1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 12:02:58 +02:00
llvm-mirror/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

927 lines
29 KiB
C++

//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <iterator>
#define DEBUG_TYPE "amdgpu-codegenprepare"
using namespace llvm;
namespace {
static cl::opt<bool> WidenLoads(
"amdgpu-codegenprepare-widen-constant-loads",
cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
class AMDGPUCodeGenPrepare : public FunctionPass,
public InstVisitor<AMDGPUCodeGenPrepare, bool> {
const GCNSubtarget *ST = nullptr;
AssumptionCache *AC = nullptr;
LegacyDivergenceAnalysis *DA = nullptr;
Module *Mod = nullptr;
bool HasUnsafeFPMath = false;
/// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
/// binary operation \p V.
///
/// \returns Binary operation \p V.
/// \returns \p T's base element bit width.
unsigned getBaseElementBitWidth(const Type *T) const;
/// \returns Equivalent 32 bit integer type for given type \p T. For example,
/// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
/// is returned.
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
/// \returns True if binary operation \p I is a signed binary operation, false
/// otherwise.
bool isSigned(const BinaryOperator &I) const;
/// \returns True if the condition of 'select' operation \p I comes from a
/// signed 'icmp' operation, false otherwise.
bool isSigned(const SelectInst &I) const;
/// \returns True if type \p T needs to be promoted to 32 bit integer type,
/// false otherwise.
bool needsPromotionToI32(const Type *T) const;
/// Promotes uniform binary operation \p I to equivalent 32 bit binary
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
/// truncating the result of 32 bit binary operation back to \p I's original
/// type. Division operation is not promoted.
///
/// \returns True if \p I is promoted to equivalent 32 bit binary operation,
/// false otherwise.
bool promoteUniformOpToI32(BinaryOperator &I) const;
/// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
///
/// \returns True.
bool promoteUniformOpToI32(ICmpInst &I) const;
/// Promotes uniform 'select' operation \p I to 32 bit 'select'
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
/// result of 32 bit 'select' operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformOpToI32(SelectInst &I) const;
/// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
/// intrinsic.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by zero extending the operand to 32
/// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
/// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
/// shift amount is 32 minus \p I's base element bit width), and truncating
/// the result of the shift operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
/// Expands 24 bit div or rem.
Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const;
/// Expands 32 bit div or rem.
Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
/// Widen a scalar load.
///
/// \details \p Widen scalar load for uniform, small type loads from constant
// memory / to a full 32-bits and then truncate the input to allow a scalar
// load instead of a vector load.
//
/// \returns True.
bool canWidenScalarExtLoad(LoadInst &I) const;
public:
static char ID;
AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
bool visitFDiv(BinaryOperator &I);
bool visitInstruction(Instruction &I) { return false; }
bool visitBinaryOperator(BinaryOperator &I);
bool visitLoadInst(LoadInst &I);
bool visitICmpInst(ICmpInst &I);
bool visitSelectInst(SelectInst &I);
bool visitIntrinsicInst(IntrinsicInst &I);
bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<LegacyDivergenceAnalysis>();
AU.setPreservesAll();
}
};
} // end anonymous namespace
unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return T->getIntegerBitWidth();
return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
}
Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return B.getInt32Ty();
return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
}
bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
return I.getOpcode() == Instruction::AShr ||
I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
}
bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
return isa<ICmpInst>(I.getOperand(0)) ?
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
}
bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
const IntegerType *IntTy = dyn_cast<IntegerType>(T);
if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
return true;
if (const VectorType *VT = dyn_cast<VectorType>(T)) {
// TODO: The set of packed operations is more limited, so may want to
// promote some anyway.
if (ST->hasVOP3PInsts())
return false;
return needsPromotionToI32(VT->getElementType());
}
return false;
}
// Return true if the op promoted to i32 should have nsw set.
static bool promotedOpIsNSW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Sub:
return true;
case Instruction::Mul:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
// Return true if the op promoted to i32 should have nuw set.
static bool promotedOpIsNUW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Mul:
return true;
case Instruction::Sub:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
Type *Ty = I.getType();
const DataLayout &DL = Mod->getDataLayout();
int TySize = DL.getTypeSizeInBits(Ty);
unsigned Align = I.getAlignment() ?
I.getAlignment() : DL.getABITypeAlignment(Ty);
return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
if (I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SRem ||
I.getOpcode() == Instruction::URem)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
if (promotedOpIsNSW(cast<Instruction>(I)))
Inst->setHasNoSignedWrap();
if (promotedOpIsNUW(cast<Instruction>(I)))
Inst->setHasNoUnsignedWrap();
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
Inst->setIsExact(ExactOp->isExact());
}
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *NewICmp = nullptr;
if (I.isSigned()) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
I.replaceAllUsesWith(NewICmp);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp1 = nullptr;
Value *ExtOp2 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
} else {
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
}
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
IntrinsicInst &I) const {
assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
"I must be bitreverse intrinsic");
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Function *I32 =
Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
Value *LShrOp =
Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
Value *TruncRes =
Builder.CreateTrunc(LShrOp, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
if (!CNum)
return HasDenormals;
if (UnsafeDiv)
return true;
bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
// Reciprocal f32 is handled separately without denormals.
return HasDenormals ^ IsOne;
}
// Insert an intrinsic for fast fdiv for safe math situations where we can
// reduce precision. Leave fdiv for situations where the generic node is
// expected to be optimized.
