1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-01 08:23:21 +01:00
llvm-mirror/utils/TableGen/AsmMatcherEmitter.cpp
Chris Lattner 49227ad505 Resolve a terrible hack in tblgen: instead of hardcoding
"In32BitMode" and "In64BitMode" into tblgen, allow any
predicate that inherits from AssemblerPredicate.

llvm-svn: 117831
2010-10-30 19:38:20 +00:00

1893 lines
65 KiB
C++

//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures.
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
// 'addl' (immediate ...) (register ...)
// 'add' (immediate ...) (memory ...)
// 'call' '*' %epc
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
// - It may be ambiguous; many architectures can legally encode particular
// variants of an instruction in different ways (for example, using a smaller
// encoding for small immediates). Such ambiguities should never be
// arbitrarily resolved by the assembler, the assembler is always responsible
// for choosing the "best" available instruction.
//
// - It may depend on the subtarget or the assembler context. Instructions
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
// an SSE instruction in a file being assembled for i486) should be accepted
// and rejected by the assembler front end. However, if the proper encoding
// for an instruction is dependent on the assembler context then the matcher
// is responsible for selecting the correct machine instruction for the
// current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
// 1. Classification: Each operand is mapped to the unique set which (a)
// contains it, and (b) is the largest such subset for which a single
// instruction could match all members.
//
// For register classes, we can generate these subgroups automatically. For
// arbitrary operands, we expect the user to define the classes and their
// relations to one another (for example, 8-bit signed immediates as a
// subset of 32-bit immediates).
//
// By partitioning the operands in this way, we guarantee that for any
// tuple of classes, any single instruction must match either all or none
// of the sets of operands which could classify to that tuple.
//
// In addition, the subset relation amongst classes induces a partial order
// on such tuples, which we use to resolve ambiguities.
//
// FIXME: What do we do if a crazy case shows up where this is the wrong
// resolution?
//
// 2. The input can now be treated as a tuple of classes (static tokens are
// simple singleton sets). Each such tuple should generally map to a single
// instruction (we currently ignore cases where this isn't true, whee!!!),
// which we can emit a simple matcher for.
//
//===----------------------------------------------------------------------===//
#include "AsmMatcherEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "StringMatcher.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <list>
#include <map>
#include <set>
using namespace llvm;
static cl::opt<std::string>
MatchPrefix("match-prefix", cl::init(""),
cl::desc("Only match instructions with the given prefix"));
/// FlattenVariants - Flatten an .td file assembly string by selecting the
/// variant at index \arg N.
static std::string FlattenVariants(const std::string &AsmString,
unsigned N) {
StringRef Cur = AsmString;
std::string Res = "";
for (;;) {
// Find the start of the next variant string.
size_t VariantsStart = 0;
for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
if (Cur[VariantsStart] == '{' &&
(VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
Cur[VariantsStart-1] != '\\')))
break;
// Add the prefix to the result.
Res += Cur.slice(0, VariantsStart);
if (VariantsStart == Cur.size())
break;
++VariantsStart; // Skip the '{'.
// Scan to the end of the variants string.
size_t VariantsEnd = VariantsStart;
unsigned NestedBraces = 1;
for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
if (--NestedBraces == 0)
break;
} else if (Cur[VariantsEnd] == '{')
++NestedBraces;
}
// Select the Nth variant (or empty).
StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
for (unsigned i = 0; i != N; ++i)
Selection = Selection.split('|').second;
Res += Selection.split('|').first;
assert(VariantsEnd != Cur.size() &&
"Unterminated variants in assembly string!");
Cur = Cur.substr(VariantsEnd + 1);
}
return Res;
}
/// TokenizeAsmString - Tokenize a simplified assembly string.
static void TokenizeAsmString(StringRef AsmString,
SmallVectorImpl<StringRef> &Tokens) {
unsigned Prev = 0;
bool InTok = true;
for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
switch (AsmString[i]) {
case '[':
case ']':
case '*':
case '!':
case ' ':
case '\t':
case ',':
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
if (!isspace(AsmString[i]) && AsmString[i] != ',')
Tokens.push_back(AsmString.substr(i, 1));
Prev = i + 1;
break;
case '\\':
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
++i;
assert(i != AsmString.size() && "Invalid quoted character");
Tokens.push_back(AsmString.substr(i, 1));
Prev = i + 1;
break;
case '$': {
// If this isn't "${", treat like a normal token.
if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
Prev = i;
break;
}
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
StringRef::iterator End =
std::find(AsmString.begin() + i, AsmString.end(), '}');
assert(End != AsmString.end() && "Missing brace in operand reference!");
size_t EndPos = End - AsmString.begin();
Tokens.push_back(AsmString.slice(i, EndPos+1));
Prev = EndPos + 1;
i = EndPos;
break;
}
case '.':
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
}
Prev = i;
InTok = true;
break;
default:
InTok = true;
}
}
if (InTok && Prev != AsmString.size())
Tokens.push_back(AsmString.substr(Prev));
}
static bool IsAssemblerInstruction(StringRef Name,
const CodeGenInstruction &CGI,
const SmallVectorImpl<StringRef> &Tokens) {
// Ignore "codegen only" instructions.
if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
return false;
// Ignore pseudo ops.
//
// FIXME: This is a hack; can we convert these instructions to set the
// "codegen only" bit instead?
if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
if (Form->getValue()->getAsString() == "Pseudo")
return false;
// Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
//
// FIXME: This is a total hack.
if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
return false;
// Ignore instructions with no .s string.
//
// FIXME: What are these?
if (CGI.AsmString.empty())
return false;
// FIXME: Hack; ignore any instructions with a newline in them.
if (std::find(CGI.AsmString.begin(),
CGI.AsmString.end(), '\n') != CGI.AsmString.end())
return false;
// Ignore instructions with attributes, these are always fake instructions for
// simplifying codegen.
//
// FIXME: Is this true?
