1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/Target/Mips/Mips64InstrInfo.td
Akira Hatanaka da64382f71 [mips] Fix definition of mfhi and mflo instructions to read from the whole
accumulator instead of its sub-registers, $hi and $lo. 

We need this change to prevent a mflo following a mtlo from reading an
unpredictable/undefined value, as shown in the following example:

mult $6, $7 // result of $6 * $7 is written to $lo and $hi.
mflo $2     // read lower 32-bit result from $lo.
mtlo $4     // write to $lo. the content of $hi becomes unpredictable.
mfhi $3     // read higher 32-bit from $hi, which has an unpredictable value.

I don't have a test case for this change that reliably reproduces the problem.

llvm-svn: 192119
2013-10-07 18:49:46 +00:00

329 lines
14 KiB
TableGen

//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips64 instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Unsigned Operand
def uimm16_64 : Operand<i64> {
let PrintMethod = "printUnsignedImm";
}
// Transformation Function - get Imm - 32.
def Subtract32 : SDNodeXForm<imm, [{
return getImm(N, (unsigned)N->getZExtValue() - 32);
}]>;
// shamt must fit in 6 bits.
def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1 in {
def ATOMIC_LOAD_ADD_I64 : Atomic2Ops<atomic_load_add_64, GPR64>;
def ATOMIC_LOAD_SUB_I64 : Atomic2Ops<atomic_load_sub_64, GPR64>;
def ATOMIC_LOAD_AND_I64 : Atomic2Ops<atomic_load_and_64, GPR64>;
def ATOMIC_LOAD_OR_I64 : Atomic2Ops<atomic_load_or_64, GPR64>;
def ATOMIC_LOAD_XOR_I64 : Atomic2Ops<atomic_load_xor_64, GPR64>;
def ATOMIC_LOAD_NAND_I64 : Atomic2Ops<atomic_load_nand_64, GPR64>;
def ATOMIC_SWAP_I64 : Atomic2Ops<atomic_swap_64, GPR64>;
def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<atomic_cmp_swap_64, GPR64>;
}
/// Pseudo instructions for loading and storing accumulator registers.
let isPseudo = 1, isCodeGenOnly = 1 in {
def LOAD_ACC128 : Load<"", ACC128>;
def STORE_ACC128 : Store<"", ACC128>;
}
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
let DecoderNamespace = "Mips64" in {
/// Arithmetic Instructions (ALU Immediate)
def DADDi : ArithLogicI<"daddi", simm16_64, GPR64Opnd>, ADDI_FM<0x18>;
def DADDiu : ArithLogicI<"daddiu", simm16_64, GPR64Opnd, IIArith,
immSExt16, add>,
ADDI_FM<0x19>, IsAsCheapAsAMove;
let isCodeGenOnly = 1 in {
def SLTi64 : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>,
SLTI_FM<0xa>;
def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>,
SLTI_FM<0xb>;
def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, IILogic, immZExt16,
and>,
ADDI_FM<0xc>;
def ORi64 : ArithLogicI<"ori", uimm16_64, GPR64Opnd, IILogic, immZExt16,
or>,
ADDI_FM<0xd>;
def XORi64 : ArithLogicI<"xori", uimm16_64, GPR64Opnd, IILogic, immZExt16,
