Set.insert(5);
Set.insert(3);
Set.insert(2);
Set.insert(1);
Set.insert(4);
EXPECT_EQ(5u, Set.size());
// Without deletions, iteration order == insertion order.
USet::const_iterator I = Set.begin();
EXPECT_EQ(5u, *I);
++I;
EXPECT_EQ(3u, *I);
++I;
EXPECT_EQ(2u, *I);
++I;
EXPECT_EQ(1u, *I);
++I;
EXPECT_EQ(4u, *I);
++I;
EXPECT_TRUE(I == Set.end());
// Redundant insert.
std::pair<USet::iterator, bool> IP = Set.insert(3);
EXPECT_FALSE(IP.second);
EXPECT_TRUE(IP.first == Set.begin() + 1);
// Erase last element by key.
EXPECT_TRUE(Set.erase(4));
EXPECT_EQ(4u, Set.size());
EXPECT_FALSE(Set.count(4));
EXPECT_FALSE(Set.erase(4));
EXPECT_EQ(4u, Set.size());
EXPECT_FALSE(Set.count(4));
// Erase first element by key.
EXPECT_TRUE(Set.count(5));
EXPECT_TRUE(Set.find(5) == Set.begin());
EXPECT_TRUE(Set.erase(5));
EXPECT_EQ(3u, Set.size());
EXPECT_FALSE(Set.count(5));
EXPECT_FALSE(Set.erase(5));
EXPECT_EQ(3u, Set.size());
EXPECT_FALSE(Set.count(5));
Set.insert(6);
Set.insert(7);
EXPECT_EQ(5u, Set.size());
// Erase last element by iterator.
I = Set.erase(Set.end() - 1);
EXPECT_TRUE(I == Set.end());
EXPECT_EQ(4u, Set.size());
// Erase second element by iterator.
I = Set.erase(Set.begin() + 1);
EXPECT_TRUE(I == Set.begin() + 1);
// Clear and resize the universe.
Set.clear();
EXPECT_FALSE(Set.count(5));
Set.setUniverse(1000);
// Add more than 256 elements.
for (unsigned i = 100; i != 800; ++i)
Set.insert(i);
for (unsigned i = 0; i != 10; ++i)
Set.erase(i);
for (unsigned i = 100; i != 800; ++i)
EXPECT_TRUE(Set.count(i));
EXPECT_FALSE(Set.count(99));
EXPECT_FALSE(Set.count(800));
EXPECT_EQ(700u, Set.size());
}
struct Alt {
unsigned Value;
explicit Alt(unsigned x) : Value(x) {}
unsigned getSparseSetIndex() const { return Value - 1000; }
};
TEST(SparseSetTest, AltStructSet) {
typedef SparseSet<Alt> ASet;
ASet Set;
Set.setUniverse(10);
Set.insert(Alt(1005));
ASet::iterator I = Set.find(5);
ASSERT_TRUE(I == Set.begin());
EXPECT_EQ(1005u, I->Value);
Set.insert(Alt(1006));
Set.insert(Alt(1006));
I = Set.erase(Set.begin());
ASSERT_TRUE(I == Set.begin());
EXPECT_EQ(1006u, I->Value);
EXPECT_FALSE(Set.erase(5));
EXPECT_TRUE(Set.erase(6));
}
TEST(SparseSetTest, PopBack) {
USet Set;
const unsigned UpperBound = 300;
Set.setUniverse(UpperBound);
for (unsigned i = 0; i < UpperBound; ++i)
Set.insert(i);
// Make sure pop back returns the values in the reverse order we
// inserted them.
unsigned Expected = UpperBound;
while (!Set.empty())
ASSERT_TRUE(--Expected == Set.pop_back_val());
// Insert again the same elements in the sparse set and make sure
// each insertion actually inserts the elements. I.e., check
// that the underlying data structure are properly cleared.
for (unsigned i = 0; i < UpperBound; ++i)
ASSERT_TRUE(Set.insert(i).second);
}
} // namespace