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
Type *Ty = FDiv.getType();
if (!Ty->getScalarType()->isFloatTy())
return false;
MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
if (!FPMath)
return false;
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
float ULP = FPOp->getFPAccuracy();
if (ULP < 2.5f)
return false;
FastMathFlags FMF = FPOp->getFastMathFlags();
bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
FMF.allowReciprocal();
// With UnsafeDiv node will be optimized to just rcp and mul.
if (UnsafeDiv)
return false;
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
Builder.setFastMathFlags(FMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *NewFDiv = nullptr;
bool HasDenormals = ST->hasFP32Denormals();
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
NewFDiv = UndefValue::get(VT);
// FIXME: Doesn't do the right thing for cases where the vector is partially
// constant. This works when the scalarizer pass is run first.
for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
Value *NumEltI = Builder.CreateExtractElement(Num, I);
Value *DenEltI = Builder.CreateExtractElement(Den, I);
Value *NewElt;
if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) {
NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
} else {
NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
}
NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
}
} else {
if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals))
NewFDiv = Builder.CreateCall(Decl, { Num, Den });
}
if (NewFDiv) {
FDiv.replaceAllUsesWith(NewFDiv);
NewFDiv->takeName(&FDiv);
FDiv.eraseFromParent();
}
return !!NewFDiv;
}
static bool hasUnsafeFPMath(const Function &F) {
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
return Attr.getValueAsString() == "true";
}
static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
Value *LHS, Value *RHS) {
Type *I32Ty = Builder.getInt32Ty();
Type *I64Ty = Builder.getInt64Ty();
Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
Hi = Builder.CreateTrunc(Hi, I32Ty);
return std::make_pair(Lo, Hi);
}
static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
return getMul64(Builder, LHS, RHS).second;
}
// The fractional part of a float is enough to accurately represent up to
// a 24-bit signed integer.
Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const {
assert(Num->getType()->isIntegerTy(32));
const DataLayout &DL = Mod->getDataLayout();
unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
if (LHSSignBits < 9)
return nullptr;
unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
if (RHSSignBits < 9)
return nullptr;
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
unsigned DivBits = 32 - SignBits;
if (IsSigned)
++DivBits;
Type *Ty = Num->getType();
Type *I32Ty = Builder.getInt32Ty();
Type *F32Ty = Builder.getFloatTy();
ConstantInt *One = Builder.getInt32(1);
Value *JQ = One;
if (IsSigned) {
// char|short jq = ia ^ ib;
JQ = Builder.CreateXor(Num, Den);
// jq = jq >> (bitsize - 2)
JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
// jq = jq | 0x1
JQ = Builder.CreateOr(JQ, One);
}
// int ia = (int)LHS;
Value *IA = Num;
// int ib, (int)RHS;
Value *IB = Den;
// float fa = (float)ia;
Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
: Builder.CreateUIToFP(IA, F32Ty);
// float fb = (float)ib;
Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
: Builder.CreateUIToFP(IB,F32Ty);
Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
Value *FQM = Builder.CreateFMul(FA, RCP);
// fq = trunc(fqm);
CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
FQ->copyFastMathFlags(Builder.getFastMathFlags());
// float fqneg = -fq;
Value *FQNeg = Builder.CreateFNeg(FQ);
// float fr = mad(fqneg, fb, fa);
Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
{FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
// int iq = (int)fq;
Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
: Builder.CreateFPToUI(FQ, I32Ty);
// fr = fabs(fr);
FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
// fb = fabs(fb);
FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
// int cv = fr >= fb;
Value *CV = Builder.CreateFCmpOGE(FR, FB);
// jq = (cv ? jq : 0);
JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
// dst = iq + jq;
Value *Div = Builder.CreateAdd(IQ, JQ);
Value *Res = Div;
if (!IsDiv) {
// Rem needs compensation, it's easier to recompute it
Value *Rem = Builder.CreateMul(Div, Den);
Res = Builder.CreateSub(Num, Rem);
}
// Truncate to number of bits this divide really is.
