mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
80b41881bc
llvm-svn: 100709
796 lines
32 KiB
C++
796 lines
32 KiB
C++
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the interface to tear out a code region, such as an
|
|
// individual loop or a parallel section, into a new function, replacing it with
|
|
// a call to the new function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/FunctionUtils.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/Verifier.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
// Provide a command-line option to aggregate function arguments into a struct
|
|
// for functions produced by the code extractor. This is useful when converting
|
|
// extracted functions to pthread-based code, as only one argument (void*) can
|
|
// be passed in to pthread_create().
|
|
static cl::opt<bool>
|
|
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
|
|
cl::desc("Aggregate arguments to code-extracted functions"));
|
|
|
|
namespace {
|
|
class CodeExtractor {
|
|
typedef SetVector<Value*> Values;
|
|
SetVector<BasicBlock*> BlocksToExtract;
|
|
DominatorTree* DT;
|
|
bool AggregateArgs;
|
|
unsigned NumExitBlocks;
|
|
const Type *RetTy;
|
|
public:
|
|
CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
|
|
: DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
|
|
|
|
Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
|
|
|
|
bool isEligible(const std::vector<BasicBlock*> &code);
|
|
|
|
private:
|
|
/// definedInRegion - Return true if the specified value is defined in the
|
|
/// extracted region.
|
|
bool definedInRegion(Value *V) const {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (BlocksToExtract.count(I->getParent()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// definedInCaller - Return true if the specified value is defined in the
|
|
/// function being code extracted, but not in the region being extracted.
|
|
/// These values must be passed in as live-ins to the function.
|
|
bool definedInCaller(Value *V) const {
|
|
if (isa<Argument>(V)) return true;
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (!BlocksToExtract.count(I->getParent()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void severSplitPHINodes(BasicBlock *&Header);
|
|
void splitReturnBlocks();
|
|
void findInputsOutputs(Values &inputs, Values &outputs);
|
|
|
|
Function *constructFunction(const Values &inputs,
|
|
const Values &outputs,
|
|
BasicBlock *header,
|
|
BasicBlock *newRootNode, BasicBlock *newHeader,
|
|
Function *oldFunction, Module *M);
|
|
|
|
void moveCodeToFunction(Function *newFunction);
|
|
|
|
void emitCallAndSwitchStatement(Function *newFunction,
|
|
BasicBlock *newHeader,
|
|
Values &inputs,
|
|
Values &outputs);
|
|
|
|
};
|
|
}
|
|
|
|
/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
|
|
/// region, we need to split the entry block of the region so that the PHI node
|
|
/// is easier to deal with.
|
|
void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
|
|
bool HasPredsFromRegion = false;
|
|
unsigned NumPredsOutsideRegion = 0;
|
|
|
|
if (Header != &Header->getParent()->getEntryBlock()) {
|
|
PHINode *PN = dyn_cast<PHINode>(Header->begin());
|
|
if (!PN) return; // No PHI nodes.
|
|
|
|
// If the header node contains any PHI nodes, check to see if there is more
|
|
// than one entry from outside the region. If so, we need to sever the
|
|
// header block into two.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (BlocksToExtract.count(PN->getIncomingBlock(i)))
|
|
HasPredsFromRegion = true;
|
|
else
|
|
++NumPredsOutsideRegion;
|
|
|
|
// If there is one (or fewer) predecessor from outside the region, we don't
|
|
// need to do anything special.
|
|
if (NumPredsOutsideRegion <= 1) return;
|
|
}
|
|
|
|
// Otherwise, we need to split the header block into two pieces: one
|
|
// containing PHI nodes merging values from outside of the region, and a
|
|
// second that contains all of the code for the block and merges back any
|
|
// incoming values from inside of the region.
|
|
BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
|
|
BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
|
|
Header->getName()+".ce");
|
|
|
|
// We only want to code extract the second block now, and it becomes the new
|
|
// header of the region.
|
|
BasicBlock *OldPred = Header;
|
|
BlocksToExtract.remove(OldPred);
|
|
BlocksToExtract.insert(NewBB);
|
|
Header = NewBB;
|
|
|
|
// Okay, update dominator sets. The blocks that dominate the new one are the
|
|
// blocks that dominate TIBB plus the new block itself.
|
|
if (DT)
|
|
DT->splitBlock(NewBB);
|
|
|
|
// Okay, now we need to adjust the PHI nodes and any branches from within the
|
|
// region to go to the new header block instead of the old header block.
