mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
de55d90906
I don't understand what this is going for, and haven't found an analog in DAG code. No tests fail with this removed.
1170 lines
43 KiB
C++
1170 lines
43 KiB
C++
//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements some simple delegations needed for call lowering.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#define DEBUG_TYPE "call-lowering"
|
|
|
|
using namespace llvm;
|
|
|
|
void CallLowering::anchor() {}
|
|
|
|
/// Helper function which updates \p Flags when \p AttrFn returns true.
|
|
static void
|
|
addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
|
|
const std::function<bool(Attribute::AttrKind)> &AttrFn) {
|
|
if (AttrFn(Attribute::SExt))
|
|
Flags.setSExt();
|
|
if (AttrFn(Attribute::ZExt))
|
|
Flags.setZExt();
|
|
if (AttrFn(Attribute::InReg))
|
|
Flags.setInReg();
|
|
if (AttrFn(Attribute::StructRet))
|
|
Flags.setSRet();
|
|
if (AttrFn(Attribute::Nest))
|
|
Flags.setNest();
|
|
if (AttrFn(Attribute::ByVal))
|
|
Flags.setByVal();
|
|
if (AttrFn(Attribute::Preallocated))
|
|
Flags.setPreallocated();
|
|
if (AttrFn(Attribute::InAlloca))
|
|
Flags.setInAlloca();
|
|
if (AttrFn(Attribute::Returned))
|
|
Flags.setReturned();
|
|
if (AttrFn(Attribute::SwiftSelf))
|
|
Flags.setSwiftSelf();
|
|
if (AttrFn(Attribute::SwiftAsync))
|
|
Flags.setSwiftAsync();
|
|
if (AttrFn(Attribute::SwiftError))
|
|
Flags.setSwiftError();
|
|
}
|
|
|
|
ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
|
|
unsigned ArgIdx) const {
|
|
ISD::ArgFlagsTy Flags;
|
|
addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
|
|
return Call.paramHasAttr(ArgIdx, Attr);
|
|
});
|
|
return Flags;
|
|
}
|
|
|
|
void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
|
|
const AttributeList &Attrs,
|
|
unsigned OpIdx) const {
|
|
addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
|
|
return Attrs.hasAttribute(OpIdx, Attr);
|
|
});
|
|
}
|
|
|
|
bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
|
|
ArrayRef<Register> ResRegs,
|
|
ArrayRef<ArrayRef<Register>> ArgRegs,
|
|
Register SwiftErrorVReg,
|
|
std::function<unsigned()> GetCalleeReg) const {
|
|
CallLoweringInfo Info;
|
|
const DataLayout &DL = MIRBuilder.getDataLayout();
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
bool CanBeTailCalled = CB.isTailCall() &&
|
|
isInTailCallPosition(CB, MF.getTarget()) &&
|
|
(MF.getFunction()
|
|
.getFnAttribute("disable-tail-calls")
|
|
.getValueAsString() != "true");
|
|
|
|
CallingConv::ID CallConv = CB.getCallingConv();
|
|
Type *RetTy = CB.getType();
|
|
bool IsVarArg = CB.getFunctionType()->isVarArg();
|
|
|
|
SmallVector<BaseArgInfo, 4> SplitArgs;
|
|
getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
|
|
Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
|
|
|
|
if (!Info.CanLowerReturn) {
|
|
// Callee requires sret demotion.
|
|
insertSRetOutgoingArgument(MIRBuilder, CB, Info);
|
|
|
|
// The sret demotion isn't compatible with tail-calls, since the sret
|
|
// argument points into the caller's stack frame.
|
|
CanBeTailCalled = false;
|
|
}
|
|
|
|
// First step is to marshall all the function's parameters into the correct
|
|
// physregs and memory locations. Gather the sequence of argument types that
|
|
// we'll pass to the assigner function.
|
|
unsigned i = 0;
|
|
unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
|
|
for (auto &Arg : CB.args()) {
|
|
ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
|
|
i < NumFixedArgs};
|
|
setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
|
|
|
|
// If we have an explicit sret argument that is an Instruction, (i.e., it
|
|
// might point to function-local memory), we can't meaningfully tail-call.
|
|
if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
|
|
CanBeTailCalled = false;
|
|
|
|
Info.OrigArgs.push_back(OrigArg);
|
|
++i;
|
|
}
|
|
|
|
// Try looking through a bitcast from one function type to another.
|
|
// Commonly happens with calls to objc_msgSend().