xor>,
ADDI_FM<0xe>;
def LUi64 : LoadUpper<"lui", GPR64Opnd, uimm16_64>, LUI_FM;
}
/// Arithmetic Instructions (3-Operand, R-Type)
def DADD : ArithLogicR<"dadd", GPR64Opnd>, ADD_FM<0, 0x2c>;
def DADDu : ArithLogicR<"daddu", GPR64Opnd, 1, IIArith, add>,
ADD_FM<0, 0x2d>;
def DSUBu : ArithLogicR<"dsubu", GPR64Opnd, 0, IIArith, sub>,
ADD_FM<0, 0x2f>;
let isCodeGenOnly = 1 in {
def SLT64 : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>;
def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>;
def AND64 : ArithLogicR<"and", GPR64Opnd, 1, IIArith, and>, ADD_FM<0, 0x24>;
def OR64 : ArithLogicR<"or", GPR64Opnd, 1, IIArith, or>, ADD_FM<0, 0x25>;
def XOR64 : ArithLogicR<"xor", GPR64Opnd, 1, IIArith, xor>, ADD_FM<0, 0x26>;
def NOR64 : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>;
}
/// Shift Instructions
def DSLL : shift_rotate_imm<"dsll", uimm6, GPR64Opnd, shl, immZExt6>,
SRA_FM<0x38, 0>;
def DSRL : shift_rotate_imm<"dsrl", uimm6, GPR64Opnd, srl, immZExt6>,
SRA_FM<0x3a, 0>;
def DSRA : shift_rotate_imm<"dsra", uimm6, GPR64Opnd, sra, immZExt6>,
SRA_FM<0x3b, 0>;
def DSLLV : shift_rotate_reg<"dsllv", GPR64Opnd, shl>, SRLV_FM<0x14, 0>;
def DSRLV : shift_rotate_reg<"dsrlv", GPR64Opnd, srl>, SRLV_FM<0x16, 0>;
def DSRAV : shift_rotate_reg<"dsrav", GPR64Opnd, sra>, SRLV_FM<0x17, 0>;
def DSLL32 : shift_rotate_imm<"dsll32", uimm5, GPR64Opnd>, SRA_FM<0x3c, 0>;
def DSRL32 : shift_rotate_imm<"dsrl32", uimm5, GPR64Opnd>, SRA_FM<0x3e, 0>;
def DSRA32 : shift_rotate_imm<"dsra32", uimm5, GPR64Opnd>, SRA_FM<0x3f, 0>;
// Rotate Instructions
let Predicates = [HasMips64r2, HasStdEnc] in {
def DROTR : shift_rotate_imm<"drotr", uimm6, GPR64Opnd, rotr, immZExt6>,
SRA_FM<0x3a, 1>;
def DROTRV : shift_rotate_reg<"drotrv", GPR64Opnd, rotr>,
SRLV_FM<0x16, 1>;
def DROTR32 : shift_rotate_imm<"drotr32", uimm5, GPR64Opnd>, SRA_FM<0x3e, 1>;
}
/// Load and Store Instructions
/// aligned
let isCodeGenOnly = 1 in {
def LB64 : Load<"lb", GPR64Opnd, sextloadi8, IILoad>, LW_FM<0x20>;
def LBu64 : Load<"lbu", GPR64Opnd, zextloadi8, IILoad>, LW_FM<0x24>;
def LH64 : Load<"lh", GPR64Opnd, sextloadi16, IILoad>, LW_FM<0x21>;
def LHu64 : Load<"lhu", GPR64Opnd, zextloadi16, IILoad>, LW_FM<0x25>;
def LW64 : Load<"lw", GPR64Opnd, sextloadi32, IILoad>, LW_FM<0x23>;
def SB64 : Store<"sb", GPR64Opnd, truncstorei8, IIStore>, LW_FM<0x28>;
def SH64 : Store<"sh", GPR64Opnd, truncstorei16, IIStore>, LW_FM<0x29>;
def SW64 : Store<"sw", GPR64Opnd, truncstorei32, IIStore>, LW_FM<0x2b>;
}
def LWu : Load<"lwu", GPR64Opnd, zextloadi32, IILoad>, LW_FM<0x27>;
def LD : Load<"ld", GPR64Opnd, load, IILoad>, LW_FM<0x37>;
def SD : Store<"sd", GPR64Opnd, store, IIStore>, LW_FM<0x3f>;
/// load/store left/right