//
// Also, check for instructions which reference the operand multiple times;
// this implies a constraint we would not honor.
std::set<std::string> OperandNames;
for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
if (Tokens[i][0] == '$' &&
std::find(Tokens[i].begin(),
Tokens[i].end(), ':') != Tokens[i].end()) {
DEBUG({
errs() << "warning: '" << Name << "': "
<< "ignoring instruction; operand with attribute '"
<< Tokens[i] << "'\n";
});
return false;
}
if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
DEBUG({
errs() << "warning: '" << Name << "': "
<< "ignoring instruction with tied operand '"
<< Tokens[i].str() << "'\n";
});
return false;
}
}
return true;
}
namespace {
struct SubtargetFeatureInfo;
/// ClassInfo - Helper class for storing the information about a particular
/// class of operands which can be matched.
struct ClassInfo {
enum ClassInfoKind {
/// Invalid kind, for use as a sentinel value.
Invalid = 0,
/// The class for a particular token.
Token,
/// The (first) register class, subsequent register classes are
/// RegisterClass0+1, and so on.
RegisterClass0,
/// The (first) user defined class, subsequent user defined classes are
/// UserClass0+1, and so on.
UserClass0 = 1<<16
};
/// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
/// N) for the Nth user defined class.
unsigned Kind;
/// SuperClasses - The super classes of this class. Note that for simplicities
/// sake user operands only record their immediate super class, while register
/// operands include all superclasses.
std::vector<ClassInfo*> SuperClasses;
/// Name - The full class name, suitable for use in an enum.
std::string Name;
/// ClassName - The unadorned generic name for this class (e.g., Token).
std::string ClassName;
/// ValueName - The name of the value this class represents; for a token this
/// is the literal token string, for an operand it is the TableGen class (or
/// empty if this is a derived class).
std::string ValueName;
/// PredicateMethod - The name of the operand method to test whether the
/// operand matches this class; this is not valid for Token or register kinds.
std::string PredicateMethod;
/// RenderMethod - The name of the operand method to add this operand to an
/// MCInst; this is not valid for Token or register kinds.
std::string RenderMethod;
/// For register classes, the records for all the registers in this class.
std::set<Record*> Registers;
public:
/// isRegisterClass() - Check if this is a register class.
bool isRegisterClass() const {
return Kind >= RegisterClass0 && Kind < UserClass0;
}
/// isUserClass() - Check if this is a user defined class.
bool isUserClass() const {
return Kind >= UserClass0;
}
/// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
/// are related if they are in the same class hierarchy.
bool isRelatedTo(const ClassInfo &RHS) const {
// Tokens are only related to tokens.
if (Kind == Token || RHS.Kind == Token)
return Kind == Token && RHS.Kind == Token;
// Registers classes are only related to registers classes, and only if
// their intersection is non-empty.
if (isRegisterClass() || RHS.isRegisterClass()) {
if (!isRegisterClass() || !RHS.isRegisterClass())
return false;
std::set<Record*> Tmp;
std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
std::set_intersection(Registers.begin(), Registers.end(),
RHS.Registers.begin(), RHS.Registers.end(),
II);
return !Tmp.empty();
}
// Otherwise we have two users operands; they are related if they are in the
// same class hierarchy.
//
// FIXME: This is an oversimplification, they should only be related if they
// intersect, however we don't have that information.
assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
const ClassInfo *Root = this;
while (!Root->SuperClasses.empty())
Root = Root->SuperClasses.front();
const ClassInfo *RHSRoot = &RHS;
while (!RHSRoot->SuperClasses.empty())
RHSRoot = RHSRoot->SuperClasses.front();
return Root == RHSRoot;
}
/// isSubsetOf - Test whether this class is a subset of \arg RHS;
bool isSubsetOf(const ClassInfo &RHS) const {
// This is a subset of RHS if it is the same class...
if (this == &RHS)
return true;
// ... or if any of its super classes are a subset of RHS.
for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
ie = SuperClasses.end(); it != ie; ++it)
if ((*it)->isSubsetOf(RHS))
return true;
return false;
}
/// operator< - Compare two classes.
bool operator<(const ClassInfo &RHS) const {
if (this == &RHS)
return false;
// Unrelated classes can be ordered by kind.
if (!isRelatedTo(RHS))
return Kind < RHS.Kind;
switch (Kind) {
case Invalid:
assert(0 && "Invalid kind!");
case Token:
// Tokens are comparable by value.
//
// FIXME: Compare by enum value.
return ValueName < RHS.ValueName;
default:
// This class preceeds the RHS if it is a proper subset of the RHS.
if (isSubsetOf(RHS))
return true;
if (RHS.isSubsetOf(*this))
return false;
// Otherwise, order by name to ensure we have a total ordering.
return ValueName < RHS.ValueName;
}
}
};
/// InstructionInfo - Helper class for storing the necessary information for an
/// instruction which is capable of being matched.
struct InstructionInfo {
struct Operand {
/// The unique class instance this operand should match.
ClassInfo *Class;
/// The original operand this corresponds to, if any.
const CodeGenInstruction::OperandInfo *OperandInfo;
};
/// InstrName - The target name for this instruction.
std::string InstrName;
/// Instr - The instruction this matches.
const CodeGenInstruction *Instr;
/// AsmString - The assembly string for this instruction (with variants
/// removed).
std::string AsmString;
/// Tokens - The tokenized assembly pattern that this instruction matches.
SmallVector<StringRef, 4> Tokens;
/// Operands - The operands that this instruction matches.
SmallVector<Operand, 4> Operands;
/// Predicates - The required subtarget features to match this instruction.
SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
/// ConversionFnKind - The enum value which is passed to the generated
/// ConvertToMCInst to convert parsed operands into an MCInst for this
/// function.
std::string ConversionFnKind;
/// operator< - Compare two instructions.
bool operator<(const InstructionInfo &RHS) const {
// The primary comparator is the instruction mnemonic.
if (Tokens[0] != RHS.Tokens[0])
return Tokens[0] < RHS.Tokens[0];
if (Operands.size() != RHS.Operands.size())
return Operands.size() < RHS.Operands.size();
// Compare lexicographically by operand. The matcher validates that other
// orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (*Operands[i].Class < *RHS.Operands[i].Class)
return true;
if (*RHS.Operands[i].Class < *Operands[i].Class)
return false;
}
return false;
}
/// CouldMatchAmiguouslyWith - Check whether this instruction could
/// ambiguously match the same set of operands as \arg RHS (without being a
/// strictly superior match).
bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
// The number of operands is unambiguous.
if (Operands.size() != RHS.Operands.size())
return false;
// Otherwise, make sure the ordering of the two instructions is unambiguous
// by checking that either (a) a token or operand kind discriminates them,
// or (b) the ordering among equivalent kinds is consistent.