|
|
if (HasPredsFromRegion) {
|
|
PHINode *PN = cast<PHINode>(OldPred->begin());
|
|
// Loop over all of the predecessors of OldPred that are in the region,
|
|
// changing them to branch to NewBB instead.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
|
|
TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
|
|
TI->replaceUsesOfWith(OldPred, NewBB);
|
|
}
|
|
|
|
// Okay, everthing within the region is now branching to the right block, we
|
|
// just have to update the PHI nodes now, inserting PHI nodes into NewBB.
|
|
for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
|
|
PHINode *PN = cast<PHINode>(AfterPHIs);
|
|
// Create a new PHI node in the new region, which has an incoming value
|
|
// from OldPred of PN.
|
|
PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
|
|
NewBB->begin());
|
|
NewPN->addIncoming(PN, OldPred);
|
|
|
|
// Loop over all of the incoming value in PN, moving them to NewPN if they
|
|
// are from the extracted region.
|
|
for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
|
|
if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
|
|
NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
|
|
PN->removeIncomingValue(i);
|
|
--i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeExtractor::splitReturnBlocks() {
|
|
for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(),
|
|
E = BlocksToExtract.end(); I != E; ++I)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
|
|
BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
|
|
if (DT) {
|
|
// Old dominates New. New node domiantes all other nodes dominated
|
|
//by Old.
|
|
DomTreeNode *OldNode = DT->getNode(*I);
|
|
SmallVector<DomTreeNode*, 8> Children;
|
|
for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
|
|
DI != DE; ++DI)
|
|
Children.push_back(*DI);
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(New, *I);
|
|
|
|
for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
|
|
E = Children.end(); I != E; ++I)
|
|
DT->changeImmediateDominator(*I, NewNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
// findInputsOutputs - Find inputs to, outputs from the code region.
|
|
//
|
|
void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
|
|
std::set<BasicBlock*> ExitBlocks;
|
|
for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
|
|
ce = BlocksToExtract.end(); ci != ce; ++ci) {
|
|
BasicBlock *BB = *ci;
|
|
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
// If a used value is defined outside the region, it's an input. If an
|
|
// instruction is used outside the region, it's an output.
|
|
for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
|
|
if (definedInCaller(*O))
|
|
inputs.insert(*O);
|
|
|
|
// Consider uses of this instruction (outputs).
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
|
UI != E; ++UI)
|
|
if (!definedInRegion(*UI)) {
|
|
outputs.insert(I);
|
|
break;
|
|
}
|
|
} // for: insts
|
|
|
|
// Keep track of the exit blocks from the region.
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (!BlocksToExtract.count(TI->getSuccessor(i)))
|
|
ExitBlocks.insert(TI->getSuccessor(i));
|
|
} // for: basic blocks
|
|
|
|
NumExitBlocks = ExitBlocks.size();
|
|
}
|
|
|
|
/// constructFunction - make a function based on inputs and outputs, as follows:
|
|
/// f(in0, ..., inN, out0, ..., outN)
|
|
///
|
|
Function *CodeExtractor::constructFunction(const Values &inputs,
|
|
const Values &outputs,
|
|
BasicBlock *header,
|
|
BasicBlock *newRootNode,
|
|
BasicBlock *newHeader,
|
|
Function *oldFunction,
|
|
Module *M) {
|
|
DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
|
|
DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
|
|
|
|
// This function returns unsigned, outputs will go back by reference.
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
case 1: RetTy = Type::getVoidTy(header->getContext()); break;
|
|
case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
|
|
default: RetTy = Type::getInt16Ty(header->getContext()); break;
|
|
}
|
|
|
|
std::vector<const Type*> paramTy;
|
|
|
|
// Add the types of the input values to the function's argument list
|
|
for (Values::const_iterator i = inputs.begin(),
|
|
e = inputs.end(); i != e; ++i) {
|
|
const Value *value = *i;
|
|
DEBUG(dbgs() << "value used in func: " << *value << "\n");
|
|
paramTy.push_back(value->getType());
|
|
}
|
|
|
|
// Add the types of the output values to the function's argument list.