|
|
const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
|
|
if (const Function *F = dyn_cast<Function>(CalleeV))
|
|
Info.Callee = MachineOperand::CreateGA(F, 0);
|
|
else
|
|
Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
|
|
|
|
Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
|
|
if (!Info.OrigRet.Ty->isVoidTy())
|
|
setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
|
|
|
|
Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
|
|
Info.CallConv = CallConv;
|
|
Info.SwiftErrorVReg = SwiftErrorVReg;
|
|
Info.IsMustTailCall = CB.isMustTailCall();
|
|
Info.IsTailCall = CanBeTailCalled;
|
|
Info.IsVarArg = IsVarArg;
|
|
return lowerCall(MIRBuilder, Info);
|
|
}
|
|
|
|
template <typename FuncInfoTy>
|
|
void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
|
|
const DataLayout &DL,
|
|
const FuncInfoTy &FuncInfo) const {
|
|
auto &Flags = Arg.Flags[0];
|
|
const AttributeList &Attrs = FuncInfo.getAttributes();
|
|
addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
|
|
|
|
PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
|
|
if (PtrTy) {
|
|
Flags.setPointer();
|
|
Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
|
|
}
|
|
|
|
Align MemAlign = DL.getABITypeAlign(Arg.Ty);
|
|
if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
|
|
assert(OpIdx >= AttributeList::FirstArgIndex);
|
|
Type *ElementTy = PtrTy->getElementType();
|
|
|
|
auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
|
|
Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
|
|
|
|
// For ByVal, alignment should be passed from FE. BE will guess if
|
|
// this info is not there but there are cases it cannot get right.
|
|
if (auto ParamAlign =
|
|
FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
|
|
MemAlign = *ParamAlign;
|
|
else if ((ParamAlign =
|
|
FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex)))
|
|
MemAlign = *ParamAlign;
|
|
else
|
|
MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
|
|
} else if (OpIdx >= AttributeList::FirstArgIndex) {
|
|
if (auto ParamAlign =
|
|
FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
|
|
MemAlign = *ParamAlign;
|
|
}
|
|
Flags.setMemAlign(MemAlign);
|
|
Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
|
|
|
|
// Don't try to use the returned attribute if the argument is marked as
|
|
// swiftself, since it won't be passed in x0.
|
|
if (Flags.isSwiftSelf())
|
|
Flags.setReturned(false);
|
|
}
|
|
|
|
template void
|
|
CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
|
|
const DataLayout &DL,
|
|
const Function &FuncInfo) const;
|
|
|
|
template void
|
|
CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
|
|
const DataLayout &DL,
|
|
const CallBase &FuncInfo) const;
|
|
|
|
void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
|
|
SmallVectorImpl<ArgInfo> &SplitArgs,
|
|
const DataLayout &DL,
|
|
CallingConv::ID CallConv,
|
|
SmallVectorImpl<uint64_t> *Offsets) const {
|
|
LLVMContext &Ctx = OrigArg.Ty->getContext();
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
|
|
|
|
if (SplitVTs.size() == 0)
|
|
return;
|
|
|
|
if (SplitVTs.size() == 1) {
|
|
// No splitting to do, but we want to replace the original type (e.g. [1 x
|
|
// double] -> double).
|
|
SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
|
|
OrigArg.OrigArgIndex, OrigArg.Flags[0],
|
|
OrigArg.IsFixed, OrigArg.OrigValue);
|
|
return;
|
|
}
|
|
|
|
// Create one ArgInfo for each virtual register in the original ArgInfo.
|
|
assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
|
|
|
|
bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
|
|
OrigArg.Ty, CallConv, false, DL);
|
|
for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
|
|
Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
|
|
SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
|
|
OrigArg.Flags[0], OrigArg.IsFixed);
|
|
if (NeedsRegBlock)
|
|
SplitArgs.back().Flags[0].setInConsecutiveRegs();
|
|
}
|
|
|
|
SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
|
|
}
|
|
|
|
/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
|
|
static MachineInstrBuilder
|
|
mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
|
|
ArrayRef<Register> SrcRegs) {
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
LLT LLTy = MRI.getType(DstRegs[0]);
|
|
LLT PartLLT = MRI.getType(SrcRegs[0]);
|
|
|
|
// Deal with v3s16 split into v2s16
|
|
LLT LCMTy = getLCMType(LLTy, PartLLT);
|
|
if (LCMTy == LLTy) {
|
|
// Common case where no padding is needed.
|
|
assert(DstRegs.size() == 1);
|
|
return B.buildConcatVectors(DstRegs[0], SrcRegs);
|
|
}
|
|
|
|
// We need to create an unmerge to the result registers, which may require
|
|
// widening the original value.
|
|
Register UnmergeSrcReg;
|
|
if (LCMTy != PartLLT) {
|
|
// e.g. A <3 x s16> value was split to <2 x s16>
|
|
// %register_value0:_(<2 x s16>)
|
|
// %register_value1:_(<2 x s16>)
|
|
// %undef:_(<2 x s16>) = G_IMPLICIT_DEF
|
|
// %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
|
|
// %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
|
|
const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
|
|
Register Undef = B.buildUndef(PartLLT).getReg(0);
|
|
|
|
// Build vector of undefs.
|
|
SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
|
|
|
|
// Replace the first sources with the real registers.
