mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
92ce5b3319
Summary: Currently, we only have nice exploration for LEA instruction, while for the rest, we rely on `randomizeUnsetVariables()` to sometimes generate something interesting. While that works, it isn't very reliable in coverage :) Here, i'm making an assumption that while we may want to explore multi-instruction configs, we are most interested in the characteristics of the main instruction we were asked about. Which we can do, by taking the existing `randomizeMCOperand()`, and turning it on it's head - instead of relying on it to randomly fill one of the interesting values, let's pregenerate all the possible interesting values for the variable, and then generate as much `InstructionTemplate` combinations of these possible values for variables as needed/possible. Of course, that requires invasive changes to no longer pass just the naked `Instruction`, but sometimes partially filled `InstructionTemplate`. As it can be seen from the test, this allows us to explore `X86::OperandType::OPERAND_COND_CODE` for instructions that take such an operand. I'm hoping this will greatly simplify exploration. Reviewers: courbet, gchatelet Reviewed By: gchatelet Subscribers: orodley, mgorny, sdardis, tschuett, jrtc27, atanasyan, mstojanovic, andreadb, RKSimon, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74156
276 lines
10 KiB
C++
276 lines
10 KiB
C++
//===-- SnippetGenerator.cpp ------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <array>
|
|
#include <string>
|
|
|
|
#include "Assembler.h"
|
|
#include "Error.h"
|
|
#include "MCInstrDescView.h"
|
|
#include "SnippetGenerator.h"
|
|
#include "Target.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/Program.h"
|
|
|
|
namespace llvm {
|
|
namespace exegesis {
|
|
|
|
std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT) {
|
|
std::vector<CodeTemplate> Result;
|
|
Result.push_back(std::move(CT));
|
|
return Result;
|
|
}
|
|
|
|
SnippetGeneratorFailure::SnippetGeneratorFailure(const Twine &S)
|
|
: StringError(S, inconvertibleErrorCode()) {}
|
|
|
|
SnippetGenerator::SnippetGenerator(const LLVMState &State, const Options &Opts)
|
|
: State(State), Opts(Opts) {}
|
|
|
|
SnippetGenerator::~SnippetGenerator() = default;
|
|
|
|
Error SnippetGenerator::generateConfigurations(
|
|
const InstructionTemplate &Variant, std::vector<BenchmarkCode> &Benchmarks,
|
|
const BitVector &ExtraForbiddenRegs) const {
|
|
BitVector ForbiddenRegs = State.getRATC().reservedRegisters();
|
|
ForbiddenRegs |= ExtraForbiddenRegs;
|
|
// If the instruction has memory registers, prevent the generator from
|
|
// using the scratch register and its aliasing registers.
|
|
if (Variant.getInstr().hasMemoryOperands()) {
|
|
const auto &ET = State.getExegesisTarget();
|
|
unsigned ScratchSpacePointerInReg =
|
|
ET.getScratchMemoryRegister(State.getTargetMachine().getTargetTriple());
|
|
if (ScratchSpacePointerInReg == 0)
|
|
return make_error<Failure>(
|
|
"Infeasible : target does not support memory instructions");
|
|
const auto &ScratchRegAliases =
|
|
State.getRATC().getRegister(ScratchSpacePointerInReg).aliasedBits();
|
|
// If the instruction implicitly writes to ScratchSpacePointerInReg , abort.
|
|
// FIXME: We could make a copy of the scratch register.
|
|
for (const auto &Op : Variant.getInstr().Operands) {
|
|
if (Op.isDef() && Op.isImplicitReg() &&
|
|
ScratchRegAliases.test(Op.getImplicitReg()))
|
|
return make_error<Failure>(
|
|
"Infeasible : memory instruction uses scratch memory register");
|
|
}
|
|
ForbiddenRegs |= ScratchRegAliases;
|
|
}
|
|
|
|
if (auto E = generateCodeTemplates(Variant, ForbiddenRegs)) {
|
|
MutableArrayRef<CodeTemplate> Templates = E.get();
|
|
|
|
// Avoid reallocations in the loop.
|
|
Benchmarks.reserve(Benchmarks.size() + Templates.size());
|
|
for (CodeTemplate &CT : Templates) {
|
|
// TODO: Generate as many BenchmarkCode as needed.