// Tokens and operand kinds are unambiguous (assuming a correct target
// specific parser).
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
Operands[i].Class->Kind == ClassInfo::Token)
if (*Operands[i].Class < *RHS.Operands[i].Class ||
*RHS.Operands[i].Class < *Operands[i].Class)
return false;
// Otherwise, this operand could commute if all operands are equivalent, or
// there is a pair of operands that compare less than and a pair that
// compare greater than.
bool HasLT = false, HasGT = false;
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (*Operands[i].Class < *RHS.Operands[i].Class)
HasLT = true;
if (*RHS.Operands[i].Class < *Operands[i].Class)
HasGT = true;
}
return !(HasLT ^ HasGT);
}
public:
void dump();
};
/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
/// feature which participates in instruction matching.
struct SubtargetFeatureInfo {
/// \brief The predicate record for this feature.
Record *TheDef;
/// \brief An unique index assigned to represent this feature.
unsigned Index;
/// \brief The name of the enumerated constant identifying this feature.
std::string EnumName;
};
class AsmMatcherInfo {
public:
/// The tablegen AsmParser record.
Record *AsmParser;
/// The AsmParser "CommentDelimiter" value.
std::string CommentDelimiter;
/// The AsmParser "RegisterPrefix" value.
std::string RegisterPrefix;
/// The classes which are needed for matching.
std::vector<ClassInfo*> Classes;
/// The information on the instruction to match.
std::vector<InstructionInfo*> Instructions;
/// Map of Register records to their class information.
std::map<Record*, ClassInfo*> RegisterClasses;
/// Map of Predicate records to their subtarget information.
std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
private:
/// Map of token to class information which has already been constructed.
std::map<std::string, ClassInfo*> TokenClasses;
/// Map of RegisterClass records to their class information.
std::map<Record*, ClassInfo*> RegisterClassClasses;
/// Map of AsmOperandClass records to their class information.
std::map<Record*, ClassInfo*> AsmOperandClasses;
private:
/// getTokenClass - Lookup or create the class for the given token.
ClassInfo *getTokenClass(StringRef Token);
/// getOperandClass - Lookup or create the class for the given operand.
ClassInfo *getOperandClass(StringRef Token,
const CodeGenInstruction::OperandInfo &OI);
/// getSubtargetFeature - Lookup or create the subtarget feature info for the
/// given operand.
SubtargetFeatureInfo *getSubtargetFeature(Record *Def) {
assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
SubtargetFeatureInfo *&Entry = SubtargetFeatures[Def];
if (!Entry) {
Entry = new SubtargetFeatureInfo();
Entry->TheDef = Def;
Entry->Index = SubtargetFeatures.size() - 1;
Entry->EnumName = "Feature_" + Def->getName();
assert(Entry->Index < 32 && "Too many subtarget features!");
}
return Entry;
}
/// BuildRegisterClasses - Build the ClassInfo* instances for register
/// classes.
void BuildRegisterClasses(CodeGenTarget &Target,
std::set<std::string> &SingletonRegisterNames);
/// BuildOperandClasses - Build the ClassInfo* instances for user defined
/// operand classes.
void BuildOperandClasses(CodeGenTarget &Target);
public:
AsmMatcherInfo(Record *_AsmParser);
/// BuildInfo - Construct the various tables used during matching.
void BuildInfo(CodeGenTarget &Target);
};
}
void InstructionInfo::dump() {
errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
<< ", tokens:[";
for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
errs() << Tokens[i];
if (i + 1 != e)
errs() << ", ";
}
errs() << "]\n";
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
Operand &Op = Operands[i];
errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
if (Op.Class->Kind == ClassInfo::Token) {
errs() << '\"' << Tokens[i] << "\"\n";
continue;
}
if (!Op.OperandInfo) {
errs() << "(singleton register)\n";
continue;
}
const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
errs() << OI.Name << " " << OI.Rec->getName()
<< " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
}
}
static std::string getEnumNameForToken(StringRef Str) {
std::string Res;
for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
switch (*it) {
case '*': Res += "_STAR_"; break;
case '%': Res += "_PCT_"; break;
case ':': Res += "_COLON_"; break;
default:
if (isalnum(*it)) {
Res += *it;
} else {
Res += "_" + utostr((unsigned) *it) + "_";
}
}
}
return Res;
}
/// getRegisterRecord - Get the register record for \arg name, or 0.
static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
const CodeGenRegister &Reg = Target.getRegisters()[i];
if (Name == Reg.TheDef->getValueAsString("AsmName"))
return Reg.TheDef;
}
return 0;
}
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
ClassInfo *&Entry = TokenClasses[Token];
if (!Entry) {
Entry = new ClassInfo();
Entry->Kind = ClassInfo::Token;
Entry->ClassName = "Token";
Entry->Name = "MCK_" + getEnumNameForToken(Token);
Entry->ValueName = Token;
Entry->PredicateMethod = "<invalid>";
Entry->RenderMethod = "<invalid>";
Classes.push_back(Entry);
}
return Entry;
}
ClassInfo *
AsmMatcherInfo::getOperandClass(StringRef Token,
const CodeGenInstruction::OperandInfo &OI) {
if (OI.Rec->isSubClassOf("RegisterClass")) {
ClassInfo *CI = RegisterClassClasses[OI.Rec];
if (!CI) {
PrintError(OI.Rec->getLoc(), "register class has no class info!");
throw std::string("ERROR: Missing register class!");
}
return CI;
}
assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
ClassInfo *CI = AsmOperandClasses[MatchClass];
if (!CI) {
PrintError(OI.Rec->getLoc(), "operand has no match class!");
throw std::string("ERROR: Missing match class!");
}
return CI;
}
void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
std::set<std::string>
&SingletonRegisterNames) {
std::vector<CodeGenRegisterClass> RegisterClasses;
std::vector<CodeGenRegister> Registers;
RegisterClasses = Target.getRegisterClasses();
Registers = Target.getRegisters();
// The register sets used for matching.
std::set< std::set<Record*> > RegisterSets;
// Gather the defined sets.
for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
ie = RegisterClasses.end(); it != ie; ++it)
RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
it->Elements.end()));
// Add any required singleton sets.
