1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 12:33:33 +02:00
llvm-mirror/lib/Target/Mips/MipsCCState.cpp
Simon Dardis d310cc473e [mips] Rework a portion of MipsCC interface. (NFC)
r299766 contained a "conditional move or jump depends on uninitialized value"
fault, identified by valgrind. This occurred as MipsFastISel::finishCall(..)
used CCState over MipsCCState. The latter is required for the TableGen'd calling
convention logic due to reliance on pre-analyzing type information to lower call
results/returns of vectors correctly.

This change modifies the MipsCC AnalyzeCallResult to be useful with both the
SelectionDAG and FastISel lowering logic.

Reviewers: slthakur

Differential Revision: https://reviews.llvm.org/D32004

llvm-svn: 301392
2017-04-26 11:10:38 +00:00

134 lines
5.2 KiB
C++

//===---- MipsCCState.cpp - CCState with Mips specific extensions ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MipsCCState.h"
#include "MipsSubtarget.h"
#include "llvm/IR/Module.h"
using namespace llvm;
/// This function returns true if CallSym is a long double emulation routine.
static bool isF128SoftLibCall(const char *CallSym) {
const char *const LibCalls[] = {
"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2",
"__extendsftf2", "__fixtfdi", "__fixtfsi", "__fixtfti",
"__fixunstfdi", "__fixunstfsi", "__fixunstfti", "__floatditf",
"__floatsitf", "__floattitf", "__floatunditf", "__floatunsitf",
"__floatuntitf", "__getf2", "__gttf2", "__letf2",
"__lttf2", "__multf3", "__netf2", "__powitf2",
"__subtf3", "__trunctfdf2", "__trunctfsf2", "__unordtf2",
"ceill", "copysignl", "cosl", "exp2l",
"expl", "floorl", "fmal", "fmodl",
"log10l", "log2l", "logl", "nearbyintl",
"powl", "rintl", "roundl", "sinl",
"sqrtl", "truncl"};
// Check that LibCalls is sorted alphabetically.
auto Comp = [](const char *S1, const char *S2) { return strcmp(S1, S2) < 0; };
assert(std::is_sorted(std::begin(LibCalls), std::end(LibCalls), Comp));
return std::binary_search(std::begin(LibCalls), std::end(LibCalls),
CallSym, Comp);
}
/// This function returns true if Ty is fp128, {f128} or i128 which was
/// originally a fp128.
static bool originalTypeIsF128(const Type *Ty, const char *Func) {
if (Ty->isFP128Ty())
return true;
if (Ty->isStructTy() && Ty->getStructNumElements() == 1 &&
Ty->getStructElementType(0)->isFP128Ty())
return true;
// If the Ty is i128 and the function being called is a long double emulation
// routine, then the original type is f128.
return (Func && Ty->isIntegerTy(128) && isF128SoftLibCall(Func));
}
MipsCCState::SpecialCallingConvType
MipsCCState::getSpecialCallingConvForCallee(const SDNode *Callee,
const MipsSubtarget &Subtarget) {
MipsCCState::SpecialCallingConvType SpecialCallingConv = NoSpecialCallingConv;
if (Subtarget.inMips16HardFloat()) {
if (const GlobalAddressSDNode *G =
dyn_cast<const GlobalAddressSDNode>(Callee)) {
llvm::StringRef Sym = G->getGlobal()->getName();
Function *F = G->getGlobal()->getParent()->getFunction(Sym);
if (F && F->hasFnAttribute("__Mips16RetHelper")) {
SpecialCallingConv = Mips16RetHelperConv;
}
}
}
return SpecialCallingConv;
}
void MipsCCState::PreAnalyzeCallResultForF128(
const SmallVectorImpl<ISD::InputArg> &Ins,
const Type *RetTy, const char *Call) {
for (unsigned i = 0; i < Ins.size(); ++i) {
OriginalArgWasF128.push_back(
originalTypeIsF128(RetTy, Call));
OriginalArgWasFloat.push_back(RetTy->isFloatingPointTy());
}
}
/// Identify lowered values that originated from f128 arguments and record
/// this for use by RetCC_MipsN.
void MipsCCState::PreAnalyzeReturnForF128(
const SmallVectorImpl<ISD::OutputArg> &Outs) {
const MachineFunction &MF = getMachineFunction();
for (unsigned i = 0; i < Outs.size(); ++i) {
OriginalArgWasF128.push_back(
originalTypeIsF128(MF.getFunction()->getReturnType(), nullptr));
OriginalArgWasFloat.push_back(
MF.getFunction()->getReturnType()->isFloatingPointTy());
}
}
/// Identify lowered values that originated from f128 arguments and record
/// this.
void MipsCCState::PreAnalyzeCallOperands(
const SmallVectorImpl<ISD::OutputArg> &Outs,
std::vector<TargetLowering::ArgListEntry> &FuncArgs,
const char *Func) {
for (unsigned i = 0; i < Outs.size(); ++i) {
OriginalArgWasF128.push_back(
originalTypeIsF128(FuncArgs[Outs[i].OrigArgIndex].Ty, Func));
OriginalArgWasFloat.push_back(
FuncArgs[Outs[i].OrigArgIndex].Ty->isFloatingPointTy());
CallOperandIsFixed.push_back(Outs[i].IsFixed);
}
}
/// Identify lowered values that originated from f128 arguments and record
/// this.
void MipsCCState::PreAnalyzeFormalArgumentsForF128(
const SmallVectorImpl<ISD::InputArg> &Ins) {
const MachineFunction &MF = getMachineFunction();
for (unsigned i = 0; i < Ins.size(); ++i) {
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
// SRet arguments cannot originate from f128 or {f128} returns so we just
// push false. We have to handle this specially since SRet arguments
// aren't mapped to an original argument.
if (Ins[i].Flags.isSRet()) {
OriginalArgWasF128.push_back(false);
OriginalArgWasFloat.push_back(false);
continue;
}
assert(Ins[i].getOrigArgIndex() < MF.getFunction()->arg_size());
std::advance(FuncArg, Ins[i].getOrigArgIndex());
OriginalArgWasF128.push_back(
originalTypeIsF128(FuncArg->getType(), nullptr));
OriginalArgWasFloat.push_back(FuncArg->getType()->isFloatingPointTy());
}
}