|
|
{
|
|
BenchmarkCode BC;
|
|
BC.Info = CT.Info;
|
|
for (InstructionTemplate &IT : CT.Instructions) {
|
|
if (auto error = randomizeUnsetVariables(State, ForbiddenRegs, IT))
|
|
return error;
|
|
BC.Key.Instructions.push_back(IT.build());
|
|
}
|
|
if (CT.ScratchSpacePointerInReg)
|
|
BC.LiveIns.push_back(CT.ScratchSpacePointerInReg);
|
|
BC.Key.RegisterInitialValues =
|
|
computeRegisterInitialValues(CT.Instructions);
|
|
BC.Key.Config = CT.Config;
|
|
Benchmarks.emplace_back(std::move(BC));
|
|
if (Benchmarks.size() >= Opts.MaxConfigsPerOpcode) {
|
|
// We reached the number of allowed configs and return early.
|
|
return Error::success();
|
|
}
|
|
}
|
|
}
|
|
return Error::success();
|
|
} else
|
|
return E.takeError();
|
|
}
|
|
|
|
std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues(
|
|
const std::vector<InstructionTemplate> &Instructions) const {
|
|
// Collect all register uses and create an assignment for each of them.
|
|
// Ignore memory operands which are handled separately.
|
|
// Loop invariant: DefinedRegs[i] is true iif it has been set at least once
|
|
// before the current instruction.
|
|
BitVector DefinedRegs = State.getRATC().emptyRegisters();
|
|
std::vector<RegisterValue> RIV;
|
|
for (const InstructionTemplate &IT : Instructions) {
|
|
// Returns the register that this Operand sets or uses, or 0 if this is not
|
|
// a register.
|
|
const auto GetOpReg = [&IT](const Operand &Op) -> unsigned {
|
|
if (Op.isMemory())
|
|
return 0;
|
|
if (Op.isImplicitReg())
|
|
return Op.getImplicitReg();
|
|
if (Op.isExplicit() && IT.getValueFor(Op).isReg())
|
|
return IT.getValueFor(Op).getReg();
|
|
return 0;
|
|
};
|
|
// Collect used registers that have never been def'ed.
|
|
for (const Operand &Op : IT.getInstr().Operands) {
|
|
if (Op.isUse()) {
|
|
const unsigned Reg = GetOpReg(Op);
|
|
if (Reg > 0 && !DefinedRegs.test(Reg)) {
|
|
RIV.push_back(RegisterValue::zero(Reg));
|
|
DefinedRegs.set(Reg);
|
|
}
|
|
}
|
|
}
|
|
// Mark defs as having been def'ed.
|
|
for (const Operand &Op : IT.getInstr().Operands) {
|
|
if (Op.isDef()) {
|
|
const unsigned Reg = GetOpReg(Op);
|
|
if (Reg > 0)
|
|
DefinedRegs.set(Reg);
|
|
}
|
|
}
|
|
}
|
|
return RIV;
|
|
}
|
|
|
|
Expected<std::vector<CodeTemplate>>
|
|
generateSelfAliasingCodeTemplates(InstructionTemplate Variant) {
|
|
const AliasingConfigurations SelfAliasing(Variant.getInstr(),
|
|
Variant.getInstr());
|
|
if (SelfAliasing.empty())
|
|
return make_error<SnippetGeneratorFailure>("empty self aliasing");
|
|
std::vector<CodeTemplate> Result;
|
|
Result.emplace_back();
|
|
CodeTemplate &CT = Result.back();
|
|
if (SelfAliasing.hasImplicitAliasing()) {
|
|
CT.Info = "implicit Self cycles, picking random values.";
|
|
} else {
|
|
CT.Info = "explicit self cycles, selecting one aliasing Conf.";
|
|
// This is a self aliasing instruction so defs and uses are from the same
|
|
// instance, hence twice Variant in the following call.