for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
ie = SingletonRegisterNames.end(); it != ie; ++it)
if (Record *Rec = getRegisterRecord(Target, *it))
RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
// Introduce derived sets where necessary (when a register does not determine
// a unique register set class), and build the mapping of registers to the set
// they should classify to.
std::map<Record*, std::set<Record*> > RegisterMap;
for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
ie = Registers.end(); it != ie; ++it) {
CodeGenRegister &CGR = *it;
// Compute the intersection of all sets containing this register.
std::set<Record*> ContainingSet;
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it) {
if (!it->count(CGR.TheDef))
continue;
if (ContainingSet.empty()) {
ContainingSet = *it;
} else {
std::set<Record*> Tmp;
std::swap(Tmp, ContainingSet);
std::insert_iterator< std::set<Record*> > II(ContainingSet,
ContainingSet.begin());
std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
II);
}
}
if (!ContainingSet.empty()) {
RegisterSets.insert(ContainingSet);
RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
}
}
// Construct the register classes.
std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
unsigned Index = 0;
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it, ++Index) {
ClassInfo *CI = new ClassInfo();
CI->Kind = ClassInfo::RegisterClass0 + Index;
CI->ClassName = "Reg" + utostr(Index);
CI->Name = "MCK_Reg" + utostr(Index);
CI->ValueName = "";
CI->PredicateMethod = ""; // unused
CI->RenderMethod = "addRegOperands";
CI->Registers = *it;
Classes.push_back(CI);
RegisterSetClasses.insert(std::make_pair(*it, CI));
}
// Find the superclasses; we could compute only the subgroup lattice edges,
// but there isn't really a point.
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it) {
ClassInfo *CI = RegisterSetClasses[*it];
for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
ie2 = RegisterSets.end(); it2 != ie2; ++it2)
if (*it != *it2 &&
std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
}
// Name the register classes which correspond to a user defined RegisterClass.
for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
ie = RegisterClasses.end(); it != ie; ++it) {
ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
it->Elements.end())];
if (CI->ValueName.empty()) {
CI->ClassName = it->getName();
CI->Name = "MCK_" + it->getName();
CI->ValueName = it->getName();
} else
CI->ValueName = CI->ValueName + "," + it->getName();
RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
}
// Populate the map for individual registers.
for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
ie = RegisterMap.end(); it != ie; ++it)
this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
// Name the register classes which correspond to singleton registers.
for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
ie = SingletonRegisterNames.end(); it != ie; ++it) {
if (Record *Rec = getRegisterRecord(Target, *it)) {
ClassInfo *CI = this->RegisterClasses[Rec];
assert(CI && "Missing singleton register class info!");
if (CI->ValueName.empty()) {
CI->ClassName = Rec->getName();
CI->Name = "MCK_" + Rec->getName();
CI->ValueName = Rec->getName();
} else
CI->ValueName = CI->ValueName + "," + Rec->getName();
}
}
}
void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
std::vector<Record*> AsmOperands;
AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
// Pre-populate AsmOperandClasses map.
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
ie = AsmOperands.end(); it != ie; ++it)
AsmOperandClasses[*it] = new ClassInfo();
unsigned Index = 0;
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
ie = AsmOperands.end(); it != ie; ++it, ++Index) {
ClassInfo *CI = AsmOperandClasses[*it];
CI->Kind = ClassInfo::UserClass0 + Index;
ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
if (!DI) {
PrintError((*it)->getLoc(), "Invalid super class reference!");
continue;
}
ClassInfo *SC = AsmOperandClasses[DI->getDef()];
if (!SC)
PrintError((*it)->getLoc(), "Invalid super class reference!");
else
CI->SuperClasses.push_back(SC);
}
CI->ClassName = (*it)->getValueAsString("Name");
CI->Name = "MCK_" + CI->ClassName;
CI->ValueName = (*it)->getName();
// Get or construct the predicate method name.
Init *PMName = (*it)->getValueInit("PredicateMethod");
if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
CI->PredicateMethod = SI->getValue();
} else {
assert(dynamic_cast<UnsetInit*>(PMName) &&
"Unexpected PredicateMethod field!");
CI->PredicateMethod = "is" + CI->ClassName;
}
// Get or construct the render method name.
Init *RMName = (*it)->getValueInit("RenderMethod");
if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
CI->RenderMethod = SI->getValue();
} else {
assert(dynamic_cast<UnsetInit*>(RMName) &&
"Unexpected RenderMethod field!");
CI->RenderMethod = "add" + CI->ClassName + "Operands";
}
AsmOperandClasses[*it] = CI;
Classes.push_back(CI);
}
}
AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
: AsmParser(_AsmParser),
CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
{
}
void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
// Parse the instructions; we need to do this first so that we can gather the
// singleton register classes.
std::set<std::string> SingletonRegisterNames;
const std::vector<const CodeGenInstruction*> &InstrList =
Target.getInstructionsByEnumValue();
for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
const CodeGenInstruction &CGI = *InstrList[i];
if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
continue;
OwningPtr<InstructionInfo> II(new InstructionInfo());
II->InstrName = CGI.TheDef->getName();
II->Instr = &CGI;
II->AsmString = FlattenVariants(CGI.AsmString, 0);
// Remove comments from the asm string.
if (!CommentDelimiter.empty()) {
size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
if (Idx != StringRef::npos)
II->AsmString = II->AsmString.substr(0, Idx);
}
TokenizeAsmString(II->AsmString, II->Tokens);
// Ignore instructions which shouldn't be matched.
if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
continue;
// Collect singleton registers, if used.
for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
if (!II->Tokens[i].startswith(RegisterPrefix))
continue;
StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
Record *Rec = getRegisterRecord(Target, RegName);
if (!Rec) {
// If there is no register prefix (i.e. "%" in "%eax"), then this may
// be some random non-register token, just ignore it.
if (RegisterPrefix.empty())
continue;
std::string Err = "unable to find register for '" + RegName.str() +
"' (which matches register prefix)";
throw TGError(CGI.TheDef->getLoc(), Err);
}
SingletonRegisterNames.insert(RegName);
}
// Compute the require features.
std::vector<Record*> Predicates =
CGI.TheDef->getValueAsListOfDefs("Predicates");
for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
Record *Pred = Predicates[i];
// Ignore predicates that are not intended for the assembler.
if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
continue;
II->RequiredFeatures.push_back(getSubtargetFeature(Pred));
}
Instructions.push_back(II.take());
}
// Build info for the register classes.