|
|
std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
|
|
UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
|
|
} else {
|
|
// We don't need to widen anything if we're extracting a scalar which was
|
|
// promoted to a vector e.g. s8 -> v4s8 -> s8
|
|
assert(SrcRegs.size() == 1);
|
|
UnmergeSrcReg = SrcRegs[0];
|
|
}
|
|
|
|
int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
|
|
|
|
SmallVector<Register, 8> PadDstRegs(NumDst);
|
|
std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
|
|
|
|
// Create the excess dead defs for the unmerge.
|
|
for (int I = DstRegs.size(); I != NumDst; ++I)
|
|
PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
|
|
|
|
return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
|
|
}
|
|
|
|
/// Create a sequence of instructions to combine pieces split into register
|
|
/// typed values to the original IR value. \p OrigRegs contains the destination
|
|
/// value registers of type \p LLTy, and \p Regs contains the legalized pieces
|
|
/// with type \p PartLLT. This is used for incoming values (physregs to vregs).
|
|
static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
|
|
ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
|
|
const ISD::ArgFlagsTy Flags) {
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
|
|
if (PartLLT == LLTy) {
|
|
// We should have avoided introducing a new virtual register, and just
|
|
// directly assigned here.
|
|
assert(OrigRegs[0] == Regs[0]);
|
|
return;
|
|
}
|
|
|
|
if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
|
|
Regs.size() == 1) {
|
|
B.buildBitcast(OrigRegs[0], Regs[0]);
|
|
return;
|
|
}
|
|
|
|
// A vector PartLLT needs extending to LLTy's element size.
|
|
// E.g. <2 x s64> = G_SEXT <2 x s32>.
|
|
if (PartLLT.isVector() == LLTy.isVector() &&
|
|
PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
|
|
(!PartLLT.isVector() ||
|
|
PartLLT.getNumElements() == LLTy.getNumElements()) &&
|
|
OrigRegs.size() == 1 && Regs.size() == 1) {
|
|
Register SrcReg = Regs[0];
|
|
|
|
LLT LocTy = MRI.getType(SrcReg);
|
|
|
|
if (Flags.isSExt()) {
|
|
SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
|
|
.getReg(0);
|
|
} else if (Flags.isZExt()) {
|
|
SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
|
|
.getReg(0);
|
|
}
|
|
|
|
// Sometimes pointers are passed zero extended.
|
|
LLT OrigTy = MRI.getType(OrigRegs[0]);
|
|
if (OrigTy.isPointer()) {
|
|
LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
|
|
B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
|
|
return;
|
|
}
|
|
|
|
B.buildTrunc(OrigRegs[0], SrcReg);
|
|
return;
|
|
}
|
|
|
|
if (!LLTy.isVector() && !PartLLT.isVector()) {
|
|
assert(OrigRegs.size() == 1);
|
|
LLT OrigTy = MRI.getType(OrigRegs[0]);
|
|
|
|
unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
|
|
if (SrcSize == OrigTy.getSizeInBits())
|
|
B.buildMerge(OrigRegs[0], Regs);
|
|
else {
|
|
auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
|
|
B.buildTrunc(OrigRegs[0], Widened);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (PartLLT.isVector()) {
|
|
assert(OrigRegs.size() == 1);
|
|
SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
|
|
|
|
// If PartLLT is a mismatched vector in both number of elements and element
|
|
// size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
|
|
// have the same elt type, i.e. v4s32.
|
|
if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
|
|
PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
|
|
Regs.size() == 1) {
|
|
LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
|
|
.changeElementCount(PartLLT.getElementCount() * 2);
|
|
CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
|
|
PartLLT = NewTy;
|
|
}
|
|
|
|
if (LLTy.getScalarType() == PartLLT.getElementType()) {
|
|
mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
|
|
} else {
|
|
unsigned I = 0;
|
|
LLT GCDTy = getGCDType(LLTy, PartLLT);
|
|
|
|
// We are both splitting a vector, and bitcasting its element types. Cast
|
|
// the source pieces into the appropriate number of pieces with the result
|
|
// element type.
|
|
for (Register SrcReg : CastRegs)
|
|
CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
|
|
mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
assert(LLTy.isVector() && !PartLLT.isVector());
|
|
|
|
LLT DstEltTy = LLTy.getElementType();
|
|
|
|
// Pointer information was discarded. We'll need to coerce some register types
|
|
// to avoid violating type constraints.
|
|
LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
|
|
|
|
assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
|
|
|
|
if (DstEltTy == PartLLT) {
|
|
// Vector was trivially scalarized.
|
|
|
|
if (RealDstEltTy.isPointer()) {
|
|
for (Register Reg : Regs)
|
|
MRI.setType(Reg, RealDstEltTy);
|
|
}
|
|
|
|
B.buildBuildVector(OrigRegs[0], Regs);
|
|
} else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
|
|
// Deal with vector with 64-bit elements decomposed to 32-bit
|
|
// registers. Need to create intermediate 64-bit elements.
|
|
SmallVector<Register, 8> EltMerges;
|
|
int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
|
|
|
|
assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
|
|
|
|
for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
|
|
auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
|
|
// Fix the type in case this is really a vector of pointers.
