1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 12:02:58 +02:00
llvm-mirror/lib/Target/SystemZ/SystemZRegisterInfo.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

343 lines
13 KiB
C++

//===-- SystemZRegisterInfo.cpp - SystemZ register information ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SystemZRegisterInfo.h"
#include "SystemZInstrInfo.h"
#include "SystemZSubtarget.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/VirtRegMap.h"
using namespace llvm;
#define GET_REGINFO_TARGET_DESC
#include "SystemZGenRegisterInfo.inc"
SystemZRegisterInfo::SystemZRegisterInfo()
: SystemZGenRegisterInfo(SystemZ::R14D) {}
// Given that MO is a GRX32 operand, return either GR32 or GRH32 if MO
// somehow belongs in it. Otherwise, return GRX32.
static const TargetRegisterClass *getRC32(MachineOperand &MO,
const VirtRegMap *VRM,
const MachineRegisterInfo *MRI) {
const TargetRegisterClass *RC = MRI->getRegClass(MO.getReg());
if (SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
MO.getSubReg() == SystemZ::subreg_l32 ||
MO.getSubReg() == SystemZ::subreg_hl32)
return &SystemZ::GR32BitRegClass;
if (SystemZ::GRH32BitRegClass.hasSubClassEq(RC) ||
MO.getSubReg() == SystemZ::subreg_h32 ||
MO.getSubReg() == SystemZ::subreg_hh32)
return &SystemZ::GRH32BitRegClass;
if (VRM && VRM->hasPhys(MO.getReg())) {
unsigned PhysReg = VRM->getPhys(MO.getReg());
if (SystemZ::GR32BitRegClass.contains(PhysReg))
return &SystemZ::GR32BitRegClass;
assert (SystemZ::GRH32BitRegClass.contains(PhysReg) &&
"Phys reg not in GR32 or GRH32?");
return &SystemZ::GRH32BitRegClass;
}
assert (RC == &SystemZ::GRX32BitRegClass);
return RC;
}
bool
SystemZRegisterInfo::getRegAllocationHints(unsigned VirtReg,
ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints,
const MachineFunction &MF,
const VirtRegMap *VRM,
const LiveRegMatrix *Matrix) const {
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
VirtReg, Order, Hints, MF, VRM, Matrix);
if (MRI->getRegClass(VirtReg) == &SystemZ::GRX32BitRegClass) {
SmallVector<unsigned, 8> Worklist;
SmallSet<unsigned, 4> DoneRegs;
Worklist.push_back(VirtReg);
while (Worklist.size()) {
unsigned Reg = Worklist.pop_back_val();
if (!DoneRegs.insert(Reg).second)
continue;
for (auto &Use : MRI->use_instructions(Reg))
// For LOCRMux, see if the other operand is already a high or low
// register, and in that case give the correpsonding hints for
// VirtReg. LOCR instructions need both operands in either high or
// low parts.
if (Use.getOpcode() == SystemZ::LOCRMux) {
MachineOperand &TrueMO = Use.getOperand(1);
MachineOperand &FalseMO = Use.getOperand(2);
const TargetRegisterClass *RC =
TRI->getCommonSubClass(getRC32(FalseMO, VRM, MRI),
getRC32(TrueMO, VRM, MRI));
if (RC && RC != &SystemZ::GRX32BitRegClass) {
// Pass the registers of RC as hints while making sure that if
// any of these registers are copy hints, hint them first.
SmallSet<unsigned, 4> CopyHints;
CopyHints.insert(Hints.begin(), Hints.end());
Hints.clear();
for (MCPhysReg Reg : Order)
if (CopyHints.count(Reg) &&
RC->contains(Reg) && !MRI->isReserved(Reg))
Hints.push_back(Reg);
for (MCPhysReg Reg : Order)
if (!CopyHints.count(Reg) &&
RC->contains(Reg) && !MRI->isReserved(Reg))
Hints.push_back(Reg);
// Return true to make these hints the only regs available to
// RA. This may mean extra spilling but since the alternative is
// a jump sequence expansion of the LOCRMux, it is preferred.
return true;
}
// Add the other operand of the LOCRMux to the worklist.