|
|
setRandomAliasing(SelfAliasing, Variant, Variant);
|
|
}
|
|
CT.Instructions.push_back(std::move(Variant));
|
|
return std::move(Result);
|
|
}
|
|
|
|
Expected<std::vector<CodeTemplate>>
|
|
generateUnconstrainedCodeTemplates(const InstructionTemplate &Variant,
|
|
StringRef Msg) {
|
|
std::vector<CodeTemplate> Result;
|
|
Result.emplace_back();
|
|
CodeTemplate &CT = Result.back();
|
|
CT.Info =
|
|
std::string(formatv("{0}, repeating an unconstrained assignment", Msg));
|
|
CT.Instructions.push_back(std::move(Variant));
|
|
return std::move(Result);
|
|
}
|
|
|
|
std::mt19937 &randomGenerator() {
|
|
static std::random_device RandomDevice;
|
|
static std::mt19937 RandomGenerator(RandomDevice());
|
|
return RandomGenerator;
|
|
}
|
|
|
|
size_t randomIndex(size_t Max) {
|
|
std::uniform_int_distribution<> Distribution(0, Max);
|
|
return Distribution(randomGenerator());
|
|
}
|
|
|
|
template <typename C> static decltype(auto) randomElement(const C &Container) {
|
|
assert(!Container.empty() &&
|
|
"Can't pick a random element from an empty container)");
|
|
return Container[randomIndex(Container.size() - 1)];
|
|
}
|
|
|
|
static void setRegisterOperandValue(const RegisterOperandAssignment &ROV,
|
|
InstructionTemplate &IB) {
|
|
assert(ROV.Op);
|
|
if (ROV.Op->isExplicit()) {
|
|
auto &AssignedValue = IB.getValueFor(*ROV.Op);
|
|
if (AssignedValue.isValid()) {
|
|
assert(AssignedValue.isReg() && AssignedValue.getReg() == ROV.Reg);
|
|
return;
|
|
}
|
|
AssignedValue = MCOperand::createReg(ROV.Reg);
|
|
} else {
|
|
assert(ROV.Op->isImplicitReg());
|
|
assert(ROV.Reg == ROV.Op->getImplicitReg());
|
|
}
|
|
}
|
|
|
|
size_t randomBit(const BitVector &Vector) {
|
|
assert(Vector.any());
|
|
auto Itr = Vector.set_bits_begin();
|
|
for (size_t I = randomIndex(Vector.count() - 1); I != 0; --I)
|
|
++Itr;
|
|
return *Itr;
|
|
}
|
|
|
|
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
|
|
InstructionTemplate &DefIB, InstructionTemplate &UseIB) {
|
|
assert(!AliasingConfigurations.empty());
|
|
assert(!AliasingConfigurations.hasImplicitAliasing());
|
|
const auto &RandomConf = randomElement(AliasingConfigurations.Configurations);
|
|
setRegisterOperandValue(randomElement(RandomConf.Defs), DefIB);
|
|
setRegisterOperandValue(randomElement(RandomConf.Uses), UseIB);
|
|
}
|
|
|
|
static Error randomizeMCOperand(const LLVMState &State,
|
|
const Instruction &Instr, const Variable &Var,
|
|
MCOperand &AssignedValue,
|
|
const BitVector &ForbiddenRegs) {
|
|
const Operand &Op = Instr.getPrimaryOperand(Var);
|
|
if (Op.getExplicitOperandInfo().OperandType >=
|
|
MCOI::OperandType::OPERAND_FIRST_TARGET)
|
|
return State.getExegesisTarget().randomizeTargetMCOperand(
|
|
Instr, Var, AssignedValue, ForbiddenRegs);
|
|
switch (Op.getExplicitOperandInfo().OperandType) {
|
|
case MCOI::OperandType::OPERAND_IMMEDIATE:
|
|
// FIXME: explore immediate values too.
|
|
AssignedValue = MCOperand::createImm(1);
|
|
break;
|
|
case MCOI::OperandType::OPERAND_REGISTER: {
|
|
assert(Op.isReg());
|
|
auto AllowedRegs = Op.getRegisterAliasing().sourceBits();
|
|
assert(AllowedRegs.size() == ForbiddenRegs.size());
|
|
for (auto I : ForbiddenRegs.set_bits())
|
|
AllowedRegs.reset(I);
|
|
if (!AllowedRegs.any())
|
|
return make_error<Failure>(
|
|
Twine("no available registers:\ncandidates:\n")
|
|
.concat(debugString(State.getRegInfo(),
|
|
Op.getRegisterAliasing().sourceBits()))
|
|
.concat("\nforbidden:\n")
|
|
.concat(debugString(State.getRegInfo(), ForbiddenRegs)));
|
|
AssignedValue = MCOperand::createReg(randomBit(AllowedRegs));
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
Error randomizeUnsetVariables(const LLVMState &State,
|
|
const BitVector &ForbiddenRegs,
|
|
InstructionTemplate &IT) {
|
|
for (const Variable &Var : IT.getInstr().Variables) {
|
|
MCOperand &AssignedValue = IT.getValueFor(Var);
|
|
if (!AssignedValue.isValid())
|
|
if (auto Err = randomizeMCOperand(State, IT.getInstr(), Var,
|
|
AssignedValue, ForbiddenRegs))
|
|
return Err;
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
} // namespace exegesis
|
|
} // namespace llvm
|