|
|
MRI.setType(Merge.getReg(0), RealDstEltTy);
|
|
EltMerges.push_back(Merge.getReg(0));
|
|
Regs = Regs.drop_front(PartsPerElt);
|
|
}
|
|
|
|
B.buildBuildVector(OrigRegs[0], EltMerges);
|
|
} else {
|
|
// Vector was split, and elements promoted to a wider type.
|
|
// FIXME: Should handle floating point promotions.
|
|
LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
|
|
auto BV = B.buildBuildVector(BVType, Regs);
|
|
B.buildTrunc(OrigRegs[0], BV);
|
|
}
|
|
}
|
|
|
|
/// Create a sequence of instructions to expand the value in \p SrcReg (of type
|
|
/// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
|
|
/// contain the type of scalar value extension if necessary.
|
|
///
|
|
/// This is used for outgoing values (vregs to physregs)
|
|
static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
|
|
Register SrcReg, LLT SrcTy, LLT PartTy,
|
|
unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
|
|
// We could just insert a regular copy, but this is unreachable at the moment.
|
|
assert(SrcTy != PartTy && "identical part types shouldn't reach here");
|
|
|
|
const unsigned PartSize = PartTy.getSizeInBits();
|
|
|
|
if (PartTy.isVector() == SrcTy.isVector() &&
|
|
PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
|
|
assert(DstRegs.size() == 1);
|
|
B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
|
|
return;
|
|
}
|
|
|
|
if (SrcTy.isVector() && !PartTy.isVector() &&
|
|
PartSize > SrcTy.getElementType().getSizeInBits()) {
|
|
// Vector was scalarized, and the elements extended.
|
|
auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
|
|
for (int i = 0, e = DstRegs.size(); i != e; ++i)
|
|
B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
|
|
return;
|
|
}
|
|
|
|
LLT GCDTy = getGCDType(SrcTy, PartTy);
|
|
if (GCDTy == PartTy) {
|
|
// If this already evenly divisible, we can create a simple unmerge.
|
|
B.buildUnmerge(DstRegs, SrcReg);
|
|
return;
|
|
}
|
|
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
LLT DstTy = MRI.getType(DstRegs[0]);
|
|
LLT LCMTy = getLCMType(SrcTy, PartTy);
|
|
|
|
const unsigned DstSize = DstTy.getSizeInBits();
|
|
const unsigned SrcSize = SrcTy.getSizeInBits();
|
|
unsigned CoveringSize = LCMTy.getSizeInBits();
|
|
|
|
Register UnmergeSrc = SrcReg;
|
|
|
|
if (CoveringSize != SrcSize) {
|
|
// For scalars, it's common to be able to use a simple extension.
|
|
if (SrcTy.isScalar() && DstTy.isScalar()) {
|
|
CoveringSize = alignTo(SrcSize, DstSize);
|
|
LLT CoverTy = LLT::scalar(CoveringSize);
|
|
UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
|
|
} else {
|
|
// Widen to the common type.
|
|
// FIXME: This should respect the extend type
|
|
Register Undef = B.buildUndef(SrcTy).getReg(0);
|
|
SmallVector<Register, 8> MergeParts(1, SrcReg);
|
|
for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
|
|
MergeParts.push_back(Undef);
|
|
UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
|
|
}
|
|
}
|
|
|
|
// Unmerge to the original registers and pad with dead defs.
|
|
SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
|
|
for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize;
|
|
Size += DstSize) {
|
|
UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
|
|
}
|
|
|
|
B.buildUnmerge(UnmergeResults, UnmergeSrc);
|
|
}
|
|
|
|
bool CallLowering::determineAndHandleAssignments(
|
|
ValueHandler &Handler, ValueAssigner &Assigner,
|
|
SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
|
|
CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
const Function &F = MF.getFunction();
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
|
|
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
|
|
if (!determineAssignments(Assigner, Args, CCInfo))
|
|
return false;
|
|
|
|
return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
|
|
ThisReturnReg);
|
|
}
|
|
|
|
static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
|
|
if (Flags.isSExt())
|
|
return TargetOpcode::G_SEXT;
|
|
if (Flags.isZExt())
|
|
return TargetOpcode::G_ZEXT;
|
|
return TargetOpcode::G_ANYEXT;
|
|
}
|
|
|
|
bool CallLowering::determineAssignments(ValueAssigner &Assigner,
|
|
SmallVectorImpl<ArgInfo> &Args,
|
|
CCState &CCInfo) const {
|
|
LLVMContext &Ctx = CCInfo.getContext();
|
|
const CallingConv::ID CallConv = CCInfo.getCallingConv();
|
|
|
|
unsigned NumArgs = Args.size();
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
EVT CurVT = EVT::getEVT(Args[i].Ty);
|
|
|
|
MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
|
|
|
|
// If we need to split the type over multiple regs, check it's a scenario
|
|
// we currently support.
|
|
unsigned NumParts =
|
|
TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
|
|
|
|
if (NumParts == 1) {
|
|
// Try to use the register type if we couldn't assign the VT.