unsigned OtherReg =
(TrueMO.getReg() == Reg ? FalseMO.getReg() : TrueMO.getReg());
if (MRI->getRegClass(OtherReg) == &SystemZ::GRX32BitRegClass)
Worklist.push_back(OtherReg);
}
}
}
return BaseImplRetVal;
}
const MCPhysReg *
SystemZRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>();
if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
return Subtarget.hasVector()? CSR_SystemZ_AllRegs_Vector_SaveList
: CSR_SystemZ_AllRegs_SaveList;
if (MF->getSubtarget().getTargetLowering()->supportSwiftError() &&
MF->getFunction().getAttributes().hasAttrSomewhere(
Attribute::SwiftError))
return CSR_SystemZ_SwiftError_SaveList;
return CSR_SystemZ_SaveList;
}
const uint32_t *
SystemZRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
CallingConv::ID CC) const {
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
if (CC == CallingConv::AnyReg)
return Subtarget.hasVector()? CSR_SystemZ_AllRegs_Vector_RegMask
: CSR_SystemZ_AllRegs_RegMask;
if (MF.getSubtarget().getTargetLowering()->supportSwiftError() &&
MF.getFunction().getAttributes().hasAttrSomewhere(
Attribute::SwiftError))
return CSR_SystemZ_SwiftError_RegMask;
return CSR_SystemZ_RegMask;
}
BitVector
SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
const SystemZFrameLowering *TFI = getFrameLowering(MF);
if (TFI->hasFP(MF)) {
// R11D is the frame pointer. Reserve all aliases.
Reserved.set(SystemZ::R11D);
Reserved.set(SystemZ::R11L);
Reserved.set(SystemZ::R11H);
Reserved.set(SystemZ::R10Q);
}
// R15D is the stack pointer. Reserve all aliases.
Reserved.set(SystemZ::R15D);
Reserved.set(SystemZ::R15L);
Reserved.set(SystemZ::R15H);
Reserved.set(SystemZ::R14Q);
// A0 and A1 hold the thread pointer.
Reserved.set(SystemZ::A0);
Reserved.set(SystemZ::A1);
return Reserved;
}
void
SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Outgoing arguments should be part of the frame");
MachineBasicBlock &MBB = *MI->getParent();
MachineFunction &MF = *MBB.getParent();
auto *TII =
static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
const SystemZFrameLowering *TFI = getFrameLowering(MF);
DebugLoc DL = MI->getDebugLoc();
// Decompose the frame index into a base and offset.
int FrameIndex = MI->getOperand(FIOperandNum).getIndex();
unsigned BasePtr;
int64_t Offset = (TFI->getFrameIndexReference(MF, FrameIndex, BasePtr) +
MI->getOperand(FIOperandNum + 1).getImm());
// Special handling of dbg_value instructions.
if (MI->isDebugValue()) {
MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, /*isDef*/ false);
MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
return;
}
// See if the offset is in range, or if an equivalent instruction that
// accepts the offset exists.
unsigned Opcode = MI->getOpcode();
unsigned OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset);
if (OpcodeForOffset) {
if (OpcodeForOffset == SystemZ::LE &&
MF.getSubtarget<SystemZSubtarget>().hasVector()) {
// If LE is ok for offset, use LDE instead on z13.
OpcodeForOffset = SystemZ::LDE32;
}
MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
}
else {
// Create an anchor point that is in range. Start at 0xffff so that
// can use LLILH to load the immediate.
int64_t OldOffset = Offset;
int64_t Mask = 0xffff;
do {
Offset = OldOffset & Mask;
OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset);
Mask >>= 1;
assert(Mask && "One offset must be OK");
} while (!OpcodeForOffset);
unsigned ScratchReg =
MF.getRegInfo().createVirtualRegister(&SystemZ::ADDR64BitRegClass);
int64_t HighOffset = OldOffset - Offset;
if (MI->getDesc().TSFlags & SystemZII::HasIndex
&& MI->getOperand(FIOperandNum + 2).getReg() == 0) {
// Load the offset into the scratch register and use it as an index.
// The scratch register then dies here.
TII->loadImmediate(MBB, MI, ScratchReg, HighOffset);
MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
MI->getOperand(FIOperandNum + 2).ChangeToRegister(ScratchReg,
false, false, true);
} else {
// Load the anchor address into a scratch register.
unsigned LAOpcode = TII->getOpcodeForOffset(SystemZ::LA, HighOffset);
if (LAOpcode)
BuildMI(MBB, MI, DL, TII->get(LAOpcode),ScratchReg)
.addReg(BasePtr).addImm(HighOffset).addReg(0);
else {
// Load the high offset into the scratch register and use it as
// an index.