let isCodeGenOnly = 1 in {
def LWL64 : LoadLeftRight<"lwl", MipsLWL, GPR64Opnd, IILoad>, LW_FM<0x22>;
def LWR64 : LoadLeftRight<"lwr", MipsLWR, GPR64Opnd, IILoad>, LW_FM<0x26>;
def SWL64 : StoreLeftRight<"swl", MipsSWL, GPR64Opnd, IIStore>, LW_FM<0x2a>;
def SWR64 : StoreLeftRight<"swr", MipsSWR, GPR64Opnd, IIStore>, LW_FM<0x2e>;
}
def LDL : LoadLeftRight<"ldl", MipsLDL, GPR64Opnd, IILoad>, LW_FM<0x1a>;
def LDR : LoadLeftRight<"ldr", MipsLDR, GPR64Opnd, IILoad>, LW_FM<0x1b>;
def SDL : StoreLeftRight<"sdl", MipsSDL, GPR64Opnd, IIStore>, LW_FM<0x2c>;
def SDR : StoreLeftRight<"sdr", MipsSDR, GPR64Opnd, IIStore>, LW_FM<0x2d>;
/// Load-linked, Store-conditional
def LLD : LLBase<"lld", GPR64Opnd>, LW_FM<0x34>;
def SCD : SCBase<"scd", GPR64Opnd>, LW_FM<0x3c>;
/// Jump and Branch Instructions
let isCodeGenOnly = 1 in {
def JR64 : IndirectBranch<GPR64Opnd>, MTLO_FM<8>;
def BEQ64 : CBranch<"beq", seteq, GPR64Opnd>, BEQ_FM<4>;
def BNE64 : CBranch<"bne", setne, GPR64Opnd>, BEQ_FM<5>;
def BGEZ64 : CBranchZero<"bgez", setge, GPR64Opnd>, BGEZ_FM<1, 1>;
def BGTZ64 : CBranchZero<"bgtz", setgt, GPR64Opnd>, BGEZ_FM<7, 0>;
def BLEZ64 : CBranchZero<"blez", setle, GPR64Opnd>, BGEZ_FM<6, 0>;
def BLTZ64 : CBranchZero<"bltz", setlt, GPR64Opnd>, BGEZ_FM<1, 0>;
def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM;
def JALR64Pseudo : JumpLinkRegPseudo<GPR64Opnd, JALR, RA, GPR32Opnd>;
def TAILCALL64_R : JumpFR<GPR64Opnd, MipsTailCall>, MTLO_FM<8>, IsTailCall;
}
/// Multiply and Divide Instructions.
def DMULT : Mult<"dmult", IIImult, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1c>;
def DMULTu : Mult<"dmultu", IIImult, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1d>;
def PseudoDMULT : MultDivPseudo<DMULT, ACC128, GPR64Opnd, MipsMult,
IIImult>;
def PseudoDMULTu : MultDivPseudo<DMULTu, ACC128, GPR64Opnd, MipsMultu,
IIImult>;
def DSDIV : Div<"ddiv", IIIdiv, GPR64Opnd, [HI0_64, LO0_64]>, MULT_FM<0, 0x1e>;
def DUDIV : Div<"ddivu", IIIdiv, GPR64Opnd, [HI0_64, LO0_64]>, MULT_FM<0, 0x1f>;
def PseudoDSDIV : MultDivPseudo<DSDIV, ACC128, GPR64Opnd, MipsDivRem,
IIIdiv, 0, 1, 1>;
def PseudoDUDIV : MultDivPseudo<DUDIV, ACC128, GPR64Opnd, MipsDivRemU,
IIIdiv, 0, 1, 1>;
let isCodeGenOnly = 1 in {
def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI0_64]>, MTLO_FM<0x11>;
def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO0_64]>, MTLO_FM<0x13>;
def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, AC0_64>, MFLO_FM<0x10>;
def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, AC0_64>, MFLO_FM<0x12>;
def PseudoMFHI64 : PseudoMFLOHI<GPR64, ACC128, MipsExtractHI>;
def PseudoMFLO64 : PseudoMFLOHI<GPR64, ACC128, MipsExtractLO>;
/// Sign Ext In Register Instructions.