|
|
if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
|
|
Args[i].Flags[0], CCInfo))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// For incoming arguments (physregs to vregs), we could have values in
|
|
// physregs (or memlocs) which we want to extract and copy to vregs.
|
|
// During this, we might have to deal with the LLT being split across
|
|
// multiple regs, so we have to record this information for later.
|
|
//
|
|
// If we have outgoing args, then we have the opposite case. We have a
|
|
// vreg with an LLT which we want to assign to a physical location, and
|
|
// we might have to record that the value has to be split later.
|
|
|
|
// We're handling an incoming arg which is split over multiple regs.
|
|
// E.g. passing an s128 on AArch64.
|
|
ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
|
|
Args[i].Flags.clear();
|
|
|
|
for (unsigned Part = 0; Part < NumParts; ++Part) {
|
|
ISD::ArgFlagsTy Flags = OrigFlags;
|
|
if (Part == 0) {
|
|
Flags.setSplit();
|
|
} else {
|
|
Flags.setOrigAlign(Align(1));
|
|
if (Part == NumParts - 1)
|
|
Flags.setSplitEnd();
|
|
}
|
|
|
|
Args[i].Flags.push_back(Flags);
|
|
if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
|
|
Args[i].Flags[Part], CCInfo)) {
|
|
// Still couldn't assign this smaller part type for some reason.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CallLowering::handleAssignments(ValueHandler &Handler,
|
|
SmallVectorImpl<ArgInfo> &Args,
|
|
CCState &CCInfo,
|
|
SmallVectorImpl<CCValAssign> &ArgLocs,
|
|
MachineIRBuilder &MIRBuilder,
|
|
Register ThisReturnReg) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const Function &F = MF.getFunction();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
const unsigned NumArgs = Args.size();
|
|
|
|
for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
|
|
assert(j < ArgLocs.size() && "Skipped too many arg locs");
|
|
CCValAssign &VA = ArgLocs[j];
|
|
assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
|
|
|
|
if (VA.needsCustom()) {
|
|
unsigned NumArgRegs =
|
|
Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
|
|
if (!NumArgRegs)
|
|
return false;
|
|
j += NumArgRegs;
|
|
continue;
|
|
}
|
|
|
|
const MVT ValVT = VA.getValVT();
|
|
const MVT LocVT = VA.getLocVT();
|
|
|
|
const LLT LocTy(LocVT);
|
|
const LLT ValTy(ValVT);
|
|
const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
|
|
const EVT OrigVT = EVT::getEVT(Args[i].Ty);
|
|
const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
|
|
|
|
// Expected to be multiple regs for a single incoming arg.
|
|
// There should be Regs.size() ArgLocs per argument.
|
|
// This should be the same as getNumRegistersForCallingConv
|
|
const unsigned NumParts = Args[i].Flags.size();
|
|
|
|
// Now split the registers into the assigned types.
|
|
Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
|
|
|
|
if (NumParts != 1 || NewLLT != OrigTy) {
|
|
// If we can't directly assign the register, we need one or more
|
|
// intermediate values.
|
|
Args[i].Regs.resize(NumParts);
|
|
|
|
// For each split register, create and assign a vreg that will store
|
|
// the incoming component of the larger value. These will later be
|
|
// merged to form the final vreg.
|
|
for (unsigned Part = 0; Part < NumParts; ++Part)
|
|
Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
|
|
}
|
|
|
|
assert((j + (NumParts - 1)) < ArgLocs.size() &&
|
|
"Too many regs for number of args");
|
|
|
|
// Coerce into outgoing value types before register assignment.
|
|
if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
|
|
assert(Args[i].OrigRegs.size() == 1);
|
|
buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
|
|
ValTy, extendOpFromFlags(Args[i].Flags[0]));
|
|
}
|
|
|
|
for (unsigned Part = 0; Part < NumParts; ++Part) {
|
|
Register ArgReg = Args[i].Regs[Part];
|
|
// There should be Regs.size() ArgLocs per argument.
|
|
VA = ArgLocs[j + Part];
|
|
const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
|
|
|
|
if (VA.isMemLoc() && !Flags.isByVal()) {
|
|
// Individual pieces may have been spilled to the stack and others
|
|
// passed in registers.
|
|
|
|
// TODO: The memory size may be larger than the value we need to
|
|
// store. We may need to adjust the offset for big endian targets.
|
|
LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
|
|
|
|
MachinePointerInfo MPO;
|
|
Register StackAddr = Handler.getStackAddress(
|
|
MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
|
|
|
|
Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
|
|
continue;
|
|
}
|
|
|
|
if (VA.isMemLoc() && Flags.isByVal()) {
|
|
assert(Args[i].Regs.size() == 1 &&
|
|
"didn't expect split byval pointer");
|
|
|
|
if (Handler.isIncomingArgumentHandler()) {
|
|
// We just need to copy the frame index value to the pointer.