|
|
for (Values::const_iterator I = outputs.begin(), E = outputs.end();
|
|
I != E; ++I) {
|
|
DEBUG(dbgs() << "instr used in func: " << **I << "\n");
|
|
if (AggregateArgs)
|
|
paramTy.push_back((*I)->getType());
|
|
else
|
|
paramTy.push_back(PointerType::getUnqual((*I)->getType()));
|
|
}
|
|
|
|
DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
|
|
for (std::vector<const Type*>::iterator i = paramTy.begin(),
|
|
e = paramTy.end(); i != e; ++i)
|
|
DEBUG(dbgs() << **i << ", ");
|
|
DEBUG(dbgs() << ")\n");
|
|
|
|
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
|
|
PointerType *StructPtr =
|
|
PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
|
|
paramTy.clear();
|
|
paramTy.push_back(StructPtr);
|
|
}
|
|
const FunctionType *funcType =
|
|
FunctionType::get(RetTy, paramTy, false);
|
|
|
|
// Create the new function
|
|
Function *newFunction = Function::Create(funcType,
|
|
GlobalValue::InternalLinkage,
|
|
oldFunction->getName() + "_" +
|
|
header->getName(), M);
|
|
// If the old function is no-throw, so is the new one.
|
|
if (oldFunction->doesNotThrow())
|
|
newFunction->setDoesNotThrow(true);
|
|
|
|
newFunction->getBasicBlockList().push_back(newRootNode);
|
|
|
|
// Create an iterator to name all of the arguments we inserted.
|
|
Function::arg_iterator AI = newFunction->arg_begin();
|
|
|
|
// Rewrite all users of the inputs in the extracted region to use the
|
|
// arguments (or appropriate addressing into struct) instead.
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
|
|
Value *RewriteVal;
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
|
|
TerminatorInst *TI = newFunction->begin()->getTerminator();
|
|
GetElementPtrInst *GEP =
|
|
GetElementPtrInst::Create(AI, Idx, Idx+2,
|
|
"gep_" + inputs[i]->getName(), TI);
|
|
RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
|
|
} else
|
|
RewriteVal = AI++;
|
|
|
|
std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
|
|
for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
|
|
use != useE; ++use)
|
|
if (Instruction* inst = dyn_cast<Instruction>(*use))
|
|
if (BlocksToExtract.count(inst->getParent()))
|
|
inst->replaceUsesOfWith(inputs[i], RewriteVal);
|
|
}
|
|
|
|
// Set names for input and output arguments.
|
|
if (!AggregateArgs) {
|
|
AI = newFunction->arg_begin();
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
|
|
AI->setName(inputs[i]->getName());
|
|
for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
|
|
AI->setName(outputs[i]->getName()+".out");
|
|
}
|
|
|
|
// Rewrite branches to basic blocks outside of the loop to new dummy blocks
|
|
// within the new function. This must be done before we lose track of which
|
|
// blocks were originally in the code region.
|
|
std::vector<User*> Users(header->use_begin(), header->use_end());
|
|
for (unsigned i = 0, e = Users.size(); i != e; ++i)
|
|
// The BasicBlock which contains the branch is not in the region
|
|
// modify the branch target to a new block
|
|
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
|
|
if (!BlocksToExtract.count(TI->getParent()) &&
|
|
TI->getParent()->getParent() == oldFunction)
|
|
TI->replaceUsesOfWith(header, newHeader);
|
|
|
|
return newFunction;
|
|
}
|
|
|
|
/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
|
|
/// that uses the value within the basic block, and return the predecessor
|
|
/// block associated with that use, or return 0 if none is found.
|
|
static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
|
|
for (Value::use_iterator UI = Used->use_begin(),
|
|
UE = Used->use_end(); UI != UE; ++UI) {
|
|
PHINode *P = dyn_cast<PHINode>(*UI);
|
|
if (P && P->getParent() == BB)
|
|
return P->getIncomingBlock(UI);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// emitCallAndSwitchStatement - This method sets up the caller side by adding
|
|
/// the call instruction, splitting any PHI nodes in the header block as
|
|
/// necessary.