BuildRegisterClasses(Target, SingletonRegisterNames);
// Build info for the user defined assembly operand classes.
BuildOperandClasses(Target);
// Build the instruction information.
for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
ie = Instructions.end(); it != ie; ++it) {
InstructionInfo *II = *it;
// The first token of the instruction is the mnemonic, which must be a
// simple string.
assert(!II->Tokens.empty() && "Instruction has no tokens?");
StringRef Mnemonic = II->Tokens[0];
assert(Mnemonic[0] != '$' &&
(RegisterPrefix.empty() || !Mnemonic.startswith(RegisterPrefix)));
// Parse the tokens after the mnemonic.
for (unsigned i = 1, e = II->Tokens.size(); i != e; ++i) {
StringRef Token = II->Tokens[i];
// Check for singleton registers.
if (Token.startswith(RegisterPrefix)) {
StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
if (Record *RegRecord = getRegisterRecord(Target, RegName)) {
InstructionInfo::Operand Op;
Op.Class = RegisterClasses[RegRecord];
Op.OperandInfo = 0;
assert(Op.Class && Op.Class->Registers.size() == 1 &&
"Unexpected class for singleton register");
II->Operands.push_back(Op);
continue;
}
if (!RegisterPrefix.empty()) {
std::string Err = "unable to find register for '" + RegName.str() +
"' (which matches register prefix)";
throw TGError(II->Instr->TheDef->getLoc(), Err);
}
}
// Check for simple tokens.
if (Token[0] != '$') {
InstructionInfo::Operand Op;
Op.Class = getTokenClass(Token);
Op.OperandInfo = 0;
II->Operands.push_back(Op);
continue;
}
// Otherwise this is an operand reference.
StringRef OperandName;
if (Token[1] == '{')
OperandName = Token.substr(2, Token.size() - 3);
else
OperandName = Token.substr(1);
// Map this token to an operand. FIXME: Move elsewhere.
unsigned Idx;
try {
Idx = II->Instr->getOperandNamed(OperandName);
} catch(...) {
throw std::string("error: unable to find operand: '" +
OperandName.str() + "'");
}
// FIXME: This is annoying, the named operand may be tied (e.g.,
// XCHG8rm). What we want is the untied operand, which we now have to
// grovel for. Only worry about this for single entry operands, we have to
// clean this up anyway.
const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
if (OI->Constraints[0].isTied()) {
unsigned TiedOp = OI->Constraints[0].getTiedOperand();
// The tied operand index is an MIOperand index, find the operand that
// contains it.
for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
OI = &II->Instr->OperandList[i];
break;
}
}
assert(OI && "Unable to find tied operand target!");
}
InstructionInfo::Operand Op;
Op.Class = getOperandClass(Token, *OI);
Op.OperandInfo = OI;
II->Operands.push_back(Op);
}
}
// Reorder classes so that classes preceed super classes.
std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
}
static std::pair<unsigned, unsigned> *
GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
unsigned Index) {
for (unsigned i = 0, e = List.size(); i != e; ++i)
if (Index == List[i].first)
return &List[i];
return 0;
}
static void EmitConvertToMCInst(CodeGenTarget &Target,
std::vector<InstructionInfo*> &Infos,
raw_ostream &OS) {
// Write the convert function to a separate stream, so we can drop it after
// the enum.
std::string ConvertFnBody;
raw_string_ostream CvtOS(ConvertFnBody);
// Function we have already generated.
std::set<std::string> GeneratedFns;
// Start the unified conversion function.
CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
<< "unsigned Opcode,\n"
<< " const SmallVectorImpl<MCParsedAsmOperand*"
<< "> &Operands) {\n";
CvtOS << " Inst.setOpcode(Opcode);\n";
CvtOS << " switch (Kind) {\n";
CvtOS << " default:\n";
// Start the enum, which we will generate inline.
OS << "// Unified function for converting operants to MCInst instances.\n\n";
OS << "enum ConversionKind {\n";
// TargetOperandClass - This is the target's operand class, like X86Operand.
std::string TargetOperandClass = Target.getName() + "Operand";
for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
InstructionInfo &II = **it;
// Order the (class) operands by the order to convert them into an MCInst.
SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[i];
if (Op.OperandInfo)
MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
}
// Find any tied operands.
SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
if (CI.isTied())
TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
CI.getTiedOperand()));
}
}
std::sort(MIOperandList.begin(), MIOperandList.end());
// Compute the total number of operands.
unsigned NumMIOperands = 0;
for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
NumMIOperands = std::max(NumMIOperands,
OI.MIOperandNo + OI.MINumOperands);
}
// Build the conversion function signature.
std::string Signature = "Convert";
unsigned CurIndex = 0;
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
"Duplicate match for instruction operand!");
// Skip operands which weren't matched by anything, this occurs when the
// .td file encodes "implicit" operands as explicit ones.
//
// FIXME: This should be removed from the MCInst structure.
for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
CurIndex);
if (!Tie)
Signature += "__Imp";
else
Signature += "__Tie" + utostr(Tie->second);
}
Signature += "__";
// Registers are always converted the same, don't duplicate the conversion
// function based on them.
//
// FIXME: We could generalize this based on the render method, if it
// mattered.
if (Op.Class->isRegisterClass())
Signature += "Reg";
else
Signature += Op.Class->ClassName;
Signature += utostr(Op.OperandInfo->MINumOperands);
Signature += "_" + utostr(MIOperandList[i].second);
CurIndex += Op.OperandInfo->MINumOperands;
}
// Add any trailing implicit operands.
for (; CurIndex != NumMIOperands; ++CurIndex) {
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
CurIndex);
if (!Tie)
Signature += "__Imp";
else
Signature += "__Tie" + utostr(Tie->second);
}
II.ConversionFnKind = Signature;
// Check if we have already generated this signature.
if (!GeneratedFns.insert(Signature).second)
continue;
// If not, emit it now.
// Add to the enum list.
OS << " " << Signature << ",\n";
// And to the convert function.
CvtOS << " case " << Signature << ":\n";
CurIndex = 0;
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
// Add the implicit operands.
for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
// See if this is a tied operand.