TII->loadImmediate(MBB, MI, ScratchReg, HighOffset);
BuildMI(MBB, MI, DL, TII->get(SystemZ::AGR),ScratchReg)
.addReg(ScratchReg, RegState::Kill).addReg(BasePtr);
}
// Use the scratch register as the base. It then dies here.
MI->getOperand(FIOperandNum).ChangeToRegister(ScratchReg,
false, false, true);
}
}
MI->setDesc(TII->get(OpcodeForOffset));
MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
}
bool SystemZRegisterInfo::shouldCoalesce(MachineInstr *MI,
const TargetRegisterClass *SrcRC,
unsigned SubReg,
const TargetRegisterClass *DstRC,
unsigned DstSubReg,
const TargetRegisterClass *NewRC,
LiveIntervals &LIS) const {
assert (MI->isCopy() && "Only expecting COPY instructions");
// Coalesce anything which is not a COPY involving a subreg to/from GR128.
if (!(NewRC->hasSuperClassEq(&SystemZ::GR128BitRegClass) &&
(getRegSizeInBits(*SrcRC) <= 64 || getRegSizeInBits(*DstRC) <= 64)))
return true;
// Allow coalescing of a GR128 subreg COPY only if the live ranges are small
// and local to one MBB with not too much interferring registers. Otherwise
// regalloc may run out of registers.
unsigned WideOpNo = (getRegSizeInBits(*SrcRC) == 128 ? 1 : 0);
unsigned GR128Reg = MI->getOperand(WideOpNo).getReg();
unsigned GRNarReg = MI->getOperand((WideOpNo == 1) ? 0 : 1).getReg();
LiveInterval &IntGR128 = LIS.getInterval(GR128Reg);
LiveInterval &IntGRNar = LIS.getInterval(GRNarReg);
// Check that the two virtual registers are local to MBB.
MachineBasicBlock *MBB = MI->getParent();
MachineInstr *FirstMI_GR128 =
LIS.getInstructionFromIndex(IntGR128.beginIndex());
MachineInstr *FirstMI_GRNar =
LIS.getInstructionFromIndex(IntGRNar.beginIndex());
MachineInstr *LastMI_GR128 = LIS.getInstructionFromIndex(IntGR128.endIndex());
MachineInstr *LastMI_GRNar = LIS.getInstructionFromIndex(IntGRNar.endIndex());
if ((!FirstMI_GR128 || FirstMI_GR128->getParent() != MBB) ||
(!FirstMI_GRNar || FirstMI_GRNar->getParent() != MBB) ||
(!LastMI_GR128 || LastMI_GR128->getParent() != MBB) ||
(!LastMI_GRNar || LastMI_GRNar->getParent() != MBB))
return false;
MachineBasicBlock::iterator MII = nullptr, MEE = nullptr;
if (WideOpNo == 1) {
MII = FirstMI_GR128;
MEE = LastMI_GRNar;
} else {
MII = FirstMI_GRNar;
MEE = LastMI_GR128;
}
// Check if coalescing seems safe by finding the set of clobbered physreg
// pairs in the region.
BitVector PhysClobbered(getNumRegs());
MEE++;
for (; MII != MEE; ++MII) {
for (const MachineOperand &MO : MII->operands())
if (MO.isReg() && isPhysicalRegister(MO.getReg())) {
for (MCSuperRegIterator SI(MO.getReg(), this, true/*IncludeSelf*/);
SI.isValid(); ++SI)
if (NewRC->contains(*SI)) {
PhysClobbered.set(*SI);
break;
}
}
}
// Demand an arbitrary margin of free regs.
unsigned const DemandedFreeGR128 = 3;
if (PhysClobbered.count() > (NewRC->getNumRegs() - DemandedFreeGR128))
return false;
return true;
}
unsigned
SystemZRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const SystemZFrameLowering *TFI = getFrameLowering(MF);
return TFI->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D;
}
const TargetRegisterClass *
SystemZRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
if (RC == &SystemZ::CCRRegClass)
return &SystemZ::GR32BitRegClass;
return RC;
}