def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd>, SEB_FM<0x10, 0x20>;
def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd>, SEB_FM<0x18, 0x20>;
}
/// Count Leading
def DCLZ : CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>;
def DCLO : CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>;
/// Double Word Swap Bytes/HalfWords
def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>;
def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>;
def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd>, LW_FM<0x19>;
let isCodeGenOnly = 1 in
def RDHWR64 : ReadHardware<GPR64Opnd, HWRegsOpnd>, RDHWR_FM;
def DEXT : ExtBase<"dext", GPR64Opnd, uimm6, MipsExt>, EXT_FM<3>;
def DEXTU : ExtBase<"dextu", GPR64Opnd, uimm6>, EXT_FM<2>;
def DEXTM : ExtBase<"dextm", GPR64Opnd, uimm5>, EXT_FM<1>;
def DINS : InsBase<"dins", GPR64Opnd, uimm6, MipsIns>, EXT_FM<7>;
def DINSU : InsBase<"dinsu", GPR64Opnd, uimm6>, EXT_FM<6>;
def DINSM : InsBase<"dinsm", GPR64Opnd, uimm5>, EXT_FM<5>;
let isCodeGenOnly = 1, rs = 0, shamt = 0 in {
def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt),
"dsll\t$rd, $rt, 32", [], IIArith>;
def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt),
"sll\t$rd, $rt, 0", [], IIArith>;
def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt),
"sll\t$rd, $rt, 0", [], IIArith>;
}
}
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// extended loads
let Predicates = [HasStdEnc] in {
def : MipsPat<(i64 (extloadi1 addr:$src)), (LB64 addr:$src)>;
def : MipsPat<(i64 (extloadi8 addr:$src)), (LB64 addr:$src)>;
def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>;
def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>;
}
// hi/lo relocs
def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>;
def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
def : MipsPat<(MipsLo tglobaltlsaddr:$in),
(DADDiu ZERO_64, tglobaltlsaddr:$in)>;
def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)),
(DADDiu GPR64:$hi, tglobaladdr:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)),
(DADDiu GPR64:$hi, tblockaddress:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)),
(DADDiu GPR64:$hi, tjumptable:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)),
(DADDiu GPR64:$hi, tconstpool:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)),
(DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>;
def : WrapperPat<tglobaladdr, DADDiu, GPR64>;
def : WrapperPat<tconstpool, DADDiu, GPR64>;
def : WrapperPat<texternalsym, DADDiu, GPR64>;
def : WrapperPat<tblockaddress, DADDiu, GPR64>;
def : WrapperPat<tjumptable, DADDiu, GPR64>;
def : WrapperPat<tglobaltlsaddr, DADDiu, GPR64>;
defm : BrcondPats<GPR64, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
ZERO_64>;
def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst),
(BLEZ64 i64:$lhs, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst),
(BGEZ64 i64:$lhs, bb:$dst)>;
// setcc patterns
defm : SeteqPats<GPR64, SLTiu64, XOR64, SLTu64, ZERO_64>;
defm : SetlePats<GPR64, SLT64, SLTu64>;
defm : SetgtPats<GPR64, SLT64, SLTu64>;
defm : SetgePats<GPR64, SLT64, SLTu64>;
defm : SetgeImmPats<GPR64, SLTi64, SLTiu64>;
// truncate
def : MipsPat<(i32 (trunc GPR64:$src)),
(SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>,
Requires<[HasStdEnc]>;
// 32-to-64-bit extension
def : MipsPat<(i64 (anyext GPR32:$src)), (SLL64_32 GPR32:$src)>;
def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>;
def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>;
// Sign extend in register
def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)),
(SLL64_64 GPR64:$src)>;
// bswap MipsPattern
def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>;
//===----------------------------------------------------------------------===//
// Instruction aliases
//===----------------------------------------------------------------------===//
def : InstAlias<"move $dst, $src",
(DADDu GPR64Opnd:$dst, GPR64Opnd:$src, ZERO_64), 1>,
Requires<[HasMips64]>;
def : InstAlias<"daddu $rs, $rt, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
0>;
def : InstAlias<"dadd $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
0>;
/// Move between CPU and coprocessor registers
let DecoderNamespace = "Mips64", Predicates = [HasMips64] in {
def DMFC0 : MFC3OP<"dmfc0", GPR64Opnd>, MFC3OP_FM<0x10, 1>;
def DMTC0 : MFC3OP<"dmtc0", GPR64Opnd>, MFC3OP_FM<0x10, 5>;
def DMFC2 : MFC3OP<"dmfc2", GPR64Opnd>, MFC3OP_FM<0x12, 1>;
def DMTC2 : MFC3OP<"dmtc2", GPR64Opnd>, MFC3OP_FM<0x12, 5>;
}
// Two operand (implicit 0 selector) versions:
def : InstAlias<"dmfc0 $rt, $rd", (DMFC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
def : InstAlias<"dmtc0 $rt, $rd", (DMTC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
def : InstAlias<"dmfc2 $rt, $rd", (DMFC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
def : InstAlias<"dmtc2 $rt, $rd", (DMTC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;