if (IsSigned) {
Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits));
Res = Builder.CreateSExt(Res, Ty);
} else {
ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
Res = Builder.CreateAnd(Res, TruncMask);
}
return Res;
}
Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den) const {
Instruction::BinaryOps Opc = I.getOpcode();
assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv);
FastMathFlags FMF;
FMF.setFast();
Builder.setFastMathFlags(FMF);
if (isa<Constant>(Den))
return nullptr; // Keep it for optimization
bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
Type *Ty = Num->getType();
Type *I32Ty = Builder.getInt32Ty();
Type *F32Ty = Builder.getFloatTy();
if (Ty->getScalarSizeInBits() < 32) {
if (IsSigned) {
Num = Builder.CreateSExt(Num, I32Ty);
Den = Builder.CreateSExt(Den, I32Ty);
} else {
Num = Builder.CreateZExt(Num, I32Ty);
Den = Builder.CreateZExt(Den, I32Ty);
}
}
if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
Res = Builder.CreateTrunc(Res, Ty);
return Res;
}
ConstantInt *Zero = Builder.getInt32(0);
ConstantInt *One = Builder.getInt32(1);
ConstantInt *MinusOne = Builder.getInt32(~0);
Value *Sign = nullptr;
if (IsSigned) {
ConstantInt *K31 = Builder.getInt32(31);
Value *LHSign = Builder.CreateAShr(Num, K31);
Value *RHSign = Builder.CreateAShr(Den, K31);
// Remainder sign is the same as LHS
Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
Num = Builder.CreateAdd(Num, LHSign);
Den = Builder.CreateAdd(Den, RHSign);
Num = Builder.CreateXor(Num, LHSign);
Den = Builder.CreateXor(Den, RHSign);
}
// RCP = URECIP(Den) = 2^32 / Den + e
// e is rounding error.
Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
// RCP_LO, RCP_HI = mul(RCP, Den) */
Value *RCP_LO, *RCP_HI;
std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
// NEG_RCP_LO = -RCP_LO
Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
// ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
// Calculate the rounding error from the URECIP instruction
// E = mulhu(ABS_RCP_LO, RCP)
Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
// RCP_A_E = RCP + E
Value *RCP_A_E = Builder.CreateAdd(RCP, E);
// RCP_S_E = RCP - E
Value *RCP_S_E = Builder.CreateSub(RCP, E);
// Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
// Quotient = mulhu(Tmp0, Num)
Value *Quotient = getMulHu(Builder, Tmp0, Num);
// Num_S_Remainder = Quotient * Den
Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
// Remainder = Num - Num_S_Remainder
Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
// Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
// Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
MinusOne, Zero);
// Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
Value *Res;
if (IsDiv) {
// Quotient_A_One = Quotient + 1
Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
// Quotient_S_One = Quotient - 1
Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
// Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
// Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
} else {
// Remainder_S_Den = Remainder - Den
Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
// Remainder_A_Den = Remainder + Den
Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
// Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
// Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
}
if (IsSigned) {
Res = Builder.CreateXor(Res, Sign);
Res = Builder.CreateSub(Res, Sign);
}
Res = Builder.CreateTrunc(Res, Ty);
return Res;
}
bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I) && promoteUniformOpToI32(I))
return true;
bool Changed = false;
Instruction::BinaryOps Opc = I.getOpcode();
Type *Ty = I.getType();
Value *NewDiv = nullptr;
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
Ty->getScalarSizeInBits() <= 32) {
Value *Num = I.getOperand(0);
Value *Den = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
NewDiv = UndefValue::get(VT);
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
Value *NumEltN = Builder.CreateExtractElement(Num, N);
Value *DenEltN = Builder.CreateExtractElement(Den, N);
Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
if (!NewElt)
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
}
} else {
NewDiv = expandDivRem32(Builder, I, Num, Den);
}
if (NewDiv) {
I.replaceAllUsesWith(NewDiv);
I.eraseFromParent();
Changed = true;
}
}
return Changed;
}
bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
if (!WidenLoads)
return false;
if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
canWidenScalarExtLoad(I)) {
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = Builder.getInt32Ty();
Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
LoadInst *WidenLoad = Builder.CreateLoad(BitCast);
WidenLoad->copyMetadata(I);
// If we have range metadata, we need to convert the type, and not make
// assumptions about the high bits.
if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Range->getOperand(0));
if (Lower->getValue().isNullValue()) {
WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
} else {
Metadata *LowAndHigh[] = {
ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
// Don't make assumptions about the high bits.
ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
};
WidenLoad->setMetadata(LLVMContext::MD_range,
MDNode::get(Mod->getContext(), LowAndHigh));
}
}
int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
Type *IntNTy = Builder.getIntNTy(TySize);
Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
I.replaceAllUsesWith(ValOrig);
I.eraseFromParent();
return true;
}
return false;
}
bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
switch (I.getIntrinsicID()) {
case Intrinsic::bitreverse:
return visitBitreverseIntrinsicInst(I);
default:
return false;
}
}
bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformBitreverseToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
Mod = &M;
return false;
}
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
ST = &TM.getSubtarget<GCNSubtarget>(F);
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DA = &getAnalysis<LegacyDivergenceAnalysis>();
HasUnsafeFPMath = hasUnsafeFPMath(F);
bool MadeChange = false;
for (BasicBlock &BB : F) {
BasicBlock::iterator Next;
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
Next = std::next(I);
MadeChange |= visit(*I);
}
}
return MadeChange;
}
INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
false, false)
char AMDGPUCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
return new AMDGPUCodeGenPrepare();
}