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
CurIndex);
if (!Tie) {
// If not, this is some implicit operand. Just assume it is a register
// for now.
CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
} else {
// Copy the tied operand.
assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
CvtOS << " Inst.addOperand(Inst.getOperand("
<< Tie->second << "));\n";
}
}
CvtOS << " ((" << TargetOperandClass << "*)Operands["
<< MIOperandList[i].second
<< "+1])->" << Op.Class->RenderMethod
<< "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
CurIndex += Op.OperandInfo->MINumOperands;
}
// And add trailing implicit operands.
for (; CurIndex != NumMIOperands; ++CurIndex) {
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
CurIndex);
if (!Tie) {
// If not, this is some implicit operand. Just assume it is a register
// for now.
CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
} else {
// Copy the tied operand.
assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
CvtOS << " Inst.addOperand(Inst.getOperand("
<< Tie->second << "));\n";
}
}
CvtOS << " return;\n";
}
// Finish the convert function.
CvtOS << " }\n";
CvtOS << "}\n\n";
// Finish the enum, and drop the convert function after it.
OS << " NumConversionVariants\n";
OS << "};\n\n";
OS << CvtOS.str();
}
/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
static void EmitMatchClassEnumeration(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
OS << "namespace {\n\n";
OS << "/// MatchClassKind - The kinds of classes which participate in\n"
<< "/// instruction matching.\n";
OS << "enum MatchClassKind {\n";
OS << " InvalidMatchClass = 0,\n";
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &CI = **it;
OS << " " << CI.Name << ", // ";
if (CI.Kind == ClassInfo::Token) {
OS << "'" << CI.ValueName << "'\n";
} else if (CI.isRegisterClass()) {
if (!CI.ValueName.empty())
OS << "register class '" << CI.ValueName << "'\n";
else
OS << "derived register class\n";
} else {
OS << "user defined class '" << CI.ValueName << "'\n";
}
}
OS << " NumMatchClassKinds\n";
OS << "};\n\n";
OS << "}\n\n";
}
/// EmitClassifyOperand - Emit the function to classify an operand.
static void EmitClassifyOperand(CodeGenTarget &Target,
AsmMatcherInfo &Info,
raw_ostream &OS) {
OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
<< " " << Target.getName() << "Operand &Operand = *("
<< Target.getName() << "Operand*)GOp;\n";
// Classify tokens.
OS << " if (Operand.isToken())\n";
OS << " return MatchTokenString(Operand.getToken());\n\n";
// Classify registers.
//
// FIXME: Don't hardcode isReg, getReg.
OS << " if (Operand.isReg()) {\n";
OS << " switch (Operand.getReg()) {\n";
OS << " default: return InvalidMatchClass;\n";
for (std::map<Record*, ClassInfo*>::iterator
it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
it != ie; ++it)
OS << " case " << Target.getName() << "::"
<< it->first->getName() << ": return " << it->second->Name << ";\n";
OS << " }\n";
OS << " }\n\n";
// Classify user defined operands.
for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
ie = Info.Classes.end(); it != ie; ++it) {
ClassInfo &CI = **it;
if (!CI.isUserClass())
continue;
OS << " // '" << CI.ClassName << "' class";
if (!CI.SuperClasses.empty()) {
OS << ", subclass of ";
for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
if (i) OS << ", ";
OS << "'" << CI.SuperClasses[i]->ClassName << "'";
assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
}
}
OS << "\n";
OS << " if (Operand." << CI.PredicateMethod << "()) {\n";
// Validate subclass relationships.
if (!CI.SuperClasses.empty()) {
for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
OS << " assert(Operand." << CI.SuperClasses[i]->PredicateMethod
<< "() && \"Invalid class relationship!\");\n";
}
OS << " return " << CI.Name << ";\n";
OS << " }\n\n";
}
OS << " return InvalidMatchClass;\n";
OS << "}\n\n";
}
/// EmitIsSubclass - Emit the subclass predicate function.
static void EmitIsSubclass(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
OS << " if (A == B)\n";
OS << " return true;\n\n";
OS << " switch (A) {\n";
OS << " default:\n";
OS << " return false;\n";
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &A = **it;
if (A.Kind != ClassInfo::Token) {
std::vector<StringRef> SuperClasses;
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &B = **it;
if (&A != &B && A.isSubsetOf(B))
SuperClasses.push_back(B.Name);
}
if (SuperClasses.empty())
continue;
OS << "\n case " << A.Name << ":\n";
if (SuperClasses.size() == 1) {
OS << " return B == " << SuperClasses.back() << ";\n";
continue;
}
OS << " switch (B) {\n";
OS << " default: return false;\n";
for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
OS << " case " << SuperClasses[i] << ": return true;\n";
OS << " }\n";
}
}
OS << " }\n";
OS << "}\n\n";
}
/// EmitMatchTokenString - Emit the function to match a token string to the
/// appropriate match class value.
static void EmitMatchTokenString(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringMatcher::StringPair> Matches;
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &CI = **it;
if (CI.Kind == ClassInfo::Token)
Matches.push_back(StringMatcher::StringPair(CI.ValueName,
"return " + CI.Name + ";"));
}
OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
StringMatcher("Name", Matches, OS).Emit();
OS << " return InvalidMatchClass;\n";
OS << "}\n\n";
}
/// EmitMatchRegisterName - Emit the function to match a string to the target
/// specific register enum.