|
|
void CodeExtractor::
|
|
emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
|
|
Values &inputs, Values &outputs) {
|
|
// Emit a call to the new function, passing in: *pointer to struct (if
|
|
// aggregating parameters), or plan inputs and allocated memory for outputs
|
|
std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
|
|
|
|
LLVMContext &Context = newFunction->getContext();
|
|
|
|
// Add inputs as params, or to be filled into the struct
|
|
for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
|
|
if (AggregateArgs)
|
|
StructValues.push_back(*i);
|
|
else
|
|
params.push_back(*i);
|
|
|
|
// Create allocas for the outputs
|
|
for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
|
|
if (AggregateArgs) {
|
|
StructValues.push_back(*i);
|
|
} else {
|
|
AllocaInst *alloca =
|
|
new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
|
|
codeReplacer->getParent()->begin()->begin());
|
|
ReloadOutputs.push_back(alloca);
|
|
params.push_back(alloca);
|
|
}
|
|
}
|
|
|
|
AllocaInst *Struct = 0;
|
|
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
|
|
std::vector<const Type*> ArgTypes;
|
|
for (Values::iterator v = StructValues.begin(),
|
|
ve = StructValues.end(); v != ve; ++v)
|
|
ArgTypes.push_back((*v)->getType());
|
|
|
|
// Allocate a struct at the beginning of this function
|
|
Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
|
|
Struct =
|
|
new AllocaInst(StructArgTy, 0, "structArg",
|
|
codeReplacer->getParent()->begin()->begin());
|
|
params.push_back(Struct);
|
|
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
|
|
GetElementPtrInst *GEP =
|
|
GetElementPtrInst::Create(Struct, Idx, Idx + 2,
|
|
"gep_" + StructValues[i]->getName());
|
|
codeReplacer->getInstList().push_back(GEP);
|
|
StoreInst *SI = new StoreInst(StructValues[i], GEP);
|
|
codeReplacer->getInstList().push_back(SI);
|
|
}
|
|
}
|
|
|
|
// Emit the call to the function
|
|
CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
|
|
NumExitBlocks > 1 ? "targetBlock" : "");
|
|
codeReplacer->getInstList().push_back(call);
|
|
|
|
Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
|
|
unsigned FirstOut = inputs.size();
|
|
if (!AggregateArgs)
|
|
std::advance(OutputArgBegin, inputs.size());
|
|
|
|
// Reload the outputs passed in by reference
|
|
for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
|
|
Value *Output = 0;
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
|
|
GetElementPtrInst *GEP
|
|
= GetElementPtrInst::Create(Struct, Idx, Idx + 2,
|
|
"gep_reload_" + outputs[i]->getName());
|
|
codeReplacer->getInstList().push_back(GEP);
|
|
Output = GEP;
|
|
} else {
|
|
Output = ReloadOutputs[i];
|
|
}
|
|
LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
|
|
Reloads.push_back(load);
|
|
codeReplacer->getInstList().push_back(load);
|
|
std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
|
|
for (unsigned u = 0, e = Users.size(); u != e; ++u) {
|
|
Instruction *inst = cast<Instruction>(Users[u]);
|
|
if (!BlocksToExtract.count(inst->getParent()))
|
|
inst->replaceUsesOfWith(outputs[i], load);
|
|
}
|
|
}
|
|
|
|
// Now we can emit a switch statement using the call as a value.
|
|
SwitchInst *TheSwitch =
|
|
SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
|
|
codeReplacer, 0, codeReplacer);
|
|
|
|
// Since there may be multiple exits from the original region, make the new
|
|
// function return an unsigned, switch on that number. This loop iterates
|
|
// over all of the blocks in the extracted region, updating any terminator
|
|
// instructions in the to-be-extracted region that branch to blocks that are
|
|
// not in the region to be extracted.
|
|
std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
|
|
|
|
unsigned switchVal = 0;
|
|
for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
|
|
e = BlocksToExtract.end(); i != e; ++i) {
|
|
TerminatorInst *TI = (*i)->getTerminator();
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (!BlocksToExtract.count(TI->getSuccessor(i))) {
|
|
BasicBlock *OldTarget = TI->getSuccessor(i);
|
|
// add a new basic block which returns the appropriate value
|
|
BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
|
|
if (!NewTarget) {
|
|
// If we don't already have an exit stub for this non-extracted
|
|
// destination, create one now!
|
|
NewTarget = BasicBlock::Create(Context,
|
|
OldTarget->getName() + ".exitStub",
|
|
newFunction);
|
|
unsigned SuccNum = switchVal++;
|
|
|
|
Value *brVal = 0;
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
case 1: break; // No value needed.
|
|
case 2: // Conditional branch, return a bool
|
|
brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
|
|
break;
|
|
default:
|
|
brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
|
|
break;
|
|
}
|
|
|
|
ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
|
|
|
|
// Update the switch instruction.
|
|
TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
|
|
SuccNum),
|
|
OldTarget);
|
|
|
|
// Restore values just before we exit
|
|
Function::arg_iterator OAI = OutputArgBegin;
|
|
for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
|
|
// For an invoke, the normal destination is the only one that is
|
|
// dominated by the result of the invocation
|
|
BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
|
|
|
|
bool DominatesDef = true;
|
|
|
|
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
|
|
DefBlock = Invoke->getNormalDest();
|
|
|
|
// Make sure we are looking at the original successor block, not
|
|
// at a newly inserted exit block, which won't be in the dominator
|
|
// info.