|
|
MachinePointerInfo MPO;
|
|
Register StackAddr = Handler.getStackAddress(
|
|
Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
|
|
MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
|
|
} else {
|
|
// For outgoing byval arguments, insert the implicit copy byval
|
|
// implies, such that writes in the callee do not modify the caller's
|
|
// value.
|
|
uint64_t MemSize = Flags.getByValSize();
|
|
int64_t Offset = VA.getLocMemOffset();
|
|
|
|
MachinePointerInfo DstMPO;
|
|
Register StackAddr =
|
|
Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
|
|
|
|
MachinePointerInfo SrcMPO(Args[i].OrigValue);
|
|
if (!Args[i].OrigValue) {
|
|
// We still need to accurately track the stack address space if we
|
|
// don't know the underlying value.
|
|
const LLT PtrTy = MRI.getType(StackAddr);
|
|
SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
|
|
}
|
|
|
|
Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
|
|
inferAlignFromPtrInfo(MF, DstMPO));
|
|
|
|
Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
|
|
inferAlignFromPtrInfo(MF, SrcMPO));
|
|
|
|
Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
|
|
DstMPO, DstAlign, SrcMPO, SrcAlign,
|
|
MemSize, VA);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
assert(!VA.needsCustom() && "custom loc should have been handled already");
|
|
|
|
if (i == 0 && ThisReturnReg.isValid() &&
|
|
Handler.isIncomingArgumentHandler() &&
|
|
isTypeIsValidForThisReturn(ValVT)) {
|
|
Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
|
|
continue;
|
|
}
|
|
|
|
Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
|
|
}
|
|
|
|
// Now that all pieces have been assigned, re-pack the register typed values
|
|
// into the original value typed registers.
|
|
if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
|
|
// Merge the split registers into the expected larger result vregs of
|
|
// the original call.
|
|
buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
|
|
LocTy, Args[i].Flags[0]);
|
|
}
|
|
|
|
j += NumParts - 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
|
|
ArrayRef<Register> VRegs, Register DemoteReg,
|
|
int FI) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const DataLayout &DL = MF.getDataLayout();
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
SmallVector<uint64_t, 4> Offsets;
|
|
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
|
|
|
|
assert(VRegs.size() == SplitVTs.size());
|
|
|
|
unsigned NumValues = SplitVTs.size();
|
|
Align BaseAlign = DL.getPrefTypeAlign(RetTy);
|
|
Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
|
|
LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
|
|
|
|
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
|
|
|
|
for (unsigned I = 0; I < NumValues; ++I) {
|
|
Register Addr;
|
|
MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
|
|
auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
|
|
MRI.getType(VRegs[I]),
|
|
commonAlignment(BaseAlign, Offsets[I]));
|
|
MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
|
|
}
|
|
}
|
|
|
|
void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
|
|
ArrayRef<Register> VRegs,
|
|
Register DemoteReg) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const DataLayout &DL = MF.getDataLayout();
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
SmallVector<uint64_t, 4> Offsets;
|
|
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
|
|
|
|
assert(VRegs.size() == SplitVTs.size());
|
|
|
|
unsigned NumValues = SplitVTs.size();
|
|
Align BaseAlign = DL.getPrefTypeAlign(RetTy);
|
|
unsigned AS = DL.getAllocaAddrSpace();
|
|
LLT OffsetLLTy =
|
|
getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
|
|
|
|
MachinePointerInfo PtrInfo(AS);
|
|
|
|
for (unsigned I = 0; I < NumValues; ++I) {
|
|
Register Addr;
|
|
MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
|
|
auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
|
|
MRI.getType(VRegs[I]),
|
|
commonAlignment(BaseAlign, Offsets[I]));
|
|
MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
|
|
}
|
|
}
|
|
|
|
void CallLowering::insertSRetIncomingArgument(
|
|
const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
|
|
MachineRegisterInfo &MRI, const DataLayout &DL) const {
|
|
unsigned AS = DL.getAllocaAddrSpace();
|
|
DemoteReg = MRI.createGenericVirtualRegister(
|
|
LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
|
|
|
|
Type *PtrTy = PointerType::get(F.getReturnType(), AS);
|
|
|
|
SmallVector<EVT, 1> ValueVTs;
|
|
ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
|
|
|
|
// NOTE: Assume that a pointer won't get split into more than one VT.