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringMatcher::StringPair> Matches;
for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
const CodeGenRegister &Reg = Target.getRegisters()[i];
if (Reg.TheDef->getValueAsString("AsmName").empty())
continue;
Matches.push_back(StringMatcher::StringPair(
Reg.TheDef->getValueAsString("AsmName"),
"return " + utostr(i + 1) + ";"));
}
OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
StringMatcher("Name", Matches, OS).Emit();
OS << " return 0;\n";
OS << "}\n\n";
}
/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
/// definitions.
static void EmitSubtargetFeatureFlagEnumeration(CodeGenTarget &Target,
AsmMatcherInfo &Info,
raw_ostream &OS) {
OS << "// Flags for subtarget features that participate in "
<< "instruction matching.\n";
OS << "enum SubtargetFeatureFlag {\n";
for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
it = Info.SubtargetFeatures.begin(),
ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
SubtargetFeatureInfo &SFI = *it->second;
OS << " " << SFI.EnumName << " = (1 << " << SFI.Index << "),\n";
}
OS << " Feature_None = 0\n";
OS << "};\n\n";
}
/// EmitComputeAvailableFeatures - Emit the function to compute the list of
/// available features given a subtarget.
static void EmitComputeAvailableFeatures(CodeGenTarget &Target,
AsmMatcherInfo &Info,
raw_ostream &OS) {
std::string ClassName =
Info.AsmParser->getValueAsString("AsmParserClassName");
OS << "unsigned " << Target.getName() << ClassName << "::\n"
<< "ComputeAvailableFeatures(const " << Target.getName()
<< "Subtarget *Subtarget) const {\n";
OS << " unsigned Features = 0;\n";
for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
it = Info.SubtargetFeatures.begin(),
ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
SubtargetFeatureInfo &SFI = *it->second;
OS << " if (" << SFI.TheDef->getValueAsString("CondString")
<< ")\n";
OS << " Features |= " << SFI.EnumName << ";\n";
}
OS << " return Features;\n";
OS << "}\n\n";
}
static std::string GetAliasRequiredFeatures(Record *R) {
// FIXME: This is a total hack.
std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
std::string Result;
unsigned NumFeatures = 0;
for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
Record *Pred = ReqFeatures[i];
// Ignore predicates that are not intended for the assembler.
if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
continue;
if (NumFeatures)
Result += '|';
Result += "Feature_" + Pred->getName();
++NumFeatures;
}
if (NumFeatures > 1)
Result = '(' + Result + ')';
return Result;
}
/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
/// emit a function for them and return true, otherwise return false.
static bool EmitMnemonicAliases(raw_ostream &OS) {
std::vector<Record*> Aliases =
Records.getAllDerivedDefinitions("MnemonicAlias");
if (Aliases.empty()) return false;
OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
"unsigned Features) {\n";
// Keep track of all the aliases from a mnemonic. Use an std::map so that the
// iteration order of the map is stable.
std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
Record *R = Aliases[i];
AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
}
// Process each alias a "from" mnemonic at a time, building the code executed
// by the string remapper.
std::vector<StringMatcher::StringPair> Cases;
for (std::map<std::string, std::vector<Record*> >::iterator
I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
I != E; ++I) {
const std::vector<Record*> &ToVec = I->second;
// Loop through each alias and emit code that handles each case. If there
// are two instructions without predicates, emit an error. If there is one,
// emit it last.
std::string MatchCode;
int AliasWithNoPredicate = -1;
for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
Record *R = ToVec[i];
std::string FeatureMask = GetAliasRequiredFeatures(R);
// If this unconditionally matches, remember it for later and diagnose
// duplicates.
if (FeatureMask.empty()) {
if (AliasWithNoPredicate != -1) {
// We can't have two aliases from the same mnemonic with no predicate.
PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
"two MnemonicAliases with the same 'from' mnemonic!");
PrintError(R->getLoc(), "this is the other MnemonicAliases.");
throw std::string("ERROR: Invalid MnemonicAliases definitions!");
}
AliasWithNoPredicate = i;
continue;
}
MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
}
if (AliasWithNoPredicate != -1) {
Record *R = ToVec[AliasWithNoPredicate];
MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic") + "\";";
}
MatchCode += "return;";
Cases.push_back(std::make_pair(I->first, MatchCode));
}
StringMatcher("Mnemonic", Cases, OS).Emit();
OS << "}\n";
return true;
}
void AsmMatcherEmitter::run(raw_ostream &OS) {
CodeGenTarget Target;
Record *AsmParser = Target.getAsmParser();
std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
// Compute the information on the instructions to match.
AsmMatcherInfo Info(AsmParser);
Info.BuildInfo(Target);
// Sort the instruction table using the partial order on classes. We use
// stable_sort to ensure that ambiguous instructions are still
// deterministically ordered.
std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
less_ptr<InstructionInfo>());
DEBUG_WITH_TYPE("instruction_info", {
for (std::vector<InstructionInfo*>::iterator
it = Info.Instructions.begin(), ie = Info.Instructions.end();
it != ie; ++it)
(*it)->dump();
});
// Check for ambiguous instructions.
DEBUG_WITH_TYPE("ambiguous_instrs", {
unsigned NumAmbiguous = 0;
for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
for (unsigned j = i + 1; j != e; ++j) {
InstructionInfo &A = *Info.Instructions[i];
InstructionInfo &B = *Info.Instructions[j];
if (A.CouldMatchAmiguouslyWith(B)) {
errs() << "warning: ambiguous instruction match:\n";
A.dump();
errs() << "\nis incomparable with:\n";
B.dump();
errs() << "\n\n";
++NumAmbiguous;
}
}
}
if (NumAmbiguous)
errs() << "warning: " << NumAmbiguous
<< " ambiguous instructions!\n";
});
// Write the output.
EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
// Information for the class declaration.
OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
OS << "#undef GET_ASSEMBLER_HEADER\n";
OS << " // This should be included into the middle of the declaration of \n";
OS << " // your subclasses implementation of TargetAsmParser.\n";
OS << " unsigned ComputeAvailableFeatures(const " <<
Target.getName() << "Subtarget *Subtarget) const;\n";
OS << " enum MatchResultTy {\n";
OS << " Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
OS << " Match_MissingFeature\n";
OS << " };\n";
OS << " MatchResultTy MatchInstructionImpl(const "
<< "SmallVectorImpl<MCParsedAsmOperand*>"
<< " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n";
OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
OS << "\n#ifdef GET_REGISTER_MATCHER\n";
OS << "#undef GET_REGISTER_MATCHER\n\n";
// Emit the subtarget feature enumeration.
EmitSubtargetFeatureFlagEnumeration(Target, Info, OS);
// Emit the function to match a register name to number.
EmitMatchRegisterName(Target, AsmParser, OS);
OS << "#endif // GET_REGISTER_MATCHER\n\n";
OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
// Generate the function that remaps for mnemonic aliases.
bool HasMnemonicAliases = EmitMnemonicAliases(OS);
// Generate the unified function to convert operands into an MCInst.
EmitConvertToMCInst(Target, Info.Instructions, OS);
// Emit the enumeration for classes which participate in matching.
EmitMatchClassEnumeration(Target, Info.Classes, OS);
// Emit the routine to match token strings to their match class.