|
|
for (std::map<BasicBlock*, BasicBlock*>::iterator I =
|
|
ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
|
|
if (DefBlock == I->second) {
|
|
DefBlock = I->first;
|
|
break;
|
|
}
|
|
|
|
// In the extract block case, if the block we are extracting ends
|
|
// with an invoke instruction, make sure that we don't emit a
|
|
// store of the invoke value for the unwind block.
|
|
if (!DT && DefBlock != OldTarget)
|
|
DominatesDef = false;
|
|
}
|
|
|
|
if (DT) {
|
|
DominatesDef = DT->dominates(DefBlock, OldTarget);
|
|
|
|
// If the output value is used by a phi in the target block,
|
|
// then we need to test for dominance of the phi's predecessor
|
|
// instead. Unfortunately, this a little complicated since we
|
|
// have already rewritten uses of the value to uses of the reload.
|
|
BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
|
|
OldTarget);
|
|
if (pred && DT && DT->dominates(DefBlock, pred))
|
|
DominatesDef = true;
|
|
}
|
|
|
|
if (DominatesDef) {
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
|
|
FirstOut+out);
|
|
GetElementPtrInst *GEP =
|
|
GetElementPtrInst::Create(OAI, Idx, Idx + 2,
|
|
"gep_" + outputs[out]->getName(),
|
|
NTRet);
|
|
new StoreInst(outputs[out], GEP, NTRet);
|
|
} else {
|
|
new StoreInst(outputs[out], OAI, NTRet);
|
|
}
|
|
}
|
|
// Advance output iterator even if we don't emit a store
|
|
if (!AggregateArgs) ++OAI;
|
|
}
|
|
}
|
|
|
|
// rewrite the original branch instruction with this new target
|
|
TI->setSuccessor(i, NewTarget);
|
|
}
|
|
}
|
|
|
|
// Now that we've done the deed, simplify the switch instruction.
|
|
const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
// There are no successors (the block containing the switch itself), which
|
|
// means that previously this was the last part of the function, and hence
|
|
// this should be rewritten as a `ret'
|
|
|
|
// Check if the function should return a value
|
|
if (OldFnRetTy->isVoidTy()) {
|
|
ReturnInst::Create(Context, 0, TheSwitch); // Return void
|
|
} else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
|
|
// return what we have
|
|
ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
|
|
} else {
|
|
// Otherwise we must have code extracted an unwind or something, just
|
|
// return whatever we want.
|
|
ReturnInst::Create(Context,
|
|
Constant::getNullValue(OldFnRetTy), TheSwitch);
|
|
}
|
|
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
case 1:
|
|
// Only a single destination, change the switch into an unconditional
|
|
// branch.
|
|
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
case 2:
|
|
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
|
|
call, TheSwitch);
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
default:
|
|
// Otherwise, make the default destination of the switch instruction be one
|
|
// of the other successors.
|
|
TheSwitch->setOperand(0, call);
|
|
TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
|
|
TheSwitch->removeCase(NumExitBlocks); // Remove redundant case
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CodeExtractor::moveCodeToFunction(Function *newFunction) {
|
|
Function *oldFunc = (*BlocksToExtract.begin())->getParent();
|
|
Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
|
|
Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
|
|
|
|
for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
|
|
e = BlocksToExtract.end(); i != e; ++i) {
|
|
// Delete the basic block from the old function, and the list of blocks
|
|
oldBlocks.remove(*i);
|
|
|
|
// Insert this basic block into the new function
|
|
newBlocks.push_back(*i);
|
|
}
|
|
}
|
|
|
|
/// ExtractRegion - Removes a loop from a function, replaces it with a call to
|
|
/// new function. Returns pointer to the new function.
|
|
///
|
|
/// algorithm:
|
|
///
|
|
/// find inputs and outputs for the region
|
|
///
|
|
/// for inputs: add to function as args, map input instr* to arg#
|
|
/// for outputs: add allocas for scalars,
|
|
/// add to func as args, map output instr* to arg#
|
|
///
|
|
/// rewrite func to use argument #s instead of instr*
|
|
///
|
|
/// for each scalar output in the function: at every exit, store intermediate
|
|
/// computed result back into memory.