|
|
assert(ValueVTs.size() == 1);
|
|
|
|
ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
|
|
ArgInfo::NoArgIndex);
|
|
setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
|
|
DemoteArg.Flags[0].setSRet();
|
|
SplitArgs.insert(SplitArgs.begin(), DemoteArg);
|
|
}
|
|
|
|
void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
|
|
const CallBase &CB,
|
|
CallLoweringInfo &Info) const {
|
|
const DataLayout &DL = MIRBuilder.getDataLayout();
|
|
Type *RetTy = CB.getType();
|
|
unsigned AS = DL.getAllocaAddrSpace();
|
|
LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
|
|
|
|
int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
|
|
DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
|
|
|
|
Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
|
|
ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
|
|
ArgInfo::NoArgIndex);
|
|
setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
|
|
DemoteArg.Flags[0].setSRet();
|
|
|
|
Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
|
|
Info.DemoteStackIndex = FI;
|
|
Info.DemoteRegister = DemoteReg;
|
|
}
|
|
|
|
bool CallLowering::checkReturn(CCState &CCInfo,
|
|
SmallVectorImpl<BaseArgInfo> &Outs,
|
|
CCAssignFn *Fn) const {
|
|
for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
|
|
MVT VT = MVT::getVT(Outs[I].Ty);
|
|
if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
|
|
AttributeList Attrs,
|
|
SmallVectorImpl<BaseArgInfo> &Outs,
|
|
const DataLayout &DL) const {
|
|
LLVMContext &Context = RetTy->getContext();
|
|
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
|
|
addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
|
|
|
|
for (EVT VT : SplitVTs) {
|
|
unsigned NumParts =
|
|
TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
|
|
MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
|
|
Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
|
|
|
|
for (unsigned I = 0; I < NumParts; ++I) {
|
|
Outs.emplace_back(PartTy, Flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
|
|
const auto &F = MF.getFunction();
|
|
Type *ReturnType = F.getReturnType();
|
|
CallingConv::ID CallConv = F.getCallingConv();
|
|
|
|
SmallVector<BaseArgInfo, 4> SplitArgs;
|
|
getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
|
|
MF.getDataLayout());
|
|
return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
|
|
}
|
|
|
|
bool CallLowering::parametersInCSRMatch(
|
|
const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
|
|
const SmallVectorImpl<CCValAssign> &OutLocs,
|
|
const SmallVectorImpl<ArgInfo> &OutArgs) const {
|
|
for (unsigned i = 0; i < OutLocs.size(); ++i) {
|
|
auto &ArgLoc = OutLocs[i];
|
|
// If it's not a register, it's fine.
|
|
if (!ArgLoc.isRegLoc())
|
|
continue;
|
|
|
|
MCRegister PhysReg = ArgLoc.getLocReg();
|
|
|
|
// Only look at callee-saved registers.
|
|
if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
|
|
continue;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "... Call has an argument passed in a callee-saved register.\n");
|
|
|
|
// Check if it was copied from.
|
|
const ArgInfo &OutInfo = OutArgs[i];
|
|
|
|
if (OutInfo.Regs.size() > 1) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "... Cannot handle arguments in multiple registers.\n");
|
|
return false;
|
|
}
|
|
|
|
// Check if we copy the register, walking through copies from virtual
|
|
// registers. Note that getDefIgnoringCopies does not ignore copies from
|
|
// physical registers.
|
|
MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
|
|
if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "... Parameter was not copied into a VReg, cannot tail call.\n");
|
|
return false;
|
|
}
|
|
|
|
// Got a copy. Verify that it's the same as the register we want.
|
|
Register CopyRHS = RegDef->getOperand(1).getReg();
|
|
if (CopyRHS != PhysReg) {
|
|
LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
|
|
"VReg, cannot tail call.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
|
|
MachineFunction &MF,
|
|
SmallVectorImpl<ArgInfo> &InArgs,
|
|
ValueAssigner &CalleeAssigner,
|
|
ValueAssigner &CallerAssigner) const {
|
|
const Function &F = MF.getFunction();
|
|
CallingConv::ID CalleeCC = Info.CallConv;
|
|
CallingConv::ID CallerCC = F.getCallingConv();
|
|
|
|
if (CallerCC == CalleeCC)
|
|
return true;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs1;
|
|
CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
|
|
if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
|
|
return false;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs2;
|
|
CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
|
|
if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
|
|
return false;
|
|
|
|
// We need the argument locations to match up exactly. If there's more in
|
|
// one than the other, then we are done.
|
|
if (ArgLocs1.size() != ArgLocs2.size())
|
|
return false;
|
|
|
|
// Make sure that each location is passed in exactly the same way.
|
|
for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
|
|
const CCValAssign &Loc1 = ArgLocs1[i];
|
|
const CCValAssign &Loc2 = ArgLocs2[i];
|
|
|
|
// We need both of them to be the same. So if one is a register and one
|
|
// isn't, we're done.
|
|
if (Loc1.isRegLoc() != Loc2.isRegLoc())
|
|
return false;
|
|
|
|
if (Loc1.isRegLoc()) {
|
|
// If they don't have the same register location, we're done.
|
|
if (Loc1.getLocReg() != Loc2.getLocReg())
|
|
return false;
|
|
|
|
// They matched, so we can move to the next ArgLoc.
|
|
continue;
|
|
}
|
|
|
|
// Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
|
|
if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
LLT CallLowering::ValueHandler::getStackValueStoreType(
|
|
const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
|
|
const MVT ValVT = VA.getValVT();
|
|
if (ValVT != MVT::iPTR) {
|
|
LLT ValTy(ValVT);
|
|
|
|
// We lost the pointeriness going through CCValAssign, so try to restore it
|
|
// based on the flags.