EmitMatchTokenString(Target, Info.Classes, OS);
// Emit the routine to classify an operand.
EmitClassifyOperand(Target, Info, OS);
// Emit the subclass predicate routine.
EmitIsSubclass(Target, Info.Classes, OS);
// Emit the available features compute function.
EmitComputeAvailableFeatures(Target, Info, OS);
size_t MaxNumOperands = 0;
for (std::vector<InstructionInfo*>::const_iterator it =
Info.Instructions.begin(), ie = Info.Instructions.end();
it != ie; ++it)
MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
// Emit the static match table; unused classes get initalized to 0 which is
// guaranteed to be InvalidMatchClass.
//
// FIXME: We can reduce the size of this table very easily. First, we change
// it so that store the kinds in separate bit-fields for each index, which
// only needs to be the max width used for classes at that index (we also need
// to reject based on this during classification). If we then make sure to
// order the match kinds appropriately (putting mnemonics last), then we
// should only end up using a few bits for each class, especially the ones
// following the mnemonic.
OS << "namespace {\n";
OS << " struct MatchEntry {\n";
OS << " unsigned Opcode;\n";
OS << " const char *Mnemonic;\n";
OS << " ConversionKind ConvertFn;\n";
OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
OS << " unsigned RequiredFeatures;\n";
OS << " };\n\n";
OS << "// Predicate for searching for an opcode.\n";
OS << " struct LessOpcode {\n";
OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
OS << " return StringRef(LHS.Mnemonic) < RHS;\n";
OS << " }\n";
OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
OS << " return LHS < StringRef(RHS.Mnemonic);\n";
OS << " }\n";
OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
OS << " return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
OS << " }\n";
OS << " };\n";
OS << "} // end anonymous namespace.\n\n";
OS << "static const MatchEntry MatchTable["
<< Info.Instructions.size() << "] = {\n";
for (std::vector<InstructionInfo*>::const_iterator it =
Info.Instructions.begin(), ie = Info.Instructions.end();
it != ie; ++it) {
InstructionInfo &II = **it;
OS << " { " << Target.getName() << "::" << II.InstrName
<< ", \"" << II.Tokens[0] << "\""
<< ", " << II.ConversionFnKind << ", { ";
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[i];
if (i) OS << ", ";
OS << Op.Class->Name;
}
OS << " }, ";
// Write the required features mask.
if (!II.RequiredFeatures.empty()) {
for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
if (i) OS << "|";
OS << II.RequiredFeatures[i]->EnumName;
}
} else
OS << "0";
OS << "},\n";
}
OS << "};\n\n";
// Finally, build the match function.
OS << Target.getName() << ClassName << "::MatchResultTy "
<< Target.getName() << ClassName << "::\n"
<< "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
<< " &Operands,\n";
OS << " MCInst &Inst, unsigned &ErrorInfo) {\n";
// Emit code to get the available features.
OS << " // Get the current feature set.\n";
OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n";
OS << " // Get the instruction mnemonic, which is the first token.\n";
OS << " StringRef Mnemonic = ((" << Target.getName()
<< "Operand*)Operands[0])->getToken();\n\n";
if (HasMnemonicAliases) {
OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
OS << " ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
}
// Emit code to compute the class list for this operand vector.
OS << " // Eliminate obvious mismatches.\n";
OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n";
OS << " return Match_InvalidOperand;\n";
OS << " }\n\n";
OS << " // Compute the class list for this operand vector.\n";
OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
OS << " for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
OS << " Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
OS << " // Check for invalid operands before matching.\n";
OS << " if (Classes[i-1] == InvalidMatchClass) {\n";
OS << " ErrorInfo = i;\n";
OS << " return Match_InvalidOperand;\n";
OS << " }\n";
OS << " }\n\n";
OS << " // Mark unused classes.\n";
OS << " for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
<< "i != e; ++i)\n";
OS << " Classes[i] = InvalidMatchClass;\n\n";
OS << " // Some state to try to produce better error messages.\n";
OS << " bool HadMatchOtherThanFeatures = false;\n\n";
OS << " // Set ErrorInfo to the operand that mismatches if it is \n";
OS << " // wrong for all instances of the instruction.\n";
OS << " ErrorInfo = ~0U;\n";
// Emit code to search the table.
OS << " // Search the table.\n";
OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
OS << " std::equal_range(MatchTable, MatchTable+"
<< Info.Instructions.size() << ", Mnemonic, LessOpcode());\n\n";
OS << " // Return a more specific error code if no mnemonics match.\n";
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
OS << " return Match_MnemonicFail;\n\n";
OS << " for (const MatchEntry *it = MnemonicRange.first, "
<< "*ie = MnemonicRange.second;\n";
OS << " it != ie; ++it) {\n";
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
OS << " assert(Mnemonic == it->Mnemonic);\n";
// Emit check that the subclasses match.
OS << " bool OperandsValid = true;\n";
OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
OS << " if (IsSubclass(Classes[i], it->Classes[i]))\n";
OS << " continue;\n";
OS << " // If this operand is broken for all of the instances of this\n";
OS << " // mnemonic, keep track of it so we can report loc info.\n";
OS << " if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
OS << " ErrorInfo = i+1;\n";
OS << " else\n";
OS << " ErrorInfo = ~0U;";
OS << " // Otherwise, just reject this instance of the mnemonic.\n";
OS << " OperandsValid = false;\n";
OS << " break;\n";
OS << " }\n\n";
OS << " if (!OperandsValid) continue;\n";
// Emit check that the required features are available.
OS << " if ((AvailableFeatures & it->RequiredFeatures) "
<< "!= it->RequiredFeatures) {\n";
OS << " HadMatchOtherThanFeatures = true;\n";
OS << " continue;\n";
OS << " }\n";
OS << "\n";
OS << " ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
// Call the post-processing function, if used.
std::string InsnCleanupFn =
AsmParser->getValueAsString("AsmParserInstCleanup");
if (!InsnCleanupFn.empty())
OS << " " << InsnCleanupFn << "(Inst);\n";
OS << " return Match_Success;\n";
OS << " }\n\n";
OS << " // Okay, we had no match. Try to return a useful error code.\n";
OS << " if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
OS << " return Match_InvalidOperand;\n";
OS << "}\n\n";
OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
}