|
|
///
|
|
Function *CodeExtractor::
|
|
ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
|
|
if (!isEligible(code))
|
|
return 0;
|
|
|
|
// 1) Find inputs, outputs
|
|
// 2) Construct new function
|
|
// * Add allocas for defs, pass as args by reference
|
|
// * Pass in uses as args
|
|
// 3) Move code region, add call instr to func
|
|
//
|
|
BlocksToExtract.insert(code.begin(), code.end());
|
|
|
|
Values inputs, outputs;
|
|
|
|
// Assumption: this is a single-entry code region, and the header is the first
|
|
// block in the region.
|
|
BasicBlock *header = code[0];
|
|
|
|
for (unsigned i = 1, e = code.size(); i != e; ++i)
|
|
for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
|
|
PI != E; ++PI)
|
|
assert(BlocksToExtract.count(*PI) &&
|
|
"No blocks in this region may have entries from outside the region"
|
|
" except for the first block!");
|
|
|
|
// If we have to split PHI nodes or the entry block, do so now.
|
|
severSplitPHINodes(header);
|
|
|
|
// If we have any return instructions in the region, split those blocks so
|
|
// that the return is not in the region.
|
|
splitReturnBlocks();
|
|
|
|
Function *oldFunction = header->getParent();
|
|
|
|
// This takes place of the original loop
|
|
BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
|
|
"codeRepl", oldFunction,
|
|
header);
|
|
|
|
// The new function needs a root node because other nodes can branch to the
|
|
// head of the region, but the entry node of a function cannot have preds.
|
|
BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
|
|
"newFuncRoot");
|
|
newFuncRoot->getInstList().push_back(BranchInst::Create(header));
|
|
|
|
// Find inputs to, outputs from the code region.
|
|
findInputsOutputs(inputs, outputs);
|
|
|
|
// Construct new function based on inputs/outputs & add allocas for all defs.
|
|
Function *newFunction = constructFunction(inputs, outputs, header,
|
|
newFuncRoot,
|
|
codeReplacer, oldFunction,
|
|
oldFunction->getParent());
|
|
|
|
emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
|
|
|
|
moveCodeToFunction(newFunction);
|
|
|
|
// Loop over all of the PHI nodes in the header block, and change any
|
|
// references to the old incoming edge to be the new incoming edge.
|
|
for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
|
|
PN->setIncomingBlock(i, newFuncRoot);
|
|
}
|
|
|
|
// Look at all successors of the codeReplacer block. If any of these blocks
|
|
// had PHI nodes in them, we need to update the "from" block to be the code
|
|
// replacer, not the original block in the extracted region.
|
|
std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
|
|
succ_end(codeReplacer));
|
|
for (unsigned i = 0, e = Succs.size(); i != e; ++i)
|
|
for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
std::set<BasicBlock*> ProcessedPreds;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
|
|
if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
|
|
PN->setIncomingBlock(i, codeReplacer);
|
|
else {
|
|
// There were multiple entries in the PHI for this block, now there
|
|
// is only one, so remove the duplicated entries.
|
|
PN->removeIncomingValue(i, false);
|
|
--i; --e;
|
|
}
|
|
}
|
|
}
|
|
|
|
//cerr << "NEW FUNCTION: " << *newFunction;
|
|
// verifyFunction(*newFunction);
|
|
|
|
// cerr << "OLD FUNCTION: " << *oldFunction;
|
|
// verifyFunction(*oldFunction);
|
|
|
|
DEBUG(if (verifyFunction(*newFunction))
|
|
report_fatal_error("verifyFunction failed!"));
|
|
return newFunction;
|
|
}
|
|
|
|
bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
|
|
// Deny code region if it contains allocas or vastarts.
|
|
for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
|
|
BB != e; ++BB)
|
|
for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
|
|
I != Ie; ++I)
|
|
if (isa<AllocaInst>(*I))
|
|
return false;
|
|
else if (const CallInst *CI = dyn_cast<CallInst>(I))
|
|
if (const Function *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::vastart)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
|
|
/// function
|
|
///
|
|
Function* llvm::ExtractCodeRegion(DominatorTree &DT,
|
|
const std::vector<BasicBlock*> &code,
|
|
bool AggregateArgs) {
|
|
return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
|
|
}
|
|
|
|
/// ExtractBasicBlock - slurp a natural loop into a brand new function
|
|
///
|
|
Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
|
|
return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
|
|
}
|
|
|
|
/// ExtractBasicBlock - slurp a basic block into a brand new function
|
|
///
|
|
Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
|
|
std::vector<BasicBlock*> Blocks;
|
|
Blocks.push_back(BB);
|
|
return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
|
|
}
|