|
|
if (Flags.isPointer()) {
|
|
LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
|
|
ValTy.getScalarSizeInBits());
|
|
if (ValVT.isVector())
|
|
return LLT::vector(ValTy.getElementCount(), PtrTy);
|
|
return PtrTy;
|
|
}
|
|
|
|
return ValTy;
|
|
}
|
|
|
|
unsigned AddrSpace = Flags.getPointerAddrSpace();
|
|
return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
|
|
}
|
|
|
|
void CallLowering::ValueHandler::copyArgumentMemory(
|
|
const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
|
|
const MachinePointerInfo &DstPtrInfo, Align DstAlign,
|
|
const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
|
|
CCValAssign &VA) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
|
|
SrcPtrInfo,
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
|
|
SrcAlign);
|
|
|
|
MachineMemOperand *DstMMO = MF.getMachineMemOperand(
|
|
DstPtrInfo,
|
|
MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
|
|
MemSize, DstAlign);
|
|
|
|
const LLT PtrTy = MRI.getType(DstPtr);
|
|
const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
|
|
|
|
auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
|
|
MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
|
|
}
|
|
|
|
Register CallLowering::ValueHandler::extendRegister(Register ValReg,
|
|
CCValAssign &VA,
|
|
unsigned MaxSizeBits) {
|
|
LLT LocTy{VA.getLocVT()};
|
|
LLT ValTy{VA.getValVT()};
|
|
|
|
if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
|
|
return ValReg;
|
|
|
|
if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
|
|
if (MaxSizeBits <= ValTy.getSizeInBits())
|
|
return ValReg;
|
|
LocTy = LLT::scalar(MaxSizeBits);
|
|
}
|
|
|
|
const LLT ValRegTy = MRI.getType(ValReg);
|
|
if (ValRegTy.isPointer()) {
|
|
// The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
|
|
// we have to cast to do the extension.
|
|
LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
|
|
ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: break;
|
|
case CCValAssign::Full:
|
|
case CCValAssign::BCvt:
|
|
// FIXME: bitconverting between vector types may or may not be a
|
|
// nop in big-endian situations.
|
|
return ValReg;
|
|
case CCValAssign::AExt: {
|
|
auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
|
|
return MIB.getReg(0);
|
|
}
|
|
case CCValAssign::SExt: {
|
|
Register NewReg = MRI.createGenericVirtualRegister(LocTy);
|
|
MIRBuilder.buildSExt(NewReg, ValReg);
|
|
return NewReg;
|
|
}
|
|
case CCValAssign::ZExt: {
|
|
Register NewReg = MRI.createGenericVirtualRegister(LocTy);
|
|
MIRBuilder.buildZExt(NewReg, ValReg);
|
|
return NewReg;
|
|
}
|
|
}
|
|
llvm_unreachable("unable to extend register");
|
|
}
|
|
|
|
void CallLowering::ValueAssigner::anchor() {}
|
|
|
|
Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
|
|
Register SrcReg,
|
|
LLT NarrowTy) {
|
|
switch (VA.getLocInfo()) {
|
|
case CCValAssign::LocInfo::ZExt: {
|
|
return MIRBuilder
|
|
.buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
|
|
NarrowTy.getScalarSizeInBits())
|
|
.getReg(0);
|
|
}
|
|
case CCValAssign::LocInfo::SExt: {
|
|
return MIRBuilder
|
|
.buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
|
|
NarrowTy.getScalarSizeInBits())
|
|
.getReg(0);
|
|
break;
|
|
}
|
|
default:
|
|
return SrcReg;
|
|
}
|
|
}
|
|
|
|
/// Check if we can use a basic COPY instruction between the two types.
|
|
///
|
|
/// We're currently building on top of the infrastructure using MVT, which loses
|
|
/// pointer information in the CCValAssign. We accept copies from physical
|
|
/// registers that have been reported as integers if it's to an equivalent sized
|
|
/// pointer LLT.
|
|
static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
|
|
if (SrcTy == DstTy)
|
|
return true;
|
|
|
|
if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
|
|
return false;
|
|
|
|
SrcTy = SrcTy.getScalarType();
|
|
DstTy = DstTy.getScalarType();
|
|
|
|
return (SrcTy.isPointer() && DstTy.isScalar()) ||
|
|
(DstTy.isScalar() && SrcTy.isPointer());
|
|
}
|
|
|
|
void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
|
|
Register PhysReg,
|
|
CCValAssign &VA) {
|
|
const MVT LocVT = VA.getLocVT();
|
|
const LLT LocTy(LocVT);
|
|
const LLT RegTy = MRI.getType(ValVReg);
|
|
|
|
if (isCopyCompatibleType(RegTy, LocTy)) {
|
|
MIRBuilder.buildCopy(ValVReg, PhysReg);
|
|
return;
|
|
}
|
|
|
|
auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
|
|
auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
|
|
MIRBuilder.buildTrunc(ValVReg, Hint);
|
|
}
|